
Beyond Viewpoint:
X3D Camera Nodes for Digital Cinematography

Jeffrey D. Weekley

MOVES Institute
Naval Postgraduate School

Monterey, CA 93943
jdweekley@nps.edu

Don Brutzman, Ph.D.
MOVES Institute

Naval Postgraduate School
Monterey, CA 93943
brutzman@nps.edu

ABSTRACT
This paper describes four candidate X3D extension nodes:
Camera, Shot, Movement and OfflineRendering. An X3D
lexicon for camera movements is defined so that individuals
directing virtual cameras in X3D can directly apply terms that
film directors and cinematographers understand. This approach
greatly simplifies the technical tasks involved in creating precise
camera animations and setting up still images for digital
photography. Further, candidate methods are examined for
implementing Depth of Field for focus control. Moving beyond
the typical clumsiness of Viewpoint control can enable authors
to create compelling still and moving images from X3D scenes.

Categories and Subject Descriptors
D.3.3 [Computer Graphics]: Three-Dimensional Graphics and
Realism – Camera viewpoint, rendering, depth-of-field.

General Terms
I.3.7 [Three-Dimensional Graphics and Realism]: Virtual
reality—Color, shading, shadowing, and texture I.3.6
[Methodology and Techniques]: Standards—Languages Design,
Human Factors, Standardization.

Keywords
X3D graphics, camera movement, viewpoint, depth of field,
field of view, digital photography, offline rendering, machinima.

1. INTRODUCTION
The ability to move the camera separates cinematography from
still photography. The ability to have both the subject and the
camera move independently distinguishes it even further. This
both complicates and enables creativity for visual storytelling.
The same relationships can be expressed in 3D graphics, which
is further unconstrained because so many different aspects of
camera, scene entities and behaviors can be animated
simultaneously. Non-real-time 3D graphics have long leveraged
the power of traditional cinematography plus this unconstrained
freedom to great effect.

Currently, such complexity and license is only possible in X3D
with user navigation via NavigationInfo or overly complicated
Viewpoint animation. A lack of a nuanced camera, stilted or

arbitrary camera movements, and a lack of camera-specific
vocabulary generally hinder X3D as a source for high quality
rendered video. First-class camera capabilities are needed in
X3D. We propose a Camera node to include: camera movement,
movement sequencing, field of view (FOV), f-stop (and thus
aperture) control, focal length, focus distance, and camera aim.
Such capabilities can enable authors to duplicate, create,
demonstrate and record sophisticated camera work in an X3D
scene.

2. OVERVIEW
Many of the elements required for a Camera node already exist
in other nodes within X3D. What is missing is a vocabulary to
describe basic camera movements. These are expressed
generally in Figure 1 and extended to X3D in Figure 2. Many of
these camera movements can be authored already in X3D, but
doing so is complicated and their expression in X3D doesn’t
correspond to concepts in the cinematic domain. While it is not
our intention to teach cinematography, we do wish to provide an
equal footing for X3D as a medium for high-quality camera
work as applied to virtual still photography, real-time directed
long-form content, and rendered-to-video 3D graphics.

Figure 1. Basic Camera Movements

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Web3D 2009 Symposium, 16-17 June 2009, Darmstadt Germany.
Copyright 2009 ACM 1-58113-000-0/00/0004…$5.00.

Figure 2. X3D Camera Node Dependencies Corresponding to Basic Camera Movements

2.1 Design Goals
Since X3D is extensible, the overarching design goal is to
provide the author with simple Prototypes that express basic
camera movements common in cinematography. Such
prototypes can be repeatedly used without difficulty, and
eventually considered as native X3D nodes.
The physical properties of a camera and lens are often dictated
by its geometry, i.e. aspect ratio, focal length, size, weight, f-
stop, et cetera. Similarly the physics of optics and the laws of
motion have solidly constrained the tradition of visual
storytelling: practical cameras and lenses can only move
according to physical constraints. This is not to suggest that they
are not interesting or innovative. On the contrary, one hundred
years of exploration and practical application of cinematography
ought to be respected and emulated. It might seem that these
physical constraints are no longer relevant in virtual cameras.
Even so, virtual cameras still need to behave in ways that we
understand.
Constraining and defining virtual cameras to emulate practical
cameras is therefore another design goal. We wish to provide
common vocabulary and understanding across these domains.
Therefore a design goal for new camera nodes is to make X3D
camera animation more repeatable and predictable enough to be
used as a source for virtual imagery all defined in terms that
filmmakers and photographers grasp.

2.2 Use Cases
We identify six basic use cases: invoke a single camera
movement; invoke a series of camera movements, both
simultaneous and sequential; the ability to match a single

practical (real) camera movement for a single shot (e.g. camera
instance); the ability to match a series of practical camera
movements for a single photograph, single shot, or series of
shots; and the ability to loop a series of camera movements.
We also establish two views of time: a Continuous Time
approach that corresponds to direct animation of the camera i.e.
Interpolator/Chaser/Damper stream of events arriving via
ROUTEs; or Duration Time approach that corresponds to the
execution of one or more camera movement behaviors, each for
a discrete time period in seconds. The Continuous Time
approach can be practically beneficial for real-time X3D, while
the Duration Time approach lends itself to creating shots for
non-linear video editing of a timeline sequence as in film.
Other potentially valuable use cases are machinima and
previsualization of scenes in virtual sets. Machinima involves
the creation of video from 3D games or applications.
Previsualization is widely used in effects-driven feature films
and feature-length animated films where 3D graphics are used as
storyboards, informing planning and production with respect to
camera position, blocking, set design and visual effects.

3. CURRENT X3D FUNCTIONALITY
Figure 2 summarizes current X3D node capabilities of interest
for viewpoint animation and shows field interdependencies.
It is helpful to remember that X3D scenes are fixed in place.
User navigation around these scenes is either driven by user
input or driven by placing the viewpoint under a Transform node
that is then animated. In many ways Viewpoint nodes are like
cameras already, often prepositioned by the scene author in
locations and directions of interest. In combination with the

NavigationInfo node, they dictate how users interact with the
X3D scene. It remains quite difficult for a user to navigate
precisely and consistently enough to generate a ‘take’ for video
suitable for the motivating use cases, however. The Viewpoint
and NavigationInfo nodes do not provide enough information to
perform off-line rendering of video, or even single-shot
rendering of still images for digital photography.
Several well-known problems persist with Viewpoint and
NavigationInfo. Each set of nodes can be bound independently,
making coordinated control difficult or impossible. Since users
can select them from parent or subsidiary Inline scenes, it is not
possible for an author to strictly control view-based navigation
without turning off all related nodes and disabling navigation
entirely. Furthermore, there is no way to interrogate the Scene
Access Interface (SAI) to determine which of many candidate
nodes are currently bound, to interrogate current viewpoint
location and direction, etc.
More than just enabling a ‘magic carpet ride’ viewpoint, a
combined, coherent approach to viewing and navigation is
needed in order to meet the needs of many common author
intentions and to allow for proper cinematic camera control.

3.1 Traditional X3D View Animation
In order to animate (i.e. reposition and orient) a Viewpoint in
X3D, it is necessary to ROUTE values to either or both of the
position and orientation fields by using interpolator-ROUTE
mechanisms. One must always be careful that these are animated
in tandem, since moving the Viewpoint in XYZ space can easily
point it astray. This painstaking method works, but it requires
attention to detail and a sound conceptual grasp of the 3D
motion you intend to portray. There are also multiple linkages
that must be maintained throughout such a scene. The same can
be said of animation by the Transform node above a Viewpoint
node. Practically, this method often results in overly simple
camera movements, static camera positions or, even worse,
default Viewpoints only. Expert users can often generate
compelling Viewpoint movements using free navigation, but
these movements are not easily repeated. They rely on expert
user skills peculiar to the browser being used, not on author
intent. Example X3D implementations that generalize such
approaches are the ViewpointSequencer and Animated
ViewpointRecorder prototypes in the Tools/Authoring section of
the Savage X3D model archive.

4. CAMERA NODE DESIGN
Most of the functionality needed for an X3D camera node is
already present in Viewpoint, NavigationInfo, TimeSensor, and
the interpolator nodes (Position, Orientation and Scalar).
Camera prototype construction is mostly a matter of correctly
connecting them. This technical task is complicated somewhat
by the artistic requirements of camera work, since most
cinematic camera movements use the patterns of Figure 1.
Viewpoint contains two essential fields: position and orientation.
NavigationInfo provides visibilityLimit (farClippingPlane) and
the first field from Avatar Size (nearClippingPlane). Still,
purposefully positioning and orienting a camera in X3D is hard.
We refactor information already present to simplify camera
placement so that cinematic effects can be achieved. Figure 2
maps common camera movements to their respective X3D
attributes. This correspondence helps to match the lexicons of
cinematography and directing camera movements. Given an

understanding of this vocabulary, these new camera nodes are
designed so that such movements can be accomplished directly.

4.1 Camera Aim
Currently in X3D there is no direct concept of camera aim,
whereby one translates a viewpoint and it automatically
calculates the orientation required to keep looking at the object
of intent. Some browsers include this functionality as a user aid
to navigation, but it is not well specified and not universally or
consistently implemented. By exposing camera aimPoint, the
correct orientation is computed so that the camera continues to
point in the direction intended (aimVector). Pan and Tilt without
camera aim is also allowed. Pan and Tilt with camera aim is
actually a camera Track, even if one or both are moving. Non-
tracking and tracking camera movements in sequence are
allowed in cinematography, especially in documentary style
(though not always in an artistically effective fashion). The
aimVector is outputOnly and is provided as a calculated vector
so that supplementary animation scripting can avoid quaternion
mathematics. It is related to aimPoint, but is not directly
manipulated. The X3D Follower component also has appeal for
animating aimPoint. This camera-animation design enables
authors to set a goal aimPoint in sequential camera Movements.
Such an approach is much easier than simultaneously trying to
translate a Viewpoint while orienting it in a specific direction.

4.2 Camera upVector
In addition to providing camera aim, we include an UpVector
that allows the camera to be constrained so that camera
movements do not generate new camera rotations that are
unnecessary or undesirable. Certain camera movements such as
Track, Tilt and Tumble generate UpVector changes that are used
to constrain the roll, pitch and yaw of the camera. Generally, it
is desirable to keep the Camera upVector in the Cartesian
quadrants I and II, even when doing a Tumble, as this keeps the
‘world’ right-side-up.

4.3 Non-Motion Lens Adjustments
Two important motionless camera movements correspond to
Field-of-View (FOV) and Depth-of-Field (DOF) lens
adjustments. Both fields can be modified simultaneously with
other movements of the camera itself. Moving the focal plane
towards the camera is known as “Pulling Focus”, while moving
it away from the camera is known as “Pushing Focus.”
Cinematographers often use this device (perhaps subtly) to
direct viewer attention to a desired element in the scene.

4.3.1 Field of View (FOV)
FOV corresponds directly with the physical property of a lens
focal length. In X3D, a smaller FOV effectively zooms the lens;
a larger FOV has the practical effect of a wide-angle lens.
Moving the viewpoint closer, while increasing the FOV creates
a fish-eye distortion. See Figure 3.

Figure 3. Savage model of 747 aircraft seen from 25M with

FOV 1.57 (90°) and then less-distorted FOV 0.7853 (45°)

Careful FOV authoring usually prevents unwanted distortion,
but it is conceivable that wide-angle lens distortions, which are
commonly used in cinema, might purposefully be authored to
convey a sense of fantasy or distorted reality. The classic camera
movement of dolly-zoom (dolly the camera away at the same
rate the lens is zoomed in) is an example of this distorted reality
used for dramatic effect. Emulation of other practical lens
distortions remains interesting and appears to be feasible using
FOV and DOF animation effects.

4.3.2 Depth of Field (DOF)
Depth-of-Field (DOF) is defined to be the area enveloping the
focal place in an optical lens system within which objects retain
a definitive focal quality [Scofield 1992]. As in many
approaches to 3D graphics, it has no immediate corresponding
X3D attribute, since the virtual 3D graphics camera is idealized
so that there is only a single path for light to travel from the
scene to the viewer [Demers 2004]. The blur associated with a
real lens is therefore approximated and called the “Circle of
Confusion” [Potmesil 1982]. There are multiple generally
recognized methods for this approximation: distributed traced
rays across the surface of a (nonpinhole) lens [Cook et al. 1984];
accumulated buffer technique [Haeberli and Akeley 1990];
rendering multiple layers [Scofield 1994]; forward-mapped z-
buffer techniques [Potmesil and Chakravarty 1981]; and reverse-
mapped z-buffer techniques [Arce and Wloka 2002, Demers
2003]. A new method utilizes graphics card programmability:
anisotropic filtering using partial differential equations, which
may be particularly attractive because it is optimized for real-
time rendering and does not suffer from many of the artifacts of
previous methods [Bartalmio et al. 2004].

5. X3D CAMERA NODE SIGNATURES
The Camera node contains Shot and Movement nodes, each
carefully combined with camera-specific information required to
deliberately render a scene. A camera Movement is atomic and
can be used to assemble a Shot of one or more Movements. A
Shot has a start and an end, and so multiple Shots can be
sequenced to animate the full action in a scene. It logically
follows that Shot duration is the sum of the durations of each of
its constituent Movements, and similarly a Camera’s duration is
the sum of the contained Shot durations. The Camera node and
its dependent nodes supply all the necessary information and
map quite nicely to existing X3D interpolators and associated
nodes. It should be noted that the X3D Camera node is used for
author-directed rather than user-interactive viewing of the scene,
and may also serve as a recording camera for off-line
photographic or video rendering of a scene. When the Camera
node is bound, all other types of Navigation (EXAMINE,
WALK, FLY, etc.) and other Viewpoints are disabled.

5.1 Movement Node
There are two possible approaches to implementing a Shot: each
camera Movement gets its own interpolators, TimeSensor clock
and ROUTEs; or else all child Movement interpolations are
together aggregated into a single Shot animation, constructing a
single set of interpolators, Time Sensor and ROUTEs to run
them. The second approach is most appealing since it simplifies
the computation of values, can be repeated for each Shot,
reduces the complexity of animating ROUTEs, and allows for
the Duration Time approach.

For complex camera animation, multiple camera Shots and
Movements can be authored individually, making series of Shots
easier to author. Even complex Shots can be split into individual
Movements with initialization parameters and goal parameters.
Movements can be strung together so the camera follows a path,
and shots can be constructed so that they cut from one to
another. In video editing, a ‘jump cut’ is a sequential shot of the
same subject where the camera moves only slightly between
cuts. The general rule is that the camera move at least 30
degrees between shots. This is easily accomplished with the
X3D Camera node by making sure the initialPosition in the
subsequent Shot is sufficiently far away from the prior action.
Each node is presented in order from simplest to most complete.
The proposed Movement node signature is shown in Figure 4.

Figure 4. Proposed X3D Movement Node Signature

5.2 Shot Node
The Shot node has two modes: tracking and non-tracking. See
Figure 2 for a comparison of the node inputs and responses.
When ‘tracking’ is true, the author can change the camera
position and aimPoint, but the camera’s orientation is calculated
automatically by computing orientation values that align to
direction vector between the camera position and aimPoint. The
initialOrientation is set, but subsequent camera orientations are
calculated to keep the camera pointing at the aimPoint.
In non-tracking mode, the author can either specify
goalOrientation (as in a tilt or pan) or else ignore orientation
altogether by moving the camera (as in a dolly). In every case,
since all the characteristics at each time step are known, the
appropriate arrays are built as the keyValue in a traditional
interpolator and the key is calculated in proportional time steps
over the range (0..1). See Figure 5.

Figure 5. Calculation of Key Array in X3D Camera Node

The proposed node signature for Shot is shown in Figure 6.

Movement : X3DChildNode
description SFString inputOutput Descriptive summary
enabled SFBool inputOutput value=true Whether node is active
duration SFFloat inputOutput value=0 Duration in seconds for
 this move
goalPosition SFVec3f inputOutput value=0 0 10 Goal camera position
 for this move
goalOrientation SFRotation inputOutput value=0 0 1 0 Goal camera rotation
 for this move
goalAimPoint SFVec3f inputOutput value=0 0 0 Goal aimPoint for this move
 ignored if tracking=false
goalFieldOfView SFFloat inputOutput value=0.7854 Goal fieldOfView
 for this move
goalFStop SFFloat inputOutput value=5.6 Goal focal length divided by
 effective aperture diameter,
 indicating focal plane width
goalFocusDistance SFFloat inputOutput value=10 Distance to focal plane
 of sharpest focus
isActive SFBool outputOnly start/stop yields true/false,

 useful to trigger external animations

Figure 6. Proposed X3D Shot Node Signature

5.3 Camera Node
Since we have taken a hierarchical approach to the Camera node
construction, the Camera node itself contains only summary
information about camera movement. Exposure of the position
and orientation fields permits direct animation of Camera
posture by external animation nodes. Binding a Camera node
unbinds any bound Viewpoint, OrthoViewpoint or
NavigationInfo node.

Figure 7. Proposed X3D Camera Node Signature

The Camera node describes the initialization state of the camera
and provides parameters important to the Shot and Movement

constructions. Some of these parameters might change during
the Shot or Movements, while others might not. Timing
parameter totalDuration is calculated by summing the
shotDuration of each contained Shot, which in turn is the sum of
duration values for each contained Movement. There may be
multiple Camera nodes, each computing independent
totalDuration values.

5.4 Scripting and Advanced Techniques
5.4.1 Shaders for DOF Animation
As stated before, Camera animations are constructed from
discrete Camera Movements, interpolators and ROUTEs.
Internal Camera implementation functionality simply steps
through the mechanics of interpolator construction. DOF is more
complex and can have many implementations. Nevertheless,
since the bindings from X3D to OpenGL Shading Language
(GLSL), Microsoft High Level Shading Language (HSLS) and
nVidia Cg shading language are well understood and supported
by the X3D Specification, application of relevant algorithms
appears to be feasible. This paper surveys various techniques,
but implementation and evaluation remain as future work.

Animating the fieldOfView appears to be easier, though
probably not as dramatic an effect. Since the focal length of the
lens is approximated through the fieldOfView parameter and we
do not consider the optical properties of the physical lens in its
determination, an author might emulate a zoom effect by simply
dollying the camera closer to the aimPoint. Zooming by
increasing the fieldOfView attribute has the (possibly
unintended) consequence of distortion.

5.4.2 X3D Follower Component for Animation
X3D nodes in the Follower component enable authors to
dynamically create parameter transitions at run time by
receiving a destination value, from which a set of smooth
transition values is computed going from the current value
towards the newly set destination value. These nodes can be
considered direct, smoothed substitutes for interpolator nodes.
PositionChaser and PositionDamper correspond to
PositionInterpolator. OrientationChaser and OrientationDamper
correspond to OrientationInterpolator. ScalarChaser
corresponds to ScalarInterpolator for animating DOF and FOV.
Followers might be applied in several possible ways. The
Camera point of view might chase an author-defined list of
waypoints and orientations, or the camera aimPoint might chase
a target as it moves. Thus it appears that the Follower nodes are
well suited for camera and subject animation.

6. OfflineRender Node
Historically, X3D authors who want to record a video or take a
snapshot must run separate screen-capture software while the
user interacts with the X3D scene. This approach requires that
the bound Viewpoint node be manipulated by the user or
animated by the author.

Since camera shots and movements are well defined, the
OfflineRender node is designed to provide the additional
information needed to directly render movies or still images
with complete precision. Previously, there simply was not
enough information in an X3D scene to perform offline
rendering satisfactorily. Rendering movement by movement and
shot by shot (plus perhaps camera by camera) all corresponds
nicely to how practical cameras work and how films are made.

Camera : X3DBindableNode
<!-- Viewpoint-related fields -->
 Description SFString inputOutput Descriptive summary
 position SFVec3f inputOutput value= 0 0 10 Camera position
 orientation SFRotation inputOutput value= 0 0 1 0 Camera rotation
 fieldOfView SFFloat inputOutput value= 0.7854 pi/4
 set_bind SFBool inputOnly
 bindTime SFTime outputOnly
 isBound SFBool outputOnly

<!-- NavigationInfo-related fields -->

nearClipPlane SFFloat inputOutput Vector distance to near clipping plane
 farClipPlane SFFloat inputOutput Vector distance to far clipping plane
 headLight SFBool inputOutput value= true Camera headLight on or off
<!-- Camera-unique fields -->
 shots MFNode inputOutput value=NULL Array of Shot nodes, which

 contain Movement nodes
 headLightColor SFColor inputOutput value=1 1 1 Camera headLight color

filterColor SFColor inputOutput value=1 1 1 Camera filter color to
 modify virtual lens capture
aimPoint SFVec3f inputOutput value=0 0 0 Relative location for
 camera direction
upVector SFVec3f inputOutput Any changes modify
 camera orientation
fStop SFFloat inputOutput value= 5.6 Focal length divided by effective
 aperture diameter indicating width of focal plane

focusDistance SFFloat inputOutput value= 10 Distance to focal plane of
 sharpest focus
isActive SFBool outputOnly start/stop yields true/false,
 useful to trigger external
 animations
totalDuration SFTime outputOnly Total duration of contained,
 enabled Shot durations

<!-- Offline rendering parameters -->
 offlineRender MFNode inputOutput value=NULL OfflineRender node(s)

Shot : X3DChildNode
description SFString inputOutput value=”” Descriptive summary
enabled SFBool inputOutput value=true Whether node is activated
tracking SFBool inputOutput value=true Whether or not camera is
 tracking aimPoint, fixed for the
 conduct of this shot
moves MFNode inputOutput value=NULL Set of Movement nodes
initialPosition SFVec3f inputOutput value=0 0 1 Setup to reinitialize camera
 position for this shot
initialOrientation SFRotation inputOutput value=0 0 1 0 Setup to reinitialize camera
 orientation for this shot
initialAimPoint SFVec3f inputOutput value=0 0 0 Setup to reinitialize aimpoint
 (relative location for camera
 direction) for this shot
initialFieldOfView SFFloat inputOutput value=0.7854 pi/4
initialFStop SFFloat inputOutput value=5.6 Focal length divided by
 effective aperture diameter
 indicating width of focal plane
initialFocusDistance SFFloat inputOutput value=10 Distance to focal plane of
 sharpest focus
shotDuration SFTime outputOnly Subtotal duration of contained
 Movement move durations
isActive SFBool outputOnly start/stop yields true/false,

 useful to trigger external
 animations

Figure 8. Proposed X3D OfflineRender Node Signature

This capability satisfies an important use case. It now becomes
easily possible to create a finished narrative using just the
camera nodes and OfflineRender node, whereupon the X3D
scene itself contains the motions needed to define camera work
for a complete movie. We further suppose that X3D scenes
might be rendered for editing in post-production. At that point,
it becomes the video editor’s job to put video sequences together
to form a narrative. Even for this use case, carefully constructed
offline renders of X3D camera animation might greatly simplify
the post-processing of video in Non-linear Video Editing
systems and even 3D graphics compositing with live action.

7. AN EXAMPLE SCENE
We consider the common need to construct a scene using avatars
driven by behavior engines, where the author only has a general
idea of where they might be. Figure 9 shows how such a typical
scene might be staged and described in X3D using Camera, Shot
and Movement nodes.

Figure 9. Directing Scene Animations via Camera, Shot and Movement Nodes

OfflineRender : X3DChildNode
description SFString inputOutput Descriptive summary
movieEnabled SFBool inputOutput value= true Whether this OfflineRender of a
 movie can be activated
imageEnabled SFBool inputOutput value= true Whether this OfflineRender of an
 image can be activated
frameRate SFFloat inputOutput value=30 Frames per second recorded
 for this rendering
frameSize SFVec2f inputOutput value=640 480 Size of frame in number of pixels
pixelAspectRatio SFFloat inputOutput value=1.33 Relative dimensions of pixel
set_startTime SFTime inputOnly Begin render operation
progress SFFloat outputOnly Progress performing render operation

 (0..1)
renderCompleteTime SFTime outputOnly Render operation complete
movieFormat SFString initializeOnly value= mpeg Format of rendered output movie

(mpeg, mp4, etc.)
imageFormat SFString initializeOnly value= png Format of rendered output images
moviePath MFString initializeOnly [url] where rendered movies are written
imapgePath MFString initializeOnly [url] where rendered images are written

8. FUTURE WORK
The proposed Camera, Shot and Movement nodes for X3D
simplify camera animation and support sophisticated DOF
rendering. They are, easily authored and applied for both real-
time and offline rendering. The proposed OfflineRender node
provides the information necessary to produce multiple format
outputs in an offline mode.
More work to produce numerous examples and establish good
practices is needed to ensure that these capabilities are
thoroughly designed and fully capable of meeting diverse
authoring requirements. We hope that implementation,
evaluation and optimization provides a path towards eventual
adoption as part of the X3D Specification.

9. REFERENCES
Bertalmio. M., Fort, P. and Sanchez-Crespo, D. 2004. Real-time,
Accurate Depth of Field using Anisotropic Diffusion and
Programmable Graphics Cards. In Proceedings of the 2nd
International Symposium on 3D Data Processing, Visualization,
and Transmission (3DPVT’04)
Brutzman, Don and Daly, Leonard, X3D: Extensible 3D
Graphics for Web Authors, Morgan Kaufmann Publishers, 2007.
Examples, slidesets and video available via
http://www.x3dGraphics.com
Cook, R., Porter, T. and L. Carpenter. 1984. Distributed Ray
Tracing. In Computer Graphics (Proceedings of SIGGRAPH
1984) vol. 18, ACM, 137-145.

The Cutting Edge: The Magic of Movie Editing

Demers, J. 2002. Depth of Field: A Survey of Techniques, GPU
Gems, Chapter 23

. Wendy Apple.
Wendy Apple. Kathy Bates, Jody Foster, Quentin Tarrantino,
Walter Murch, James Cameron. Feature Documentary. A.C.E,
2004.

Demers, J. 2003. Depth of Field in the 'Toys' Demo. From
"Ogres and Fairies: Secrets of the NVIDIA Demo Team,"
presented at GDC 2003.
Haeberli, P., and Akeley, K. 1990. The Accumulation Buffer:
Hardware Support for High-Quality Rendering. Computer
Graphics 24(4).
Pocock, L., and Rosebush, J. The Computer Animator's
Technical Handbook. New York, New York: Morgan Kauffman,
2002.
Pixar’s Renderman. Teapot and Box
Potmesil, M., and Chakravarty, I. 1982. Synthetic Image
Generation with a Lens and Aperture Camera Model. ACM
Transactions on Graphics, April 1982.

. Rendered in Maya 2008.

Savage X3D Model Archive https://savage.nps.edu/Savage
Scofield, C. 1994. 2½-D Depth of Field Simulation for
Computer Animation. In Graphics Gems III, edited by David
Kirk. Morgan Kaufmann.
Web 3D Consortium, Extensible 3D (X3D) Graphics Standard.
http://www.web3d.org/x3d/specifications/ISO-IEC-19775-
X3DAbstractSpecification

Figure 10. Depth of Field (DOF) Image Examples, Produced using Pixar's Renderman

https://savage.nps.edu/Savage�

	1. INTRODUCTION
	2. OVERVIEW
	2.1 Design Goals
	2.2 Use Cases

	3. CURRENT X3D FUNCTIONALITY
	3.1 Traditional X3D View Animation

	4. CAMERA NODE DESIGN
	4.1 Camera Aim
	4.2 Camera upVector
	4.3 Non-Motion Lens Adjustments
	4.3.1 Field of View (FOV)
	4.3.2 Depth of Field (DOF)

	5. X3D CAMERA NODE SIGNATURES
	5.1 Movement Node
	5.2 Shot Node
	5.3 Camera Node
	5.4 Scripting and Advanced Techniques
	5.4.1 Shaders for DOF Animation
	5.4.2 X3D Follower Component for Animation

	6. OfflineRender Node
	7. AN EXAMPLE SCENE
	8. FUTURE WORK
	9. REFERENCES

