
. .)

Information technology - Computer graphics, image
processing and environmental data representation -

Extensible 3D (X3D) - . _ _.f).--;,;,~~~~t

Part 2: Scene access interface (SAi)

ISO/IEC 19775-2:2015 ~vJ~ .1Jf -

c..)
This document is ISO/IEC 19775-2:2015, Extensible 3D (X3D), Edition/ The full
title of this part of 1S0/IEC 19775 is: Information technology - Computer
graphics, image processing and environmental data representation - Extensible
3D (X3D) - Part 2: Scene access interface (SAI).

Background Clauses Annexes

• A VRML

e Foreword • 1 Sco12e scri12ting
backwards
com12atibilitY.

e Introduction • 2 Normative references

• 3 Terms, definitions, acronv.ms and
abbreviations

• 4 Conce12ts

• 5 Data tv.12e reference

• 6 Services reference

• 7 Conformance and minimum SUQROrt

reguirements

The Foreword provides background on the standards process for X3D. The
Introduction describes the purpose, design criteria, and characteristics of X3D.
The following clauses define this part of 1S0/IEC 19775:

1. Scope defines the problem area that X3D addresses.
2. Normative references lists the normative standards referenced in this part

of ISO/IEC 19775.

3. Terms, definitions, acronyms and abbreviations. contains the glossary
of terminology used in this part of 1S0/IEC 19775.

4. Concepts describes various fundamentals of the X3D scene access interface.
5. Data type reference defines the data types used by the application

programmer interfaces.

6. Services reference defines the functionality which may be accessed
through the application programmer interfaces.

7. Conformance and minimum support requirements describes the
conformance requirements for X3D implementations.

There is one annex included in the specification:

A. VRML 97 scripting backwards compatibility describes the manner in
which X3D Scripting can be used to provide backwards compatibility with
VRML 97 scripting .

Extensible 3D (X3D)
Part 2: Scene access interface (SAI)

Foreword

ISO (the International Organization for Standardization) and IEC (the
International Electrotechnical Commission) form a specialized system for
worldwide standardization. National bodies that are members of ISO or IEC
participate in the development of International Standards through technical
committees established by the respective organization to deal with particular
fields of technical activity. ISO and IEC technical committees collaborate in fields
of mutual interest. Other international organizations, governmental and non
governmental, in liaison with ISO and IEC, also take part in the work. In the field
of information technology, ISO and IEC have established a joint technical
committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the
ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International
Standards. Draft International Standards adopted by the joint technical
committee are circulated to national bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the national bodies
casting a vote.

Attention is drawn to the possibility that some of the elements of this document
may be the subject of patent rights. ISO and IEC shall not be held responsible for
identifying any or all such patent rights.

ISO/IEC 19775-2 was prepared by Joint Technical Committee ISO/IEC JTC 1,
Information technology, Subcommittee 24, Computer graphics, image processing
and environmental data representation, in collaboration with Web3D Consortium,_
Inc.

This third edition cancels and replaces the second edition (ISO/IEC 19775-
2: 2010), which has been technically revised.

ISO/IEC 19775 consists of the following parts, under the general title Information
technology - Computer graphics, image processing and environmental data
representation - Extensible 3D (X3D):

Part 1: Architecture and base components
Part 2: Scene access interface (SAI) (this part)

$ -

Extensible 3D (X3D)
Part 2: Scene access interface

Introduction

~ -
• Purpose

X3D is a file format and related access services for describing interactive 3D
objects and worlds. X3D is designed to be used on the Internet, intranets, and
local client systems. X3D is also intended to be a universal interchange format for
integrated 3D graphics and multimedia. X3D may be used in a variety of
application areas such as engineering and scientific visualization, multimedia
presentations, entertainment and educational titles, web pages, and shared
virtual worlds.

This part of ISO/IEC 19775 defines the scene access interface that can be used to
interact with X3D worlds both from within the worlds or from external programs.

~ -

Information technology -
Computer graphics, image processing and

environmental data representation -
Extensible 3D (X3D) -

Part 2: Scene access interface (SAI)

1 Scope

This part of ISO/IEC 19775 specifies a standard set of services that are made
available by a browser so that an author can access the scene graph while it is
running . Such access is designed o support inspection and modification of the
scene graph . " c..erJ(;5w~ ~ib J~Y\.~-ic_

pre 3 fl>t') "\V ~ .::[,J j J ,'Jl,. c,,J <>, v ~o c-J ~-

Extensible 3D (X3D)
Part 2: Scene access interface (SAi)

2 Normative references

~ >-
The following documents, in whole or in part, are normatively referenced in this
document and are indispensable for its application. For dated references, only the
edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

Identifier Reference

110646 ISO/IEC 10646, Information technology - Universal Multiple-Octet
Coded Character Set (UCS)

114496-1 ISO/I EC 14496-1: 2010, Information technology - Coding of audio-
visual objects - Part 1: Systems

ISO/I EC 14772-1: 1997, Information technology - Computer
114772-1 graphics and image processing - The Virtual Reality Modeling

Language - Part 1: Functional specification and UTF-8 encoding

ISO/I EC 14 772-2: 2004, Information technology - Computer
114772-2 graphics and image processing - The Virtual Reality Modeling

Language (VRML) - Part 2: External authoring interface (EAI)

-z,e> - --
1S0/IEC 19775- 1: ~ Information technology - Computer

119775-1 graphics, image processing and environmental data representation
- Extensible 30 (X30) - Part 1: Architecture and base components

1S0/IEC 19776-1 :2015, Information technology - Computer

119776-1 graphics, image processing and environmental data representation
- Extensible 30 (X30) encodings - Part 1: Extensible Markup
Language (XML) encoding (in preparation)

1S0/IEC 19776-2: 2015, Information technology - Computer

119776-2 graphics, image processing and environmental data representation
- Extensible 30 (X30) encodings - Part 2: Classic VRML encoding
(in preparation)

119776-3 ISO/IEC 19776-3: 2015, Information technology - Computer
graphics, image processing and environmental data representation
- Extensible 30 (X30) encodings - Part 3: Compressed binary
encoding (in preparation)

ISO/I EC 19777-1: 201x, Information technology - Computer
graphics, image processing and environmental data representation
- Extensible 30 (X3D) language bindings - Part 1: ECMAScript (in

119777 preparation)
1S0/IEC 19777-2: 201x, Information technology - Computer
graphics, image processing and environmental data representation
- Extensible 30 (X3D) language bindings - Part 2: Java (in
preparation)

RFC4248 IETF RFC 4248, The telnet URI Scheme, Internet standards track
protocol

W3CDOM2 W3C Document Object Model (.DOM) Level 2 Core 512.ecification
Version 1 .0

•.

'

· Extensible ·3D (X3D)

CJ CJk. J \ r"'l~r ~
'lo c_ o_r- ht (jp t~

. Part 2: Scene access interface (SAI)

3 Terms, definitions, acronyms and
· abbreviations

--------~ -
For the purposes of this document, the terms, definitions, acronyms and
abbreviations given in ISO/IEC 19775-1 and the following apply.

(;('n,J sif
~'1 t)t eo-S~

3.1
errors

reasons for unsuccessful termination of a service n "- / 's ~ M J \ ~
~ ~ c.oht~. cA t--t.t~~ ., ~ ~ 7' _ le ~ ~

~ • 2 , ,.J 0t. cc:ol'cto-1'1 o... c,.J ttk IC\ 7 7r- l (M J 6 ~
file l't A:~; u.J)} ~ a..ccoNJo...tJtt tJ ~ ~ ~.J..LJ Q ~ ~r o:r , ..Q.. ~ • .sc:-M L, u • .s\ t vtM c. Tso.-u, d't
collection of related data stored on physical media or existing as a data stream or -
as data within a computer program 1
3.3
initializeOnly field

field defined as part of a node definition whose value may only be specified at the
time that the node is instantiated t-'\

3.4
input-capable field

either an inRutOnlv. field or an inRutOutRut field

3.5
inputOnly field

field defined as part of a node definition which may only receive events

3.6
inputOuput field

field defined as part of a node definition that is capable of both receiving events

- l> :n.:senj~~~ 1,,J~1Nj. Jl~l-t ~~N olf/..JL
now 'l(J ~ SC.Wt flcu.r-.r ;1:;Af-{!;._ CR.
present time as specified by the user's system clock

3.8
output-capable field

either an inRutOutRut field or an outRutOnlY- field

3.9
outputOnly field

field defined as part of a node definition which may only send events

3.10
parameters

values passed into a servise

3.11
public interface

formal definition of a node type in this part of 1S0/IEC 19775

3.12
returns

values returned by an invocation of a service

3.13
run-time name scope

extent to which a name defined within an X3D file applies and is visible

~ -

-

Extensible 3D (X3D)
Part 2: Scene access interface (SAI)

4 Concepts

~ -
• 4.1 Introduction

This clause describes key concepts in this part of ISO/IEC 19775. This includes
describing the various components of the browser and how the interactions with
the browser may be accomplished. It does not define what the individual
interactions are. Those descriptions can be found in 6 Services reference .

Table 4.1 provides links to the major topics in this clause.

Table 4.1 - Topics

• 4 .1 Introduction

• 4.2 Overview

o 4.2.1 General

o 4 .2.2 Com12atibilitv. with VRML scri12ting

• 4.3 Binding and 12rotocol de12endencies

• 4.4 Interface constructs

o 4.4.1 Overview

o 4.4.2 User code

o 4.4.3 Containing node

o 4.4.4 AR.Rlication

o 4.4.5 Session

o 4.4.6 Browser

o 4.4. 7 Scene

o 4.4.8 Node and node lifecv.cle

o 4.4.9 Field -4 _ ~ .'-\ .) C S'~~
o 4.4.10 Execution context ~

• 4.5 Events

o 4.5.1Conce12ts f)O
o 4.5.2 Internal to browser

,(~Q o 4.5.3 Browser t6 external a1212lication

•Ai:4.5.3.1 Overview

• 4.5.3.2 Initialize

-
-

• 4 .5.3 .3 Shutdown

• 4.5.3.4 No URLs available

• 4.5.3.5 Connection lost

• 4 .6 Identifiers

• 4. 7 Relative URLs

• 4.8 Execution model

o 4.8.1 Overview of the interaction tv.Res

o 4.8.2 Event model evaluation order

o 4.8.3 Internal Interactions

• 4 .8.3.1 Permitted interactions

• 4.8.3.2 Browser interactions

• 4 .8 .3.3 ResRonding to events

• 4.8.3.4 URdating the scene graRh

• 4.8.3.5 Asy'.nchronous actions

• 4 .8 .3.6 Monitoring changes in the scene graRh

• 4 .8.3. 7 User code lifecy'.cle

• 4 .8.3 .7.1 Overview

• 4 .8.3 .7 .2 SetUR

• 4.8.3 . 7.3 Realization

• 4 .8.3 .7.4 DiSROSal

• 4.8.3.8 inRutOutRut fields and the containing node

• 4 .8 .3.9 Execution environment and securitY.

o 4.8.4 External Interactions

• 4.8.4.1 Permitted interactions

• 4.8.4.2 'Browser interactions -1.L. $J)

• 4.8.4.3 URdating the scene graRh

• 4.8.4.4 Monitoring changes in the scene graRh

• 4 .8.4.5 SY.nchronizing multiRle aQRlications

o 4.8 .5 Service guarantees

• Table 4.1 - TORiCS

• Table 4.2 - Permitted field access caRabilities during the node lifecY.cle

• Table 4.3 - Permitted field interactions of a live node

• 4.2 Overview

4. 2.1 Genera I
orJ- \\.vile-or

When~wishes to interact with an X3D scene graph through use of custom
code, eTI:l<'eras a Script node as defined in 29 Scripting component in ISO/IEC
19775-1 or from external applications, they shall use the Scene Authoring
Interface (SAI) defined in this part of ISO/IEC 19775. This interface is a protocol
for manipulating the X3D scene graph while not directly part of the scene graph
itself.

T

-

This specification is aimed at providing a language-neutral representation of all
actions that can be p~formep,)iY an external application across this interface.
Bindings to specifisfjang~s ate defined in ISO/IEC 19777. The SAI forms a ----
common interface that can be used either for manipulating the browser and the
scene graph from either an external "application or from inside the scene graph
through the Script node. However, it is not possible for.lSQP,._~ written for an
external application to be immediately usable as ~scripf.-ifie two environments ...c.

have quite different requirements and abilities to access and interact with the
scene graph. This specification provides a single, unified programmatic interface
and constraints that depend on the environment in which the code finds itself.

Conceptually, the SAI allows five types of access into the X3D scene:

• accessing the functionality of the Browser;
• receive notifications of the actions of the Browser, such as encountering bad

URLs, startup and shutdown;
• sending events to input-capable fields of nodes inside the scene;
• reading the last value sent from output-capable fields of nodes inside the

scene; and
• getting notified when events change values of node fields inside the scene.

4.2.2 Compatibility with 1S0/IEC 14772

If an X3D browser wishes to conform to ISO/IEC 14772-1, the browser shall
support the event model and semantics defined in Annex A VRML scriRting
backwards comRatibilitY- in addition to the functionality specified in ISO/IEC
19775-1 . Such support shalfonly be used when processing files that conform to
ISO/IEC 14772-1.

If an X3D browser wishes to conform to ISO/IEC 14772-2 (EAI), the browser shall
use the following rules to determine content validity:

a. If the user code accesses the browser through the EAI, only VRML
files as specified in ISO/IEC 14772-2 shall be loaded. It shall be an error to
process files that conform to this part of ISO/IEC 19775 if the user code is
accessing the browser through the EAL

b. If the user code accesses the browser through the capabilities provided by
the external interactions defined in this part of ISO/IEC 19775, only X3D
files as defined in ISO/IEC 19775-1 shall be loaded . If shall be an error to
process files that conform to ISO/IEC 14772-1 if the user code is accessing
the browser through the SAL

• 4.3 Binding and protocol dependencies
fl'a 'f'OIV'Y"I 1.J ,-

Imp I em en tat ion dependence is defined in terms of the language binding or
protocol encoding of the services defined in this specifitation. If a service is
defined to be implementation dependent, it is a requirement of each binding and
encoding to specify how that service is to be implemented, if at all.

Bindings and encodings to these services may define their own implementation
- dependent parts within that specification.
/\

• 4.4 Interface constructs

4.4.1 Overview

There are four main data collections in an X3D browser that can be accessed
using the services of the SAI: if he browser, meta data about the currently loaded
scene, nodes within the scene graph, and fields within nodes. The definition and
specifications are framed in terms of services. An X3D browser exposes a set of
services that allow external applications to interact with it. In order to describe
these concepts, a number of terms are defined.

4.4.2 User code 1 '1

('>t-e ~,-Mt"\\ rt• C.., 'S'ttY /'c,J.. G r- Ce~ I f.ru/
- AnyAcode that makes use of the services defined in this part of ISO/IEC 19775 is

~h,~vJ}- Co!2_sidered to be user code. User code may exist either within the scene graph or
'""f.E_?dlir external to the browser. fl shall only use the services provided by this part and no
~ ~implementatio~specific ervices. In addition, these services are not

desi_g_Qed or, nor inten ed to be used for, writing native node extensions to a
t_ }- specific browser.'9'A browser may provide its own proprietary programmatic
~ ri~ interfaces to implement native extensions that are not part of this specification. If
6 t-- µ:~D code uses proprietary extensions, it shall not be considered user code for the
~~S~ - purposes of this part of ISO/IEC 19775. ~.ui""'? ~
lo:(,~,

4 .4.3 Containing node . ,-f'"' ,~ _. a..1:,.,. J.,, ,l _ A ~ .J , __ .. '\
(>vc.L- t:,.$ 5""ut~+-, tl.>"11' c-S--•-f- r 1

•
11 ,S-'t '""' J~ ~)

A containing node is the node in the scene graph that is responsible for
representing use(code that wishes to take part in internal interactions (see 4 .8.3
Internal interactions). The life cycle of user code shall be governed entirely by the
containing node . When the containing node becomes live, the user code becomes
live . When the containing node is removed and is no longer considered live as
defined in 4.4.2.5 Object life cycle in ISO/IEC 19775-1, the user code contained
by that node shall be terminated. User code cannot prolong the lifetime of the
containing node by keeping a reference to its containing node. The browser is the
final arbiter of when the containing node is no longer live.

There is no requirement for there to be a one-to-one mapping between a
containing node and its user code. Language bindings may permit one instance of
user code to be shared between multiple instances of a containing node .

4.4.4 Application
~

An application is"f6e external process that is not implicitly part of the X3D
browser. This application makes some form of connection to the X3D browser
along which requests are made of the browser. The application does not exist as
part of the X3D browser as defined in Figure 4.1 in ISO/IEC 19775-1 nor forms
part of the execution model defined in 4.4.8.3 Execution model in ISO/IEC

9775- 1. An application may reside on another machine from the X3D browser.

An application may be responsible for creating a new browser instance that is
embedded within that application or attaching itself to an already running
instance of a browser (for example, an applet on a web page).

4.4.5 Session

A session defines the life of a single connection between the user code and the
X3D browser. It is possible for a single browser to be servicing multiple sessions
simultaneously (for example, multiple script nodes in t"vfe one scene). ~

u i~
A single application may contain a number of separate sessions 16 multiple t,.,a>

browsers, but a single script node shall not. Multiple simultaneous sessions
between external applications and multiple X3D browsers are permissible.
However, individual implementations may place some restrictions on such
multiple simultaneous sessions.

A session is not an implementable part of this specification. It is purely a
conceptual mechanism by which the user can make requests for services. It may
exist prior to any connection being established between a browser and external
application~or is established simultaneously with the request for a browser
connection~

4.4.6 Browser

The browser is the basic encapsulation mechanism for an active X3D scene graph
(that is one where time is progressing, not as a file stored on disk). As it contains
the entire scene graph, it also provides a minimal core set of capabilities for ,.,

1 dynamically manipulating that scene graph at a coarse level~his scene graph '-f

- _ Cl J may contain at most one active LayerSet node and that node shall be a root node
~...;,~ of the scene graph (see 1_:3.2 Root nodes of ISO/IEC 19775-1). Any other
..,, LayerSet node contained in a scene imported using an Inline node (or through

any other means) shall be ignored.

A user may have many X3D browsers running simultaneously on their machine .
Therefore, each browser shall be represented by a unique identifier within that
session. This identifier is required ;o be identical for multiple requests of a single
browser instance. This +si6 enablE,._two applications that have access to the one
browser instance to share}information in an unambiguous way.

Any action that require~t:~te browser functionality shall identify the service
request with a browser identifier.

4.4.7 Scene

-

A scene represents a single X3D scene graph and all information about that scene
graph. The scene is Jtl.e,J2rogrammatic equivalent of an X3D file. It may contain
nodes, routes, protcf~cfarations, imports and exports and all information a valid
X3D file may contait. A browser may contain one or more scenes at any given
time. For example one scene us~ an Inline node to include another scene. --A _I\

) I"}, Q,. ':)

-
~ •l"tv,,tv'-\~

A scene is not required to be live or running in the browser. A(gs~ may construct'
a new scene that is not attached to a browser instance and then
programmatically fill in information such as JSes an.st pQ.l:!tes. This scene may
then be passed directly to a utility program>,rh ~ a pre1ty printer for publishing
a source fil~ or used to replace the current scene in the browser. ,,.
4.4.8 Node and node lifecycle

The smallest unit of interaction with the elements in the scene graph is the node.
A node is an instance of one of the X3D nodes that are defined in ISO/IEC 19775-
1. A node can be removed as a unit from the scene graph, stored, and then re
inserted at another position at some later time in the same session without
detrimental effect.

Each node is defined by a unique identifier. This identifier is unique for that
session. That is, it is possible that a single browser may be servicing multiple
applications simultaneously and therefore all node identifiers are unique and
invariant for the life of the session. This allows two external applications to
potentially share data between themselves unambiguously and still have either
external application make service requests of the browser with that shared data.

Most operations in the SAI begin by obtaining a reference to a node. There are
multiple ways to gain a reference to a node. It may be named using the DEF

... ~~~~~ct and fetched using the appropriate servicel.'>or it may be obtained by
~-.>V'S'~ · the scene graph from some arbitrary parent node. Once a reference is

obtained, all fields of that node may be accessed, but not necessarily read or
written, including init ializeOnly fields. Since an inputOutput field implicitly may be
both read and written, these are accessible using the field name or with the set_
and _changed modifiers . ;,~~~

A node reference undergoes a lifecycle during which d ifferent capabilities are
available . The lifecycle can be expressed as:

1. Creation: The node is first instantiated by the browser internals with all field
values set to defaults

2. Setup: Field values are changed from the default value to the defined initial
values where required

3. Realized: The node is participating in the scene graph and/or scripting
4 . Disposed: The node is no longer part of a scene graph and no remaining

references to it exist at the scripting level.

Field access for reading and writing is dependent on the state of the node. The
states and capabilities are defined in Table 4 .2.

Table 4.2 - Permitted field access capabilities during the node lifecycle.

Field
Creation Setup Realized Disposed type

initializeOnly None readable/writable None None
fieh::l

-

inputOnly None None writable None
field

outputOnly
None None readable None

field

inputOutput None readable/writable readable/writable None
field

The transition from setup to realized states may be either implicit or explicit. A
service request exists so that the user may make a formal notification that setup
is now finished and the node can complete whatever internal construction is
required. The transition may be implicit due to the user's actions. At the point the
user does anything with the node reference other than set the field values, the
node shall transition to the realized state.

EXAMPLE The user create~ox node, sets the size field, creates a Shape node, and then
immediately adds the Box to trape node. This set of actions shall result in the state of the Box node -
changing to Realized, while eaving the Shape node in the setup state.

Node identifiers may also be used to represent an empty node. An empty SFNode
or MFNode field value is represented by a NULL value. For empty MFNode fields,
the count of available nodes shall be zero. "' i"V\\ J,.,

11r-~, 1 \~V

4.4.9 Field

Individual fields are defined within nodes. While it is not possible to directly
manipulate a node, a field is the method of direct manipulation of individual
properties as indicated in Table 4.2.

It is not possible to directly manipulate a node's properties as entities separate
from the node itself (i.e., fields do not exist outside their containing nodes).

The field type and access type of individual fields is specified by Part 1 of ISO/IEC
19775. A field is assigned a field identifier. This is non-unique and requires a node
identifier plus the field identifier to specify a particular field with which to interact.
When accessing a field, the user shall be given the whole identifier to the field. All
fields are implicitly treated as being both readable and writable by the service
definition. Flags are used to indicate whether that field can be read or written at
that point in time (and dependent on the node's state in the lifecycle as described
in Table 4.2). This state may change over time as the node progresses through its
lifecycle. For example, an initializeOnly field of a non-live node may be writable,
but once that node is inserted into the scene graph, it shall no longer be writable.
This is to aid authoring tools and users that wish to programmatically construct a
scene around a third party browser.

Fields may be read or written at any time during the course of the session. User
code may register and unregister to receive notification of when values of the
field changes. During the registration process the user code can supply a token
that will be returned along with the data value of the event. This token can be
used by the user code to uniquely identify this event in cases where events are

not implicitly unique. The token is not required to be passed along with the
service request and may be kept as part of the internals of the implementation on
the application interface.

Any output-capable field of a node to which the application has a reference can be
read. The value read is the last value sent by that field or the default value for
that field type if no event has ever been sent. The data read is specific to the field
type of that field and is formatted appropriate to the language or protocol used.

4.4.~ Execution context ~l.t..l .l<l '5'~~

An execution context is the run-time semantic equivalent to a name scope
described in 4.4. 7 Run-time name scope in ISO/I EC 19775-1. It provides a way of
containing and firewalling internal interaction code in such a manner as to
represent the same restrictions that a name space provides in the file format. For
example, when a script inside a Proto instance adds a ROUTE, the route is added
to the internals of the proto and not to the general scene .

A scene is a derived type of execution context. When the internal interaction
requests the current execution context, a scene object is returned. The user code
may then check to see if the execution context is an instance of a full scene and
behave appropriately by casting up to the derived type, if available.

• 4.5 Events

4.5.1 Concepts p . '\ o:,J,,{.
~ }.rov-) f /-'V f'\fL.2) W I J 11\., .,.J

Any transient data is be)Fried a-rounel the X3D scene graph through the use of
events. The application may register to receive events from the X3D scene graph,
and may initiate new events. Events are considered transient and generate~ dv
at the time when the specific action occurs. Events shall not be stored ~ have ~t-Jlilii
the delivery deferred to parties who have not expressed interest in th~ event at "'1 ~
the time it occurred. O...V'l

EXAMPLE An application that connects to a browser after the world has loaded shall not be delivered
an Initialize event.

i1tl
4.5.2 Internal to/lbrowser -
An application may write a value to a field or read a value from a field . This value
does not become an event until that value is internally represented and time
stamped within the X3D browser. The border of the browser to the application is
where an event stops. Events cannot exist externally from the X3D browser; that
is, the application cannot be inserted in the middle of an event cascade. The
application may be notified of events, initiate new events, but cannot process and
pass on events while holding up processing of the current timestamp event
cascades within the browser when it is notified of an event. It is permissible to log
events for analytic purposes.

~ ~" t,l ;-
An event is not generated until a cascade is created. If an internal interaction
directly writes to an output-capable field of another node, no event is generated
and therefore does not form part of the event cascade . If the internal interaction
writes to a input-capable field of the containing node, an event is formed with the
written value, if the field is output-capable and is the sq;s'ject of a ROUTE to

somew-p;~ else. ~ c..,,.iiJ-t e,,fto"1

4.5.3 Browser to external application
/v

4.5.3.1 Overview
+,?tv

The browser may directly communicate to external applications with its own set of
evlnts. These events are used to indicate the status of the browser or of some
asynchronous problem. The number and type of events available shall be
implementation dependent. At a minimum, the following events shall be provided
in all implementations of this specification.

-

Event delivery from the browser to the _exter~al ~pplication shall be guarantee,g. rf'

4.5.3.2 Initialize~ ('h>f\r'\~I") trJ ,~\oJ tr-t-J ,SeA· ~tSr e ~r-r
\

The initialize event is used to indicate that the browser has had a scene loaded
where it has run through the initialization process (where the browser has loaded
the world and just before it is about to issue its first time-related event). At this
point in time, node identifiers shall be available from the getNode service of the
scene (see 6.4.7 getNode) .

The initializt event shall be generated immediately at the browser and delivered .,...../
to the application . The event is considered to be asynchronous. That is, the
delivery of the event (and any implementation dependent acknowledgement
scheme) shall not delay the browser in starting the execution model evaluation .

4.5.3.3 Shutdown <Jk..,.__ on°o..Jc.J)J~.e._ ~,-..,-i>.r ~1l..Q.. 1r i~,~J,~
L0 Wtk IS' C ci-io~\J tct.Jtv' cJ~ f ONcJ .I'~ l~~

The shutdown event is used to indicate that the browser is about to stop running 1ft.lP/";,./,
the current scene. This may occur under a number of different conditions:

a. the scene is being replaced (see 6.3.12 reRlaceWorld and 6.3.14 loadURL),
b. the browser itself is exiting, or
c. the client application has disposed of its connection to the browser (see

6.3.25 diSROSe) .

The shutdown event shall be generated immediately at the browser and delivered
to the application. The event is considered to be asynchronous. That is, the
delivery of the event (and any implementation; dependent acknowledgement
scheme) shall not delay the browser in halting the execution model evaluation
and closing down of the browser resources except where needed to ensure the
delivery of the event to the application. ~

4.5.3.4 No URLs available

--
-

The SAI_BROWSER_URL_ERROR event is used to notify the application that the
browser was not able to load any of the URL/URNs in one of the asynchronous
invocations of the 1oadURL service (See 6.3.14 loadURL). This indicates that no valid
content was able to be loaded or invoked from any of the URLs specified in this
call. Other calls that may involve other asynchronous loads such as replaceworld

(see 6.3.12 reRlaceWorld) and createX3DFromString and createX3DFromStream (see 6.3.16
createX3DFromString, 6 .3.17 createX3DFromStream) may also use this event to
indicate loading problems for any X3DUrlNode as specified in 9.3.2 X3DUr/Object
in ISO/IEC 19775-1 such as Inlines, textures and EXTERNPROTOs, although it is
not required.

4.5.3.5 Connection lost

The connection lost error is used to notify the application that the underlying
implementation has lost the connection between the browser and the application
that would result in service requests not being able to be honoured. An example
would be a TCP network connection timing out or other similar problem.

An implementation may delay sending an event that the connection has been lost
if it implements an automatic reconnection attempt. It shall only be sent at the
point where it is deemed no longer possible to connect to the browser. There shall
be no requirement for the implementation to attempt to re-establish the
connection after this event has been generated or to attempt any form of
automatic reconnection capability.

$ -

• 4.6 Identifiers

What constitutes an identifier is implementation dependent. In some cases it may
be more efficient to represent a node identifier as the entire node which includes
all field information . Requests for field information are then made on the local
node. In other implementations an identifier may be only a simple integer. The
job of ensuring unique identifiers is the sole responsibility of the browser such
that applications may share data within reasonable constraints of the
environment. The constraints on that environment may be specified as part of the
individual implementation.

It is not considered reasonable that two applications using different service
implementations ~ able to exchange data outside of the browser environment. -

______ o..r-e... ________ .tp, -

• 4.7 Relative URLs

9.2.2 Relative URLs in ISO/IEC 19775-1 specifies the rules for dealing with
relative URLs within a browser environment. The declaring file shall be defined as
the base URL of the currently loaded world in the browser. The currently loaded
world can be obtained by a request of the getworl dURL service (see 6.4.6
getWorldURL). In the case where a browser does not yet have an X3D file loaded,

the base document directory shall be taken to be the current working directory of
the browser. Where the browser is part of a web page, the current working
directory shall be treated as the base URL of the page in which the web browser
is embedded.

When nested relative URLs are generated (such as an EXTERNPROTO containing a
reference to a script file) the to~level relative URL base is then resolved in
accordance with ISO/IEC 19775~1.

• 4.8 Execution model

4.8.1 Overview of the interaction types

Because the SAI fulfills the role of the programmatic interface for both external
applications and scripts, the execution model is capable of working in both
situations. Although the API calls are identical for both situations, the run-time
evaluation of each service request may be different.

EXAMPLE Servicing a field-changed notification in an internal script shall pause the current event G.,Jo.r~(
cascade; for an external application it shall not.

This specification defines two types of interactions in which services may
participate: internal (i.e., a script) and external (i.e., an application).

4.8.2 Event model evaluation order
1rJ Cl.J ¼~Ll ~re.r

Scripting code>allows the user to modify the scene graph with custom behaviours.
For consistent effects, the evaluation order defined in 4.4.8.3 Execution model in
ISO/IEC 19775-1 is expanded to include the service interactions allowed by a
script. When internal interaction code is provided, the following order shall be
used to evaluate all aspects of the event model.

1. Update camera based on currently bound Viewpoint's position and
orientation.

2. Evaluate sensor input.
3. Gather external input from buffer and pass to nodes.
4. Call the prepareEvents script service for all live script nodes in the scene.
5. Evaluate routes.
6 . Call the shutdown service on scripts that have received set_url events or are

being removed from the scene
7. Generate final events for any sensors removed from the scene.
8. Add/remove any routes required by an invocation of the dynamicRouteHandling

service request as defined in 6.4 .17 dv.namicRouteHandling from any script
execution in step 6.

9. Call the eventsProcessed script service for scripts that have sent events
generated in step 6.

10. Call the i nitiali;ervice for newly loaded internal interaction code.

11. If any events were generated from steps 5 through 10, go to step 5 and
continue until complete for the current event cascade.

If an internal interaction registers any form of callback or listener functionality
with objects defined by this specification, those callbacks are made at the time
the change occurs.

EXAMPLE A user code in Script A issues an event on an outputOnly field during the initialize service
handling, and another piece of user code in Script B has a listener service on that eventOut. The listener
in Script B would be fired immediately after the user code in Script A exits and returns control to the
browser core.

4.8.3 Internal interactions

4.8.3.1 Permitted interactions

An internal interaction is when the user code and containing node form part of the
X3D scene graph. These nodes are subject to and participate in the event cascade
evaluation. Internal interactions may occur in the middle of the event cascade as
a direct result of receiving an event, and may generate one or more output
events in response. These events shall continue in the current cascade. When the
output events are generated from asynchronous script evaluation or from some
other process not directly related to processing of the current event cascade as
defined in 29.2.4 EventsProcessed() in ISO/IEC 19775-1 , a completely new event
cascade is started.

An X3DScriptNode type as specified in 29.3.1 X3DScriptNode in ISO/IEC 19775-1
specifies a containing node although other node types may also be defined in the
future. A browser shall only permit inter9al interactions by usei~ode that is
referenced from an X3DScriptNode type~r other future defineu_.ontaining node
type) If the user code is referenced from any other node type, it shall consider the
code as an external interaction and act accordingly.

Internal interactions also permit direct interaction with fields of other nodes, or
some browser operations without participating in the event cascade. This action
shall only be allowed dependent on the value of the directOutput field setting of
the containing X3DScriptNode node. The definitions of when this behaviour is

~~ permitted is defined in 29 Scripting component in ISO/IEC 19775-1.

Because the user code is considered to be held inside the containing node, the
view of the node's fields are reversed to the normal situation . An inputOnly field
is a readable field, not writable ; an outputOnly field is a writable field, not
readable; and an initializeOnly as well as an inputOutput field are both readable
and writable. Contrast this with an external node that is not the containing node
in Table 4.3 . This resembles the type of access that any other built- in or native
extension node may have.

Table 4.3 - Permitted field interactions of a live node

Access Type Containing Node External Node

init ializeOnly readable/writable no access

inputOnly readable writable

inputOutput readable/ writable readable/ writable

outputOnly writable readable

4.8.3.2 Browser interactions

Internal interactions are permitted with the browser. Because the code lies inside
the current scene, they are only permitted a limited set of the full browser
services. The services clause outlines which services will be available to internal
actions and wnich are off lirnits.

During the initialization phase of the internal action, a script shall be given a
reference to the browser that is appropriate for its interactions. This reference
shall remain constant throughout the lifetime of the script while its containing
node is considered live.

4.8.3.3 Responding to events

The purpose of an internal interaction is to respond to events, provide some
processing and, optionally, also generate new output for the containing node. It
may, also, provide asynchronous output that does not correspond to any input
through the use of one or more threa . Generating output is considered in 1h,_tf J."''[:JZ-
4.8.3.4 UP-dating the scene graRh, .8.3. escrioes t e 1s ues o responding to
input resulting from an event cascade that sends an event to one or more output
capable fields of the containing node.

In order to respond to events, user code registers interest in the appropriate
field(s) of the containing node. Interest may be registered with all field access
types except outputOnly fields of the containing node. Once the containing node
has completed its initialization phase, any time that one of the fields of the c,~ t>•

containing node receives an event the user code shall be notified of thisl:hrough
the notification mechanism provided by the language-specific bindings. The
browser may choose to either immediately notify the user code or to batch a
number of events together and provide a deferred notification. In either case, the
browser shall ensure that all events for that timestamp are delivered during the
event cascade for that timestamp and not at some later time. The browser shall
also obey the containing node's mustEvaluate field directive as specified in 29.4.1
Script in 1S0/IEC 19775-1 when deciding whether to defer or immediately notify.

Upon notification, the browser shall not process any more events in the
containing node's event cascade until processing has returned from the user code
(although this does permit other event cascades to continue simultaneous
processing). Values written to fields of other nodes and the input-capable fields of
the containing node shall not be passed on to the destination node before the
user code has relinquished control.

NOTE This does not exclude a browser implementation from delivering multiple events simultaneously
to the user code if there are parallel event cascades being evaluated (for example a browser running on
a multi-CPU machine where parallel event cascades can be evaluated and result in two cascades

delivering events to the containing node simultaneously). The writer of the user code should be aware
of, and take appropriate precautions for, an event cascade occurring in parallel.

When the browser has determined that the cascade or cascades are completed,
the browser may then call the containing node's eventProcessed() method as defined
in 29.2.4 EventsProcessed() in 1S0/IEC 19775-1. The user code is also notified of
this situation at which point the user code may then choose to perform extra
evaluation and generate more output. User code for internal notifications has no
way of determining when the current rendered frame has finished and the next
frame begins.

4.8.3.4 Updating the scene graph

User code may choose to generate output in addition to receive inputs. For
internal interactions, user code is not required to generate output in response to
inputs. User code may asynchronously generate output or write directly to other
nodes at any time that the containing node is considered live, within certain
restrictions that are outlined in 4.8.3.3 ResRonding to events and 4.8.3.5

"" .. ~ Asv.nchronous actions.
0

User code has two options for influencing the scene graph-; it may write to the _____.c:

output-capable fields of the containing node and have the values be subject to the
usual event cascade, or it may\._directly_lwrite):o the input-capable fields of another
node to which the containing node and user code already has a reference. User
code may write to the containing node's fields at any time and in accordance with
the access rules defined in Table 4.2. Internal interactions with other nodes shall
be subject to the rules defined by the containing node's directOutput field as
specified in 29.2.6 Scripts with direct outputs in ISO/IEC 19775-1.

There are two special cases of user code not being permitted to make changes to
fields of the containing node. The two fields of the X3DScriptNode abstract type
mustEvaluate and directOutput are considered special and the user code shall not
be permitted to modify these values at runtime. User code may read these
values. Scripts can be self-modifying, thus, if the containing node is also derived
from the X3DUrlObject abstract type (see 9.3.2 X3DUr/Object in ISO/IEC 19775-
1), it may choose to change its own URL fields, thereby replacing the current user
code with new user code.

4.8.3.5 Asynchronous actions

User code in some languages is allowed to operate using asynchronous threads of
execution . These allow user code to run without the need for direct stimulus from
the browser. A typical use of this situation is to monitor a network connection for
changes to be made to the scene graph. This requires the use of internal
interactions that are not created as a direct result of field changes being received
by the user code.

Internal interactions are only permitted at the times specified by 4.8.3. 7 User
code lifecv.cle. The browser shall generate an error if user code attempts to make
internal interactions at any other time . The pr e pareEvents service (see 6.11.4.1
RreRareEvents), if defined by the user code, allows user code to perform
completely asynchronous changes to the scene graph, at known points in time,

without the need to clock the script using a TimeSensor or other node. This is in
contrast to the eventsProcessed service (see 6 .11.4.2 eventsProcessed), which is only
called after the containing node has had to process field changes.

In addition, when user code registers for one of the listener services, the
callbacks associated with this are considered asynchronous actions. User code
operating during this period shall not be permitted to make modifications to the
scene graph.

4.8.3.6 Monitoring changes in the scene graph

The services definition for fields allows user code to register interest in the output
of fields of other nodes. Internal interaction code shall not be permitted to
register interest in field change information. If the user code wishes to be
informed of field change information, it shall use the existing route mechanism
and the appropriate scene services to add a route between the field of interest
and an input-capable field of the containing node.

Internal user code shall only be permitted to register interest in the output
capable fields of other nodes when the containing node's directOutput field is set
to TRUE. It shall be an error to allow user code to register interest in outputs if this
value is set to FALSE.

4.8.3.7 User code lifecycle

4.8.3.7 .1 Overview

The lifetime of user code may be shorter for many reasons, such as the download
time to fetch the code from a remote site or other user code changing the URL of
the containing node to replace the current user code. However, the lifecycle of
user code follows the same basic principles of the containing node. It has the
same phases and undergoes similar transitions.

The lifecycle of the containing node is defined in 4.4.2.5 Object life cycle in
ISO/IEC 19775-1.

4.8.3.7 .2 Setup

It is assumed that there will be some delay, however small, between when the
containing node is initialized and when the user code will go through its
initialization phase. While the containing node may already have finished the
initialization phase and be in the running phase, the user code may not have
started or may be processing its initialization.

During the initialization phase, internal interaction code is given all the
information it needs for the rest of its lifecycle. The first step of the initialization
phase is the instantiation of the user code. At instantiation, user code has no
information about its containing environment or the containing node. During this
time the user code may elect to set up any resources it requires, such as threads,

network connections or any other permitted actions of the containing
rt.· environment (see 4.8.3 .9 Execution environment and securitY.,) .

After instantiation, the user code receives notification of resources needed to
function within the internal interaction environment. It is given the identifier of
the containing browser, the list of fields of a node (excluding any special fields)
and the identifier of the containing node (needed so that user code may add and
remove routes to its containing node). User code shall not make any service
requests with the one exception of printing messages during this period. If it
does, the browser shall generate an error.

As the last step of the initialization phase, the user code shall have its initialize

service called (see 6.11.3.3 initialize). At this point user code is free to make use
of all the services available to internal interactions.

NOTE This would be a good time for the user code to register for change notifications of the containing
node fields or to perform external tasks like binding a particular viewpoint.

4.8.3.7 .3 Realization

During the runtime phase, user code is subject to the requirements of this clause
for receiving, sending and monitoring events as well as the X3D execution model.

User code is restricted about when it may make modifications to the scene graph .
It shall only be permissible to make modifications in response to prompts from
the browser. The permitted times shall be defined as:

1. During the pre-event cascade processing service request prepareEvents (see
6.11.4.1 RreRareEvents);

2. In response to a change notification for an input-capable field of the
containing node; and

3. During the post-event processing service request through the eventsProcessed

service request (see 6 .11.4.2 eventsProcessed).

It shall be an error for user code to make a service request at any time other
than those where asynchronous interactions are permitted. Each service request
in 6 Service reference defines whether user code is permitted to make
asynchronous requests.

4.8.3.7 .4 Disposal

User code will enter the shutdown phase when either the node is no longer live or
the action of other user code has resulted in the user code being removed from
the containing node (for example, changing the URL of a script node to point at
new executable content).

Notification of the change to the shutdown phase shall be through the calling of
the shutdown service request in the user code (see 6 .11.5.1 shutdown). During this
phase user code may set values to an output-capable field of the containing
nodes or write final values directly to the input-capable fields of other nodes. At
the end of the phase, the identifiers to the browser and containing fields shall be

considered as invalid. For example, if the user code contains a thread that
continues to operate after the shutdown phase, it shall not be permitted to make
modifications to the scene graph. io do so shall generate an error. _ ;t,~..,, J")

4.8.3.8 inputOutput fields and the containing node

The containing node is permitted to have fields with the inputOutput access type.
Because an inputOutput field represents both an inputOnly and outputOnly field
the user code may wish to write to the values, user code is subject to some
special conditions in order to remain consistent with the core specification.

For the purposes of defining the allowable behaviour, the containing node and the
user code are considered as decoupled, non-related entities . A notification of
change in field value is a notification, and no more. Setting the value of a field
that is defined as inputOutput is considered to be an instantaneous, atomic
action. When the field is set, the value for both the input and output are set
immediately. Then the notification to the user code is performed. Since the output
of the inputOutput field has been set, any further attempt to change the value of
the inputOutput field during the current timestamp is considered to be subject to
4.4.8.4 Loops in ISO/IEC 19775-1. That is, if the user code receives an event
notification for its containing node's inputOutput field, it cannot write another
value to that same inputOutput field during the same timestamp because an
output event has already been issued and the containing node is not permitted to
issue another output event for the same field in the same timestamp.

In receiving events, the script shall only pass through the first event received by
the containing node of the inputOutput field.

If the containing node has not yet received a change to the field during the
current timestamp, the user code is permitted to write a value to the field. If a
change is received to the field after the user code has modified it, only the
inputOnly portion of the node is processed . A notification is sent to the user code,
but the value of the field shall not be changed in accordance with the loop
breaking rule in 4.4.8.4 Loops in ISO/IEC 19775-1. .A

4.8.3.9 Execution environment and security

All user code participating within a particular internal interaction environment is
considered to operate within a single execution space. Code in this context is
subject to the security settings of the containing browser's environment and also
the language's operating environment. This permits user code in internal
interactions to communicate through asynchronous mechanisms that are external
to the X3D execution environment (i.e., CQYje and event evaluation). Some _
language bindings may be subject to morer~trictions than others, T~ is is ~
implementation independent. . 1-3-~ /J. t~ frho~ ~~
EXAMPLE User code using the Java language bindinrs 1Ja,, operate in a web-browser sand box that --
does not allow network connections to any external server, while user code using user API bindings in
an application rmry be given full access to the entire underlying operating system.

Mt°lht -
For security purposes, a browser may implement whatever schemes it f@el&~~ -

necessary to ensure good security and to prevent content from undertaking

nefarious activities. Such activities may include virus-like modification of the
_ - user's compute!1,.or denial of service activitie:}\or any other activity deemed a

security risk an 'tb~. r

4.8.4 External interactions

4.8.4.1 Permitted interactions
.,l.., '3 o r---- l

User code that is interacting with /browser from an external perspective is +-,,, d(i
considered to h~ve complete control over the entire lifecycle ~cene
graph l:mt ais'a'tn~F'owser. External interactions therefore have the full range of
control over the browser.

Because an application is consider to be external to the browser, it does not have
~,~ iftttmcil:e knowledge of~internal state and therefore when actions may~~~

not be safe to make. Therefore, the external interactions are defined to ee- in an\·" Qo'~

advisory capacity. An external interaction requests the browser make changes

-

-

and then the browser shall decide exactly when it it safe to act on those requests.
A browser shall honour all requests made, within the bounds of the individual
services guidelin~ outlined below.

t

An exter~.c,application may ~l~o wish to monitor changes in nodes, fields and
even th~l5rowser itself. Thlfbrowser shall inform the external application of the
changes, but shall do so in an asynchronous way. That is, an u dates are JJ.,.
considered to be notifications only, and shall not the browser's internal '-'.)
evaluations. The result is that notifications may make it to the external
application with some delay from when they happened within the browser.

EXAMPLE Delays may occur for data transfer between an external application sitting on a remote
computer and a browser, due to transmission lags throughout the system.

)£.JD
4.8.4.2 Browser interactions ,....,

0.D Browser interactions for external interactions include all the basic services
provided to int~al interactions. l,fi additiofl f€H,is~ number of additional
interactions are,.,aifowed. A single external application is ermitted to interact with
more~ browser at a time. It may also instruct mu tip e rowsers o ac D

>Ll P "--togeffieras a single entity or to work individually. The lifetime of the external
application is independent of the ~rowser.

;,<"-5()
4.8.4.3 Updating the scene graph ~ [(_ }

rA \' ~ ~~ ,J "'~ tCl>J,J ~ I
A characteristic of external applications is that they fll:9Y make a ,tEJif changes in "';)rc--f
bursts to the X3D browser. It is also possible that a single browser may have a
number of applications connected to it, all making requests of the browser.

~oM-L K 3 ~
Events can be batched to aid in performance of the application (see 6.3.19
1!.RdateControl). The · provided by this is a simple gate mechanism to
hold all requests (seginUpdate) to update the currently loaded world until the gate is
released (EndUpdate). 11,.,

1
> cy frf._()-cJv, -e,va.9-:il.e.t <<> ksi.re.Jf

~ I'> ft., r"'\ u f J o.':rt,. J l:l l-' ·C.,, ,J -Jw f f'" f\ CC-- l"tJ ~ ,J ~ f
~ k"tl,dP"M,J) QJd1J1,J 5 fN~.}J ~,

..
When BeginUpdate is invoked, all requests to modify the contents of the current
world are buffered and not passed to the browser. This buffering effects all
requests to modify the current world including calls to loadURL and r eplacewor ld.

Once a call to BeginUpdate has been made, any further BeginUpdate requests are
ignored until the next call to Endupdate at which time Endupdate releases all of the
currently buffered updates to the browser for processing .

If a modification service request is made on the scene after an endupdate and before
a Beginupdate, it shall be passed to the scene immediately with the timestamp at 1
the discretion of the browser. et~j fp t,u
BeginUpdate/EndUpdate requests shall be limited to the individual session. A request
by one application to Beginupdate shall only buffer the requests made by that
application and not any otherf that may be connected to that same browser
instance. ~r cy~\ q:e,.r,o.tJS' ~?D

When Endupdate is invoked, the following order of execution of requests shall be
applied: l __,

e__J'ol ,>
1. node setValu~;
2. event cascade evaluation as defined in 4.4.8.3 Execution model in ISO/IEC

19775-1. NDpJo-k-/~JJtj~ k~
'ile)'t ~ The loadURL/replaceworld service reque~ee 6.3.14 loadURL and 6.3.12

reRlaceWorld) are not affected by th%~~ate control process. As soon as the ':J:.':3 J)
browser receives~equest.$ t~ execution is begun. The service definitions
define the complete\behaviour df these requests.

1 ~ t'- a... \" ~ 1.H .. C.. / ~u.__Ll ~
~ ~o\'.- _iiuffered requests from the application shall be processed before proc~ssing ·any
\00-"- - ~ore requests either through another buffered queue or individual requests.

A ,

4.8.4.4 Monitoring changes in the scene graph

External interactions allow monitoring of any changes in the scene graph.
Notifications of these changes shall be delivered in a timely manner and shall
remain in the same sequence in which they are generated by the browser
internals.

4.8.4.5 Synchronizing multiple applications

When multiple applications make requests of the browser, the requests shall be ·
serviced in order of arrival time at the browser. The browser shall determine the ~C\ ~
arrival time. Buffered updates to the scene graph shall have their arrival t ime
determined to be at the time that Endupdate is requested . The arrival time is not
necessarily the same as the timestamp at whicljl, the browse~oses to send
events into the scene graph. The timestamp tbafthe events~are sent to the scene --~
graph shall be determined by the browser but shall be no earlier than the time
that EndUpdate is requested. The arrival time is used to sort out conflicting requests
from multiple applications to ensure consistent resultslt the application of events
in the correct order. , ~

0
~ ttS✓)~,tj ~ci

.1'F ~ o.tf l,~~ ·~ ~ ..
'SI 1001d the browser determine~hat two requests arrive simultaneously the result

~~ t. ~ is implementation dependent. /"' I"'- A \ o ";"
fl- K 5 ~ orJ S'~ t'\J ~ \J--

~ NOTE It is permissible for the external applications to send new values to a given
inputOnly field simultaneously. For such situations the broWser shall obey 4 .4.8.5
Fan-in and fan-out in ISO/IEC 19775-1. Authors can avoid non-determ~nistic
behavior by ensuring that events occur in separate event cascades. ,

'];'.P..-
Shcfuld the browser receive a request to loadURL or replaceworld while currently
processing a similar request, the old request is immediately terminated and the
new one L_begun. See 6.3.12 reRlaceWorld and 6.3.14 loadURL for more
informatioil.'\ l~

4.8.5 Service guarantees

All requests for services shall be guaranteed to be honoured where the underlying
implementation supports that service. Once the application has made a service
request, that request shall be transmitted to the browser assuming that a
connection is still available. That is, all communications are assumed to be
reliable. Delivery is not guaranteed if the connection between the browser and
application has been broken (for example, a TCP connection fails).
Implementations shall define an error conditi~ notifies the user that the l
connection has failed for each service reques~ ~e browser interface may o.Jl'c:>
include an event that provides asynchronous notification to the user of the failure.

Extensible 3D (X3D)
Part 2: Scene access interface (SAI)

5 Data type reference

5.1 Introduction and topics

5.1.1 Introduction
...,

This clause describes the language independent data types used in the definition
of 6 Services reference. 4 If
5.1.2 Topics

Table 5.1 specifies the topics for this clause.

Table 5.1 - Topics

• 5.1 Introduction and toRics

o 5.1.1 Introduction

o 5.1.2 TORiCS

o 5.1.3 ConceRts

• 5.2 Data tv..Re definitions

o 5.2 .1 SAIAction

o 5.2.2 SAIBoolean

o 5.2.3 SAIBrowserAR.R.

o 5.2.4 SAIBrowserName

o 5.2.5 SAIBrowserRef

o 5.2.6 SAIBrowserVersion

0 5.2.7
SAi Com ROnentDeclaration

o 5.2.8 SAIComRonent

o 5.2.9 SAIEncoding

0 5.2.10
SAIExecutionContext

o 5.2.11 SAIFieldAccess

0 5.2.12
SAi Fieid Deciaration

o 5.2.33 SAIStream

o 5.2.34 SAIString

o 5.2.35 SAIUnitDeclaration

o 5.2.36 SAIURL

o 5.2.37 NULL

• 5.3 Error tv..Res

o 5.3.1 SAIError

o 5.3.2 SAi BROWSER UNAVAILABLE

o 5.3 .3 SAi CONNECTION ERROR

o 5.3.4 SAi DISPOSED

o 5.3.5 SAi IMPORTED NODE

0 5.3.6
SA! INSUFFICIENT CAPABILITIES

o 5.3.7 SAi INVALID ACCESS TYPE

o 5.3.8 SAi INVALID BROWSER

o 5.3.9 SA! INVALID DOCUMENT

0 5.3.10
SA! INVALID EXECUTION CONTEXT

o 5.3.11 SA! INVALID FIELD

o 5.3.12 SAi INVALID NAME

o 5.2.13 SAIField

o 5.2.14 SAIFieldName

o 5.2 .15 SAIFieldTy_Re

o 5 .2.16 SAIFieldValue

o 5.2.17 SAIFrameRate

o 5.2.18 SAILaterID

o 5 .2.19 SAILoadState

o 5.2.20 SAIMatrix

o 5.2.21 SAINavSReed

o 5.2.22 SAINode

o 5.2.23 SAINodeTy_Re

o 5.2.24 SAIParameterList

0 5.2.25
SAIProfi leDeclaration

0 5.2 .26 SAIPrORert)'.LiSt

0 5.2.27
-. SAIProtoDeclaration

o 5.2 .28 SAIR.eg,uester

o 5.2.29 SAIRoute

o 5.2 .30 SAIScene

o 5.2.31 SAIScriQ1

0 5 .2 .32
SAIScriRtlmRlementation

5.1.3 Concepts

o 5.3 .13 SAI INVALID NODE

0 5.3 .14
SAI INVALID OPERATION TIMING

o 5.3.15 SAI INVALID URL

o 5.3.16 SAI INVALID X3D

o 5.3.17 SAI NODE IN USE

o 5 .3.18 SAI NODE NOT AVAILABLE

o 5.3.19 SAI NOT SHARED

o 5.3.20 SAI NOT SUPPORTED

o 5.3.21 SAI URL UNAVAILABLE

• 5.4 Event ty_Res

o 5.4.1 Overv iew

• 5.4.1.1
SAI Browser Connection Error

• 5.4.1 .2 SAI Browser Event

• 5.4.1.3
SAI Browser Initialized

• 5.4.1.4
SAI Browser Shutdown

• 5.4.1.5
SAI Browser URL Error

o 5.4.2 SAIFieldEvent

• Table 5 .1 - TORiCS

All data types in this clause are language binding independent. They represent
single value information that is passed as parameters, return values or error
conditions that can be generated through the external authoring interface. Each
language binding shall define implementations of each of these data types.

These data types represent the specific implementation of each type; that is, how
the X3D browser would represent them internally.

5.2 Data type definitions

5.2.1 SAIAction

SAIAction is a single value representing a qualifier for a more general service
type. Each use of the SAIAction type shall define the range of acceptable values.

5.2.2 SAIBoolean

SAIBoolean represents a rnuE or FALSE value.

5.2.3 SAIBrowserApp

SAIBrowserApp is a data type that represents the complete browser application.
This is different from 5.2.5 SAIBrowserRef because SAIBrowserApp defines the
browser application itself whereas the SAIBrowserRef defines a reference to the
standardized interface to the browser's functionality. The data type shall contain
some method for obtaining an SAIBrowserRef.

5.2.4 SAIBrowserName

SAIBrowserName defines a representation of the name of the browser. If the
browser implementation does not support this information, a NULL value is
considered a legal representation of this data type.

5.2.5 SAIBrowserRef TO()D ONS\Je.r ~~u_

SAIBrowserRef represents a browser reference. This is a unique identifier per
browser instance. Individual language bindings may place conditions on
uniqueness allowing other methods for checking equivalent references to the
same browser.

The browser concept is further defined in 4.4.6 Browser.

5.2.6 SAIBrowserVersion I> {) _r J
1,J-J...r,M,.~ ~ ~ct 11-, C "ltl ~ C..v~

SAIBrowserVersion defines ;i' representation I!!' the version of the brows~ lf th~
browser implementation does not support this information, a NULL value 1s ki ,J .
considered a legal representation of this data type. .«t"\F> .w1'G

u ,."
5.2.7 SAIComponentDeclaration

SAIComponentDeclaration defines all the information about a component and its
declaration. It may be used to represent both the component information
declared in a file, and the available components from the browser.

5.2.8 SAIComponent

SAIComponent specifies an identifier of a component when used in a request.
Components consist of a name and a level and both are encapsulated in this
identifier.

5.2.9 SAIEncoding

SAIEncoding specifies an identifier for an encoding type.

5.2.10 SAIExecutionContext

SAIExecutionContext is a data type for a representation of a subscene piece of
information relating to the current name space as a run-time entity.

5.2.11 SAIFieldAccess
"; ,,,.,~

This data type defines the type of access that is permitted to a field. The valid
values are initializeOnly, inputOnly, outputOnly, and inputOutput.

5.2.12 SAIFieldDeclaration

SAIFieldDeclaration represents the abstract declaration of a field for a node. The
declaration is constant for all instances of that node and does not include the field
value. It can be considered a wrapper data type that includes SAIFieldAccess,
SAIFieldName and SAIFieldType data types.

5.2.13 SAIField

SAIField represents an ider:,tifier for a particular field of a node. It is guaranteed
to be unique within the scope of an individual node reference. It is not guaranteed
to be unique in terms of all field references generated. To uniquely define a fie ld
within the scene graph, a combination of node and field identifiers is needed.

)vv-...½J The field concept is further defined in 4.4. 9 Field .
_,,,.

5.2.14 SAIFieldName

SAIFieldName represents a name for a field.

5.2.15 SAIFieldType

SAIFieldType specifies the type of data a field represents. In some cases (where
the field type represents an MFNode or SFNode), this field type may correspond
to an SAINode. Valid types of the field are defined in 5 Field type reference in
ISO/IEC 19775-1 .

5.2.16 SAIFieldValue

SAIFieldValue represents the value to be set or to be returned of an SAIFieldType
in language specific terms. A table may be constructed mapping each
SAIFieldType represented to at least one language specific entry. This data type
contains an item of class SAIFieldType and an item of the field type specified by
the value of the first item. All field types defined in 5 Field type reference in
ISO/IEC 19775-1 shall be supported.

5.2.17 SAIFrameRate

SAIFrameRate represents the rendering rate in frames per second that is
currently being achieved by the browser.

5.2.18 SAILayerID

SAILayerID is an identifier of the target layer for an operation. The ordering of
the layers is the ordinal position of the layer in the layers field of the LayerSet

node defined in 35.4 .2 LayerSet in ISO/IEC 19775-1.

5.2.19 SAILoadState

SAILoadState represents the load state of a node or EXTERNPROTO instance. The
state shall be one of NOT _STARTED, IN_PROGRESS, COMPLETE or FAILED.

5.2.20 SAIMatrix

SAIMatrix specifies an identifier for a 3x3 or 4x4 matrix.

5.2.21 SAINavSpeed

SAINavSpeed represents the navigation speed of the user in base speed units.

5.2.22 SAINode

SAINode specifies an identifier for a node. Individual language bindings may place
conditions on uniqueness allowing other methods for checking equivalent
references to the same node. The node reference is not required to be part of the
active scene graph.) L

'it(~J-. rJc}~) 5,
A NULL value is a legal value for this data type. It is used to indicate that no node
identifier is t'o be used. For example, for the field service setva1ue (see 6. 7 .6
setValue), a value of NULL on an SFNode field type is used to clear the node that
may have previously been set as the value. 57r'\Jl~ °'- ,>oJ ~ .,.0 r 1 (CJ rs,;~~

The node concept is further defined in 4.4.8 Node. J <2..AJ""" ~ M~ok f:JJ ¥
5.2.23 SAINodeType tl_c;tr r,._o\ h_e;:.J t._ w ~f'e,J I /,-.J S

Jo-)~ -
SAINodeType represents the type of a node.

5.2.24 SAIParameterlist f\,,,ihI - c.,.,J .JVL-t- 1.Ltoi+ ,P ~j/~•J.,._
SAIParameterlist is the abstract data type used to represent a list of parameters
that may be passed to a service request. Each language binding shall be required
to define the exact listing of parameters and their mapping to language-specific
types. This may be used to represent more than one list of parameters where a
binding provides multiple overloaded implementations of a single service.

5.2.25 SAIProfileDeclaration

SAIProfileDeclaration specifies all the information about a profile and its
declaration. It may be used to represent both the profile information declared in a
rne-, and ·the available profiles' from the .browser.

5.2.26 SAIPropertylist
l .; .,. ••

SAIPropertylist is an abstract data type defining a set of key/ value pairs for the
provision of properties.

5.2.27 SAIProtoDeclaration

SAIProtoDeclaration~eP.r~ents the declaration of a PROTO or EXTERNPROTO. It
""" does not represent EYl rn,rance created from the declaration. The declaration

cannot be changed at runtime and is only constructed from a file, stream or
. string. This allows a browser to build optimized internal storage mechanisms that

. M \~ ~ ~ not be traversable using normal scene graph traversal mechanisms. Each
language binding shall define its own representation and methods for creating
instances of the PROTO declaration.

5.2.28 SAIRequester

SAIRequester represents the identifier of a client application or part thereof that
is requesting a service to be performed. Variables of this data type are usually
used to identify a particular client piece of code that is interested in listening for
changes in some information_,.Jn either the scene graph or browser state that ~
functions as a callback device.

5.2.29 SAIRoute

SAIRoute represents a ROUTE construct. A ROUTE is not a node in the scene
graph and does not represent a concrete structure (see 4.4.8.2 Routes in ISO/IEC
19775-1) .

5.2.30 SAIScene

SAIScene represents a complete world and all the information that defines it
including nodes, routes, protos and exports. A scene may come from parsing of a
file, stream or string, or be programmatically constructed through this API.

5.2.31 SAIScript

SAIScript represents the containing node for user code that performs internal
interactions. It is an X3DNode object that exists as part of the X3D scene graph.

5.2.32 SAIScriptlmplementation

SAIScriptimplementation is a marker data type used by user code to mark the
entrance point for the user code execution . It shall provide the lifecycle methods
that the browser calls during user code execution such as initialize() and
shutdown(). It shall not be used as a parameter to, or return type of, any service

~ definition . SA~S'~. 5 7.f-\!19'-1':h ~ok, JA'l~
5.2.33 SAIStream)ftu~o.r-i iA<wl,~-er ~r o.. ~
SAIStream represents X3D content arriving continuously.

5.2.34 SAIString

SAIString represents a string formatted with the UTF-8 universal character set.
(see ISO/IEC 10646).

5.2.35 SAIUnitDeclaration

SAIUnitDeclaration defines all the information about units and its declaration. It is
used to represent the unit information declared for a file, either explicitly or by
default.

5.2.36 SAIURL

SAIURL is a data type which references a single URL. The URL may be any valid
URL representation but is usually defined as a human-readable string that
conforms to 2..,_[RFC4248] .

5.2.37 NULL f\
1h, (" N' • ck. ,. .

NULL represents the empty value. It contains no data or reference to any data
type but serves as a valid value ~ return from a service when nothing can be
returned and yet no error is generated. IKl-h , ,n)

~ k~ ..l ~ ,...-.r~ f e,'jt ,~ f u,., .J.. 1-\ J-n.. ----------- *' - \ a:.~~ &c.

5.3 Error types

5.3.1 SAIError

This section defines the error types that may be generated in response to service
requests. Errors are generated as synchronous values from a service request and
returned as variables of type SAIError. These error types appear in the errors
definition of a service request (see 6.1.3 Conventions used) . A language binding
shall define the representation for the SAIError data type and assign values for
each of the errors defined below but may also define additional error data types
to these.

5 .3.2 SAI_BROWSER_UNAVAILABLE

This error indicates that the requ·est to gain a reference to a SAIBrowserAR.R. has
failed . Examples may be that a network connection is down or that the type of
reference required is not supported by the vendor-specific implementation of a
language binding .

5.3.3 SAI_CONNECTION_ERROR

An error has occurred that resulted in the connection between the browser and
external application becoming non-functional. Therefore, the service request

could not be executed. This is a different error condition from
SAI BROWSER UNAVAILABLE as it assumes that a valid reference has already
been obtained and the error occurred at a later time.

5.3.4 SAI_DISPOSED

The request made of the current SAINode, SAIField or SAIBrowserRef reference is
being made to an object that has already been disposed prior to this service
request.

5.3.5 SAI_IMPORTED_NODE

An operation was attempted that used an imported node when it is not permitted
as defined in 4.4.6 Import/Export semantics in ISO/IEC 19775-1. For example,
adding the imported node as a child to another node in the current scene.

5.3.6 SAI_INSUFFICIENT _CAPABILITIES

The user is attempting to add a node to an execution context that is greater than
the capabilities defined by the profile and components definition for that scene.

5.3.7 SAI_INVALID_ACCESS_TYPE

The attempt to perform · an operation of a field failed because it is an invalid action
for that field type. For example, an attempt made to read the value of an
inputOnly field would generate this error.

5.3.8 SAI_INVALID_BROWSER

The instance of SAIBrowserRef data type provided as part of the parameters to
the service request has been disposed of prior to this request.

5.3.9 SAI_INVALID_DOCUMENT

When the user has attempted to import a World Wide Web Consortium Document
Object Model (DOM) document into an X3D scene and the document cannot be
completely resolved to an X3D scene graph. There are many cases where this
error might be generated, including the following:

Example 1 an invalid document structure

Example 2 not having the correct root element

5.3.10 SAI_INVALID _EXECUTION_CONTEXT

The instance of SAIExecutionContext data type provided as part of the
parameters to this service request has been disposed of prior to this request.

5.3.11 SAI_INVALID_FIELD

The instance of SAIField data type provided as part of the parameters to this
service request has been disposed of prior to this request.

5.3.12 SAI_INVALID_ NAME

The name provided to a service request is invalid or cannot be found in the
context of that object.

5.3.13 SAI_INVALID_NODE

The instance of SAINodeID data type provided as part of the parameters to this
service request has been disposed of prior to this request.

5.3.14 SAI_INVALID_OPERATION_TIMING

The user is attempting to make a service request that is performed outside of the
context within which such operations are permitted (see 4.8.3.7 User code
lifecv.cle). Where a service defines this as being a possible error type, this shall
only be thrown by internal interactions. External interactions shall never generate
this error.

5.3.15 SAI_INVALID URL

An instance of SAIURL data type provided in one or more of the parameters to
this service request are invalid due to a syntax error. Errors due to the requested
URL not being available shall generate either an SAI URL UNAVAILABLE error or
an asynchronous event notifying of such a problem.

5.3.16 SAI_INVALID_X3D

The SAIStream, SAIString or X3D file (for example, as a result of the fetching of a
URL reference) passed to this service request contains invalid syntax and cannot
be parsed to produce legal data types for use in other service requests .

5.3.17 SAI_NODE_IN_USE

Indication that a named node handling action has attempted to re-use a name
that is already defined elsewhere in this current scene.

EXAMPLE A user is attempting to import a node as a name that is already described by a DEF.

An alternative use of this error shall be to indicate that the node, or one of its
children, is currently in use in another scene. It is an error to share a single node
instance across multiple scenes simultaneously.

5.3.18 SAi NODE NOT AVAILABLE r
- - - /R'vd ~~,_,~ho.J

An error condition used for IMPORTed node%, The user has described a node that
the IMPORT statement has said is valid, but the underlying Inline has not yet ~
been loaded to verify that it is a correctly EXPORTed node.

5.3.19 SAI_NOT_SHARED

A service request was made that assumed the browser was currently participating
in a shared scene graph when it was not.

5.3.20 SAI_NOT_ SUPPORTED

Generalised error for when a service request is made for a capability that is not
available in this browser implementation. For example, if the user requests a
profile declaration for a profile that is not supported by the browser, this error
may be generated.

5.3.21 SAI_URL_UNAVAILABLE

The service request requiring the browser to have a world URL set cannot be
~ (' 11._ completed because no URL has been set. This error is typically generated from a
\f U,. ~.) getworldURL (6.4.6 getWorldURL) or getNode (6.4. 7 getNode) service request.

5.4 Event types

5.4.1 Overview

$ -

Browser event types are asynchronous events that are generated in response to
changes in the status of the browser implementation. The following event types
shall be implemented by each language binding . Additional implementation
dependent events may be defined to supplement the provided event types.

5.4.1.1 SAI_Browser _Connection_Error

The event type representing an error condition has occurred in the internal
connection between the browser and the external application (see 4.5 .3.5
Connection Lost).

5.4.1.2 SAI_Browser _Event

The event type that represents the general class of events produced by each
,{I browser service (see 4 .5.3 Browser to external aR.Rlication).

t

5.4.1.3 SAI_Browser_Initialized

The event type representing the browser having completed the initialisation
process of loading X3D content (see 4.5.3.2 Initialize).

5.4.1.4 SAI_Browser_Shutdown

The event type representing the browser being shutdown . That is the execution
model is no longer running or content is displayed (see 4.5 .3.3 Shutdown).

5.4.1.5 SAI_Browser_URL_Error

The event type representing an error condition when no URLs could be processed
'Ir to form valid X3D content (see 4.5.3.4 No URLs Available) .

5.4.2 SAIFieldEvent

The event type used to represent the notification of a change in a field value that
the external application has registered interest in.

$ -

Extensible 3D (X3D)
Part 2: Scene access interface (SAi)

6 Services reference

• 6.1 Introduction and topics

6.1.1 Introduction

This clause provides a detailed definition of the semantics of the services that a
browser shall provide to external applications as defined in this part of ISO/IEC
19775.

6.1. 2 Topics

Table 6.1 specifies the topics for this clause.

· Table 6.1 - Topics

• 6.1 Introduction and toQics

o 6 .1.1 Introduction

o 6 .l.2TOQiCS

o 6.1.3 Conventions used

• 6.2 Establishing a connection

o 6.2.1 Introduction

o 6 .2.2 getBrowser

o 6 .2.3 createBrowser

• 6.3 Browser services

o 6.3.1 Introduction

o 6.3 .2 getName

o 6.3.3 getVersion

o 6.3.4 getCurrentSQeed

o 6.3.5 getCurrentFrameRate

0 6.3.6 getSUQQOrtedProfiles

o 6.3.7 getProfile

o 6.3.8 getSUQROrtedComQonents

o 6 .3.9 getComQonent

o 6 .3.10 getExecutionContext

o 6.3.11 createScene

o 6.3.12 reRlaceWorld

o 6.3.13 imRortDocument

o 6.3.14 loadURL

o 6.3.15 setDescriRtion

o 6.3.16 createX3DFromString

o 6.3.17 createX3DFromStream

o 6.3.18 createX3DFromURL

o 6.3.19 URdateControl

o 6.3.20 registerBrowserlnterest

o 6.3 .21 getRenderingProRerties

o 6.3.22 getBrowserProRerties

o 6.3 .23 changeViewRoint

o 6.3.24 Rrint/Rrintln

o 6.3.25 diSROSe

o 6.3.26 setBrowserORtion

• 6.4 Execution context services

o 6.4.1 getSRecificationVersion

o 6.4.2 getEncoding

o 6.4.3 getProfile

o 6.4.4 getComRonents

o 6.4.5 getUnits

o 6.4.6 getWorldURL

o 6.4. 7 getNode

o 6.4.8 createNode

o 6.4. 9 createProto

o 6.4.10 namedNodeHandling

o 6.4.11 getProtoDeclaration

o 6.4.12 RrotoDeclarationHandling

o 6.4.13 getExternProtoDeclaration

o 6.4.14 externRrotoDeclarationHandling

o 6.4.15 getRoot Nodes

o 6.4.16 getRoutes

o 6.4.17 dv.namicRouteHandling_

o 6.4.18 diSROSe

• 6.5 Scene services

o 6.5.1 Introduction ~/
o 6.5.2 getMetaData ~ '

o 6 .5.3 setMetaData ~ ?
o 6.5.4 namedNodeHandling

o 6.5.5 rootNodeHandling

• 6.6 Node serv ices

o 6 .6.1 Introduction

o 6.6.2 getTv.ReName

o 6.6.3 getTv.Re

o 6 .6.4 getField

o 6.6.5 getFieldDefinitions

o 6.6.6 disRose

• 6. 7 Field services

o 6 .7 .1 Introduction

o 6. 7 .2 getAccessTY-Re

o 6. 7 .3 getTY-Re

o 6 .7.4 getName

o 6 . 7 .5 getValue

o 6 .7.6 setValue

o 6. 7. 7 registerFieldinterest

o 6. 7 .8 diSROSe

• 6.8 Route services -4--~ f<vcl cl ~oJ
o 6.8.1 getSourceNode

o 6.8.2 getSourceField

o 6.8.3 getDestinationNode

o 6.8.4 getDestinationField

o 6 .8 .5 diSROSe

• 6 . 9 PrototY-Re services ..,.~~-~~~ a.) th,.,µ
o 6.9.1 isExternRroto

o 6.9.2 createinstance

o 6.9.3 getFieldDefinitions

o 6.9.4 checkloadState

o 6.9.5 reguestimmediateload

• 6.10 Configuration services

o 6.10.1 Introduction

o 6 .10.2 getComRonentName

o 6 .10.3 getComRonentlevel

o 6.10.4 getProfileName

o 6 .10.5 getProfileComRonents

o 6.10.6 getProviderName

o 6.10. 7 getUnitCategorY-

o 6 .10.8 getUnitConversion

o 6.10.9 getUnitName

• 6.11 Services Rrovided bY. scriRt content

o 6.11.1 Introduction

o 6 .11.2 Creation Rhase

o 6.11.3 SetUR....Rhase

• 6.11.3.1 setBrowser

• 6.11.3.2 setFields

• 6.11.3.3 initialize

o 6.11.4 Realized Rhase

• 6.11.4.1 RreRareEvents

• 6 .11.4.2 eventsProcessed

0 6.11.5 DiSR0Sed Rhase

• 6.11 .5.1 shutdown

• 6.12 Matrix services

o 6.12.1 Introduction

o 6.12.2 set

o 6.12.3 get

o 6.12.4 inverse

o 6.12.5 tranSROSe

o 6.12.6 multiR.lY-

o 6.12. 7 multiR.lY.WithVector

• Table 6.1 - TORics ,-.<l>M...0~o~
• Table 6.2 - SAI reguest✓conventions
• Table 6.3 - URdateControl SAIAction values

• Table 6.4 - registerBrowserinterest SAIAction values

• Table 6.5 - Standard rendering_RroRertv. definitions

• Table 6.6 - Standard RrORerties describing extension caRabilities

• Table 6. 7 - changeViewRoint SAIAction values

• Table 6.8 - getNode SAIAction values

• Table 6.9 - namedNodeHandling SAIAction va lues

• Table 6.10 - RrotoDeclarationHandling SAIAction values

• Table 6 .11 - externRi-otoDeclarationHandling SAIAction values

• Table 6 .12 - dv.namicRouteHandling SAIAction values

• Table 6.13 - rootNodeHand ling SAIAction values

• Table 6.14 - registerFieldlnterest SAIAction values

6.1.3 Conventions used

Each of the services in this clause defines a particular request that can be made
through the SAL Each request is defined by a number of characteristics. In Table
6.2 the first column defines each characteristic type and the second defines the
properties of that characteristic.

~~~~~ 
Table 6.2 - SAi request conventions 

first param data type, second param, 
parameters: [o~~onal parameter data type], [multiple optional parameter data 

typ ~ \' ,;:~~'1 
- .-

returns : The list of return value data types or expected ranges 

errors: List of erro~ data types 

events: The first event 
The second event 

buffered: Simple yes, no or N/ A 

external: Yes if this is available only to an external interface, 
No if it is available to both internal and external interfaces. 

-



Parameters are listed by data type and are shown separated by a comma (,) and 
a space. A parameter shown in square brackets [] indicates a single optional 
value of the data type specified within the brackets. The "[]s" symbology, square 
brackets followed by the "s" character, indicates multiple optional parameters of 
that type are allowed. For example, [SAIURL]s indicates that multiple instances of 
the data type SAIURL may be provided while [SAIURL] indicates that only a single 
SAIURL instance may be provided. 

All characteristics defined for every service shall be implemented for each e:tt-t.~k 
language binding. At the end of eacl'Vl:a1ile, explanatory text includes~ '_ • 
information pertinent to the implementation of that service. 0-ddit, c9-N'.J 

• 6.2 Establishing a connection 

6.2.1 Introduction 

The following services can be used to establish a session and obtain a browser 
reference. Individual browser implementations may support one or both of these 
methods. At least one service shall be supported. 

6.2.2 getBrowser 

parameters: 

returns: 
errors: 

events: 
buffered: 

SAIParameterlist 
SAIBrowserRef 
SAI_BROWSER_UNAVAILABLE 
none 
N/A 

The getBrowser service returns a reference to an instance of an X3D browser 
through which other service requests may be processed. 

This is a blocking call. No further requests from this external application will be 
processed until an SAIBrowser value has been generated (which may include the 
need to start a new instance of an X3D browser) or an error condition is 
generated. 

If an application makes a request for the same browser twice in the same session 
then the same browser identifier shall be returned. 

An implementation may define more than one variant of this service with different 
parameter types. For example there may be alternate forms to access a browser 
embedded in a HTML page and one for remote access from another machine 
within the same language binding. 

Additional error types may be added by individual language bindings to deal with 
platform specific issues. 

,t, 

6.2.3 createBrowser 
parameters: 

returns: 
errors: 

SAIParameterlist, SAIPropertylist 
SAIBrowserApp 
SAI_BROWSER_UNAVAILABLE 



events: 
buffered: 

none 
N/A 

The createBrowser service creates a new instance of a browser application. The 
browser shall start with no URL set (that is, no active X3D scene graph). The URL 
may be set at a later time using the loadURL (see 6.3.14 loadURL) or r eplaceworld 

(see 6.3.12 replaceWorld ) service requests. 

The property list is used to define the properties of the browser application itself. 
The service request shall use the same property list definitions as those defined in 
loadURL (see 6 .3.14 loadURL). It is not required to support exactly the same 
capabilities, but the property list format shall be identical and any behaviours are 
identical. OJ"'_ 

This is a blocking request. No further requests from this external application ~ -
~ processed until a new instance of an X3D browser has been created or an . 

error condition is generated. 

Each request of this service shall produce a new browser application instance in 
accordance with the supplied parameter values. 

An implementation may define more than one variant of this service with different 
parameter types. For example there may be alternate forms to start a browser on 
a remote machine or to create a new window within a running application . 

Additional error types may be added by individual language bindings to deal with 
platform specific issues. a.,;J ;i,~~ 
Individual language bindings may add ~ ra calls to the SAIBrowserApp to provide 
platform-specific low-level handles for the language. 

EXAMPLE A language binding may allow access to the raw image pixel data for an offline image 
renderer so that a user may use platform-specific calls to make extra drawing and compositing actions. 

• 6.3 Browser services 

6.3.1 Introduction 

The following services can be requested from a browser. Although not specified 
repeatedly, all services are capable of throwing an SAI_CONNECTION_ERROR 
whenever a request is made if the session between the application and the 
browser has failed. 

NOTE The data representation of the parameters or return values is not specified. It is equally valid to 
represent all parameters as strings as it is for binary representations. 

6.3.2 getName 
parameters: 
returns: 
errors: 
events: 
buffered: 

SAi BrowserRef 
SAIBrowserName 
SAi DISPOSED 
None 



external: 
No 
No 

The getName service returns the name of the browser. This name is implementation 
dependent. If this service is not supported a NULL value shall be returned. 

6.3.3 getVersion 

parameters: 
returns: 
errors: 
events: 
buffered: 

external: 

SAIBrowserRef 
SAIBrowserVersion 
SAi DISPOSED 
None 
No 
No 

The getversion service returns the current version of the browser application . The 
version number of the browser is implementation dependent. If this service is not 
supported then a NULL value shall be returned. 

6.3.4 getCurrentSpeed 
parameters: 
returns : 
errors: 

events: 
buffered: 

external: 

SAIBrowserRef, SAILayerID 
SAINavSpeed 
SAI_DISPOSED 
SAI_INVALID_ OPERATION_TIMING 
None 
No 
No 

The getcurrentspeed service returns the navigation speed of the current world. The 
current speed is the average navigation speed for the currently bound 
Navigationinfo node of the active layer in base speed units in the coordinate 
system of the currently bound viewpoint. 

6.3.5 getCurrentFrameRate 
parameters: 
returns: 
errors: 

SAIBrowserRef 
SAIFrameRate 
SAI_ DISPOSED 
SAI_ INVALID_ OPERATION_TIMING 

events: None 
buffered: No 

external: No 

The getcurrentFrameRate service returns the current frame display rate of the browser 
in frames per second. If this is not supported, the value returned is zero. 

~~/)~ 
6.3.6 getSupportedProfiles 

parameters: 
returns : 
errors: 

SAIBrowserRef 
SAIProfileDeclaration [SAIProfileDec laration]s 
SAI_ DISPOSED 

events : None 
buffered: 

-



No 
external: No 

The getsupportedProfiles service returns the list of all profiles that are supported by 
this browser. All browsers shall support at least one profile. It shall be an error if 
the browser returns a declaration for a profile that it does not fully support. 

6.3.7 getProfile 
parameters: 

returns: 
errors: 

events: 
buffered: 

external: 

SAIBrowserRef, SA!String 
SA!ProfileDeclaration 
SAI_DISPOSED 
SAI_NOT _SUPPORTED 
None 
No 
No 

The getprofile service returns the declaration of the named profile. The value of 
the SAIString parameter is the name of a profile from which to fetch the 
declaration and shall conform exactly to the name specified in ISO/IEC 19775-1. 
It shall be an error if a name with the wrong case, incorrect spelling, or anything 
other than an exact match is provided. The browser is only required to return an 
SAIProfileDeclaration value if it supports the named profile. If it does not support 
the named profile, SAI_NOT _SUPPORTED shall be generated. 

6.3.8 getSupportedComponents 
parameters: 

returns: 

errors: 

SAIBrowserRef 
SA!ComponentDeclaration [SA!ComponentDeclaration]s 
SAI_DISPOSED 

events: None 
buffered: No 

external: No 

The getsupportedcomponents service returns a list of all components that are supported 
by this browser. All browsers shall support at least one component, as required to 
support profiles. 

6.3.9 getComponent 
parameters: 
returns: 
errors: 

events: 
buffered: 

external: 

SAIBrowserRef, SA!Component 
SA!ComponentDeclaration 
SAI_DISPOSED 
SAI_NOT _SUPPORTED 
None 
No 
No 

The getcomponent service returns the declaration of the named component. The 
value of the SAIComponent parameter is the name of a component and level from 
which to fetch the declaration and shall conform exactly to the naming 
conventions used in the file format. It shall be an error if the user provides a 
name with the wrong case, incorrect spelling or anything other than an exact 



match. The browser is only required to return a SAIComponentDeclaration value if 
it supports the named component and the requested level. If it does not support 
the component at the level desired, SAI_NOT _SUPPORTED shall be generated. 

6.3.10 getExecutionContext 
par amete rs: 

re t urns: 

er rors: 

events: 

buffered: 

external: 

SAIBrowserRef 
SAIExecutionContext 
SAI_DISPOSED 
SAI_INVALID_OPERATION_TIMING 
None 
No 
No 

The getExec utioncontext service returns the current execution context. If used in an 
internal interaction, this service returns the execution context in which the 
containing node exists (see 4.4.3 Containing Node). When used in an external 
interaction, this service returns the current top-level scene. 

The execution context is the base form of a scene, but only provides access to the 
local nodes, PROTOs and routes as defined by the X3D name scoping rules as 
defined in 4.4. 7 Run-time name scope in ISO/I EC 19775-1. Depending on the 
place in the scene graph, the returned type may be an instance of SAIScene 
allowing the user to utilize the greater capabilities. 

6.3.11 createScene 

parameters: SAIBrowserRef, [SAIProfileDeclaration], [SAIComponentDeclaration]s 
returns : SAIScene 
errors: SAI_ DISPOSED 

SAI_INVALID_OPERATION_TIMING 
events: None 
buffered: No 
external: No 

The createscene service creates a new empty scene that conforms to the given 
profile and component declarations. Although the specification does not require 
either be provided, it shall be an error to provide neither profile nor component 
definitions. A user shall provide at least one valid profile or component identifier 
to this request. 

A scene created this way shall always have its specification version set to "3 .0", 
"3 .1", "3.2", ef "3.3" (as appropriate) and the encoding set to "Scripted" . 

6 ,- .,t't. .o.,. --2 

6.3.12 replaceWorld 
parameter s: 

r eturns : 
errors: 

events : 

buffered: 

SAIBrowserRef, SAIScene 
None 
SAI_INVALID_SCENE 
SAI_DISPOSED 
SAI_INVALID_OPERATION_TIMING 
SAI_Browser _Shutdown 
SAI_Browser _Initialized 



No 
external: No 

The replaceworld service replaces the current world with the world specified by the 
SAIScene parameter. If another replaceworld or loadURL (see 6.3.14 loadURL) request 
is made during the processing of the current request, the current request is 
terminated and the new one started. In this case, no extra shutdown event shall 
be generated. The initialize event shall be generated at the point where the world 
is ready to be run. The scene is not required to contain any valid content. Setting 
a value of NULL shall clear the currently set scene and leave a blank browser with 
no renderable content and no current scene. 

The SAI_Browser_Shutdown event is generated immediately upon receiving this 
service request. 

The SAI_ Browser _Initialized event is generated when the new nodes have been 
set and all browser specific initialization has taken place but before the first time 
driven event cascade has been started ( event cascades may have previously 
resulted due to the initialization process through internal scripts) . 

6.3.13 importDocument 
parameters: 
returns: 
errors : 

event s : 
buffered: 

external: 

SAIBrowserRef, DOMNode 
SAIScene 
SAI_INVALID_DOCUMENT 
SAI_ DISPOSED 
SAI_ INVALID_OPERATION_TIMING 
SAI_NOT _SUPPORTED 
None 
No 
No 

The i mportDoc ument service is a utility request to import a World Wide Web 
Consortium (W3C) Document Object Model (DOM) document or document 
fragment and convert it to an X3D scene. The input allows any form of DOM Node 
as defined by L[W3CDOM2] . Although all derived types are available, it shall only 
be required that DOCUMENT, DOCUMENT _FRAGMENT, and ELEMENT types are 
required to be supported for the conversion process. The method only performs a 
conversion process and does not display the resulting scene . The scene may then 
be used as the argument for the replaceworld (see 6.3.12 reRlaceWorld ) service. 
When the conversion is made, there is no lasting connection between the DOM 
and the generated scene. Each request shall be a sing le conversion attempt (the 
conversion ~t b__e successful if the DOM does not match the X3D scene 
graph structure) . rJ~l-v 

Support for this method is optional and shall be dependent on the browser 
support for the XML encoding (see ISO/IEC 19776-1) . If the browser 
implementation supports the XML encoding, it shall support this service. If the 
browser does not support the XML encoding, the implementation may support this 
service. User code may check that this service is supported through the checking 
the browser properties with the getBrowse rProperties service. If this service is not 
supported by the browser implementation, SAI_NOT _SUPPORTED error shall be 
generated. 



• 
6.3.14 loadURL 

parameters: SAIBrowserRef, SAIURL [SAIURL]s, SAIPropertylist 
returns : None 
errors: SAI_INVALID_URL 

SAI_INVALID_OPERATION_ TIMING 
SAI_DISPOSED 

events: SAI_Browser _Shutdown 
SAI_Browser _Initialize 
SAI_Browser _ U RL_Error 

buffered: No 

external: No 

The 1oadURL service inserts the content identified by the URL(s) in the current world 
under control of the contents of the SAIPropertylist instance. 

The SAI_Browser_Shutdown event is generated immediately upon receiving this 
service request if the parameter list is such that the browser is about to be 
shutdown (EXAMPLE replaces an HTML Frame where the browser was embedded). 

The SAI_Browser _Initialized event is generated when the new nodes have been 
set and all browser specific initialization has taken place but before the first time 
driven event cascade has been started (event cascades may have previously 
resulted due to the initialization process through internal scripts). 

The property list definition shall include at least one property that defines loading 
the URL supplied as a new world in the supplied SAIBrowserRef. If the property 
list is empty, the action is to replace the world of the current browser with the 
new world if the successful URL is an X3D file. 

If another repla ceworld (see 6.3 .12 reRlaceWorld) or loadURL request is made during 
the processing of the current request, the current request is terminated and the 
new one started. In this case, no extra shutdown event shall be generated. The 
SAI_Browser_Initialize event shall be generated at the point where the world is 
ready to be run if replaceWorld was called. 

6.3.15 setDescription 

SAIBrowserRef, SAIString parameters: 

returns: 

errors: 
None 
SAI_INVALID_OPERATION_TIMING 
SAI_DISPOSED 

events: None 
buffered: No 

external: No 

If the browser supports a description title, it shall be set to the new description. 
Typically, this will be the title in a window title bar. In cases where there may be 
multiple browsers on a single window, the result is implementation dependent. 

lkis h,JJo;J\~ W o--J~lck &.a. 
6.3.16 createX3DFromString ~~•'JliuJ We1tU~, y-;+~ , ,J ~ ~{_, 

parameters: SAIBrowserRef, SAIString 



returns: 
errors: 

events: 
buffered: 

external: 

SAIScene 
SAI_INVALID_X3D 
SAI_INVALID_OPERATION_TIMING 
SAI_DISPOSED 
SAI_NOT_SUPPORTED 
None 
No 
No 

The createX3DFromstring service creates nodes from a string. The string shall contain 
valid X3D syntax; otherwise an error is generated. If any relative URLs are 
encountered in this string, the base is assumed to be the current browser 
location. The string is not required to contain the X3D file header. If it is present, 
it shall be treated as an indicator to the version of X3D contained. If absent, the 
default version assumed shall be that specified in 7.2.5.2 Header statement in 
ISO/IEC 19775-1. A browser is not required to support any versions prior to 
ISO/IEC 19775. 

If the string contains legal X3D statements but does not contain any node 
instances, a valid SAIScene value shall still be returned containing no root nodes, 
but with the appropriate declaration identifiers. For example the string may 
contain EXTERN PROTO declarations but no instances of any node. If the SAIString 
provides the content in an encoding format that the browser implementation does 
not support, the browser shall generate an SAI_NOT_SUPPORTED error. 

6.3.17 createX3DFromStream 
parameters: 
returns: 
errors: 

events: 
buffered: 

external: 

SAIBrowserRef, SAIStream 
SAIScene 
SAI_INVALID_X3D 
SAI_INVALID_OPERATION_ TIMING 
SAI_DISPOSED 
SAI_NOT _SUPPORTED 
None 
No 
No 

The createX3DFromstream service creates nodes from an arbitrary, user-provided 
stream of input data. The stream shall contain valid X3D syntax from the first 
character; otherwise, an error is generated. If any relative URLs are encountered 
in this string, the base is assumed to be the current browser location. The stream 
is required to include the X3D File Header in accordance with the encoding 
requirements for the format. 

If the string contains legal X3D statements but does not contain any node 
instances, a valid SAIScene value shall still be returned containing no root nodes, 
but with the appropriate declaration identifiers. For example, the string may 
contain EXTERN PROTO declarations but no instances of any node. If the stream 
identified by SAIStream provides the content in an encoding format that the 
browser implementation does not support, the browser shall generate an 
SAI NOT_SUPPORTED error. 

6.3.18 createX3DFromURL 



parameters: 
returns: 
errors: 

events: 
buffered: 

external: 

SAIBrowserRef, SAIURL [SAIURL]s 
SAIScene 
SAI_INVALID_URL 
SAI_INVALID_OPERATION_TIMING 
SAI_DISPOSED 
SAI_Browser _URL_Error 
No 
No 

The createX3DFromURL service creates nodes from the contents of the file represented 
by the URL. The URL may be a relative URL which is considered to be using the 
browser location as the base document. The scene described by that URL shall be 
identified by the returned SAIScene value. 

6.3.19 updateControl 
parameters: 
returns: 
errors: 
events: 
buffered: 

external: 

SAIBrowserRef, SAIAction 
None 
SAI_DISPOSED 
None 
N/A 
Yes 

The updatecontrol specifies the manner in which buffered updates are processed. 

The SAIAction parameter specifies the actions that may be applied against the 
buffer. Other actions may be added, such as to query the number of items, or the 
state of the buffer and are implementation dependent. Table 6.3 defines the 
actions specified in this part of ISO/IEC 19775. 

Table 6.3 - updateControl SAIAction values 

Service Action Type 

BeginUpdate 

u pdateControl 
EndUpdate 

The timestamp of events generated at the call to Endupdate are implementation 
dependent but should be consistent with the time within the current world. That 
is, timestamps cannot be in the "past" relative to the other current events 
generated internally with event model at the time when they are generated. 

Beginupdate and EndUpdate are not nesting calls. Once Beginupdate has been called, it 
may be called any number of times, but only a single EndUpdate call is needed to 
release the buffered events into the scene graph. A call to Endupdate without a 
previous matching Beginupdate has no effect. 

6.3.20 registerBrowserinterest 

parameters: 
returns: 
errors: 

SAIBrowserRef, SAIAction, SAIRequester 
None 
SAI_INVALID_OPERATION_TIMING 



events: 

buffered: 

external: 

SAI_DISPOSED 
Receiver of all SAIBrowserEvents 
No 
Yes 

The registerBrowserinterest service nominates the requester as the receiver of all 
SAIBrowserEvents. The act of making this service request itself does not imply 
any events shall be generated. 

The parameter of type SAIRequester could be inferred from the source of the 
input and may not need to be part of the parameters and is implementation 
dependent. Each binding to this service shall specify this requirement. 

The parameter of type SAIAction specifies whether this is a request to add 
interest in events, or to remove interest in the events. Table 6.4 defines the 
actions specified in this part of 1S0/IEC 19775. 

Table 6.4 - registerBrowserlnterest SAIAction values 

Service Action Type 

AddBrowserinterest 

registerBrowserlnterest 
RemoveBrowserinterest 

Any change to the current browser shall be sent to the listener that has registered 
interest in these events. These event notifications shall be made independent of 
the method of communicating with the browser. 

As a minimum, a conforming implementation shall provide the events defined in 
4.5.3 Browser to External ARJ'.;2lication . 

6.3.21 getRenderingProperties 
parameters: 

returns: 

errors: 

SAI BrowserRef 
SAIPropertylist 
SAI_ INVALID_OPERATION_TIMING 
SAI_DISPOSED 

events: None 
buffered : No 

external: N 0 

The getRenderingProperties service is used to query for the rendering capabilities of 
the browser. This gives a list of the low-level hardware capabilities of the browser 
rather than what X3D components are supported. For example, it will give the 
user an idea of how many multitexture units can be handled and allows the end 
user to customize the number of nodes to use in the MultiTexture node. The keys 
and values in the property list are implementation dependent and are for 
informative purposes only. Table 6.5 lists the properties that are returned by this 
service. 

Table 6.5 - Standard rendering property definitions 



Property Value Description 
Name data 

type 

Shading String The type of shading algorithm in use. Typical values are Flat, 
Gouraud, Phong, Wireframe. 

MaxTextureSize String The maximum texture size supported. The format shall be 
WIDTHxHEIGHT describing the number of pixels in each 
direction (for example 1024x1024). 

TextureUnits Integer The number of texture units supported for doing multitexture. 

AntiAliased Boolean True or false if the rendering is currently anti-aliased or not 

ColorDepth Integer The number of bits of colour depth supported by the screen. 
Allows for optimized selection of textures, particularly for lower 
colour depth screen capabilities. 

TextureMemory Float The amount of memory in megabytes available for textures to 
be placed on the video card. 

The user shall not be able to directly effect the rendering properties of the 
browser by modifying the properties returned by this service. 

6.3.22 getBrowserProperties 
parameters: 

returns: 
errors: 

SAIBrowserRef 
SAIPropertylist 
SAI_INVALID _OPERATION_ TIMING 
SAI_DISPOSED 

events: None 
buffered: No 
external: No 

The getBrowserProperties service is used to query for the capabilities of the browser 
reference itself. This gives a list of the expanded interfaces that this browser 
reference is capable of supporting. For example it may be used to query for the 
existence of browser implementation-specific extensions to the defined browser 
class or future extensions as provided by this specification. 

Table 6.6 defines some standard property names that are reserved by part of 
ISO/IEC 19775. Where a browser implementer chooses to add additional 
capabilities, the naming convention of these additional properties shall follow the 
guidelines defined in 4.1.3 Conventions used in part 1 of of ISO/IEC 19775 (see 
2..,_[119775-1]). 

Table 6.6 - Standard properties describing extension capabilities 

Property Name I Value I Description 



data 
type 

The browser implementation 
supports the abi lity to 
describe each node type with 
interfaces that correspond to 
the abstract node types as 

ABSTRACT _NODES Boolean defined in ISOLIEC 19775-1 in 
addition to the basic 
requirement to support the 
X3DNode abstract type. This 
indicates that the browser 
supports at least Conformance 
Level 2 . 

The browser implementation 
supports the ability to 
describe each node type with 
interfaces that correspond to 
the concrete node types as 

CONCRETE_ NODES Boolean defined in ISOLIEC 19775-1 in 
addition to the requirement to 
support all of the abstract 
types. This indicates that the 
browser supports at least 
Conformance Level 3. 

This SAIBrowserRef supports 
the additional services 
required by external 

EXTERNAL_INTERACTIONS Boolean interfaces. A SAIBrowserRef 
provided to user code in 
internal interactions shall not 
set this property. 

The browser implementation 
supports the ability to 
dynamically create PROTO and 
EXTERN PROTO 
representations through 

PROTOTYPE_ CREATE Boolean service requests. The basic 
serv ice capability only al lows 
the ability to create instances 
of predefined PROTO 
structures read from a file 
format. 

The browser implementation 
DOM IMPORT - Boolean supports the imRortDocument 

service request. 

XML_ ENCODING Boolean The browser supports XML as 
a file format encoding . 



CLASSIC_VRML_ENCODING Boolean 

COMPRESSED_BINARY_ENCODING Boolean 

-

6.3.23 changeViewpoint 
parameters: 

returns: 
errors: 

events: 
buffered: 

external: 

SAIBrowserRef, SAIAction, SA!Layer!D 
None 
SAI_INVALID_OPERATION_TIMING 
SAI_DISPOSED 
None 
Yes 
No 

The browser supports the 
Classic VRML encoding. 

The browser supports the 
binary file format encoding. 

~ 

The changeViewpoint service changes the currently bound X30ViewpointNode 
instance on the specified Layer to the instance defined by the action. Valid action 
types are previous, next, first and last. If a layer ID is not specified, the current 
activelayer is used. When the viewpoint is changed using this service request, 
the browser shall first unbind the current instance and then bind the new 
instance. That is, the number of items on the bindable stack bindable nodes shall 
not increase as a result of making this service request. Table 6. 7 defines the 
actions specified in this part of ISO/IEC 19775. 

Table 6.7 - changeViewpoint SAIAction values 

Service Action Type 

Next 

Previous 

changeViewpoint 
First 

Last 

This service request implies that there is a standard, well-known ordering of the 
X30ViewpointNode instances so that consistent visual behaviour shall be 
observed. The order shall be based on the following rules: 

1. The order is declared in the originally parsed file or stream, including 
resolution of PROTO instances, but not including EXTERNPROTO or 
X3DinlineNode instances. 

2. Dynamically created node instances are always appended. 
3. Instances located in X30InlineNode instances and EXTERNPROTO instances 

shall be in the order in which the external scene is resolved, and appended 
to the list. The inclusion of these external instances is also dependent on the 
browser property EnableinlineViewpoints. 



An invalid SAILayerID shall result in the operation being ignored. Requests for 
SAILayerID values less than zero or greater than or equal to the number of 
defined layers are considered invalid and shall cause error 
SAI_INVALID_OPERATION_ TIMING to be issued. 

If the world only contains the default X3DViewpointNode instance, this request 
has no effect on the visual output. 

6.3.24 print/println 
parameters: 

returns: 
errors: 

events: 
buffered: 

external: 

SA!BrowserRef, SAIString 
None 
None 
SAI_DISPOSED 
No 
No 

The print service prints a message to the browser's console. The language-specific 
bindings may provide overloaded variations on this service that do not take an 
SAIString value, but take other data types. Other variants may include the ability 
to automatically add linefeed/newline characters without the need to explicitly 
declare them in the SAIString value. A binding shall provide at least the base 
SAIString variant (print) and a variant that appends linefeed/newline characters 
(println). 

User code may call this service at any time, without restriction, unless the 
browser reference has been disposed of. 

6.3.25 dispose 
parameters: 
returns: 
errors: 

events: 

buffered: 

external: 

SAIBrowserRef 
None 
SAI_INVALID_OPERATION_TIMING 
SAI_B_Shutdown 
No 
Yes 

The dispose service indicates that the client is about to exit this session and the 
browser is free to dispose of any resources that this client may have consumed. 
An SAI_Browser_Shutdown event is sent only to this client and may be generated 
internally by the language implementation on the client machine (that is, it is not 
required that the browser itself generate this event, just that the event is 
generated). If any events have been held because seginUpdate has been called, 
disposing of the browser shall also call Endupdate to release those events to the 
browser for final processing. 

6.3.26 setBrowserOption 
parameters: 

returns: 
errors: 

events: 

buffered: 

SA!BrowserRef, SAIString, SAIObject 
SA!Boolean 
SAI_INVALID_OPERATION_TIMING 
None 
No 



external: Yes 

The setBrowserOption service allows setting options defined in 9.2.4 Browser options 
in ISO/IEC 19775-1. The name field shall be one of the defined names in Table 
9.2 in ISO/IEC 19775-1. This service shall return an SAIBoolean value indicating 
whether the change request was successful. A browser is not required to support 
dynamic changes to any options. If a browser option is not supported, a value of 
FALSE shall be returned . 

• 6.4 Execution context services 

6.4.1 getSpecificationVersion 
par ameters: 

returns: 

errors: 

events: 

buffered: 

external: 

SAIExecutionContext 
SAi String 
SAI_INVALID_OPERATION_TIMING 
SAI_ DISPOSED 
None 
No 
No 

The getSpecificationVersion returns the version string that describes to which 
specification version this scene adheres. This version represents the appropriate 
version number as defined in ISO/IEC 14772-1, ISO/IEC 19775-1, or has value 
1.0 for versions of VRML that precede the specification in ISO/IEC 14772-1 that 
are supported by the implementation. 

6.4.2 getEncoding 
parameters: 

returns : 

errors: 

events: 

buffered: 

external: 

SAIExecutionContext 
SAIEncoding 
SAI_INVALID_OPERATION_TIMING 
SAI_DISPOSED 
None 
No 
No 

The getEncoding service returns the encoding type that was used to produce the 
portion of the scene represented by the specified execution context. The encoding 
is one of a fixed set, but may include additional types that are browser 
implementation specific. The minimum required set of values (but not necessarily 
supported by the browser implementation) shall be: 

1. Scripted: For scenes that are created completely through the SAI and did not 
originate through a file somewhere. 

2. ASCII: For VRML 1.0 specification files. 
3. VRML: For VRML and the X3D Classic VRML encoding specified in ISO/IEC 

19776-2. 

4. XML: For X3D XML-encoded files specified in ISO/IEC 19776-1. 
5. CompressedBinary: for X3D Compressed binary-encoded files specified in 

ISO/IEC 19776-3. 



6. BIFS: For MPEG-4 BIFS-encoded format specified in ISO/IEC 14496-1. 

6.4.3 getProfile 

parameters: 
returns: 
errors: 

events: 
buffered: 
external: 

SAIExecutionContext 
SAIProfileDeclaration 
SAI_INVALID_OPERATION_TIMING 
SAI_DISPOSED 
None 
No 
No 

The getProfile service returns the profile that is used to describe this scene. If the 
specification version is for a specification version prior to X3D, the profile shall be 
VRML. If no profile is provided, this shall return NULL. 

6.4.4 getComponents 

parameters: 

returns: 
errors: 

events: 

buffered: 
external: 

SA!ExecutionContext 
[SA!ComponentDeclaration]s 
SAI_INVALID_OPERATION_TIMING 
SAI_DISPOSED 
None 
No 
No 

The getcomponents service returns the component(s) used to describe the scene. The 
list returned shall represent only explicit component declarations and not the 
implied components from the profile declaration. If no component definitions are 
set, NULL shall be returned. 

6.4.5 getUnits 
parameters: 

returns: 
errors: 

events: 
buffered: 
external: 

SA!ExecutionContext 
[SA!UnitDeclaration]s 
SAI_INVALID_OPERATION_TIMING 
SAI_DISPOSED 
None 
no 
no 

The getunits service returns all of the units used to describe the scene. The list 
returned shall represent all explicit unit declarations and the currently applied 
default units. 

6.4.6 getWorldURL 
parameters: 

returns: 

errors: 

events: 

buffered: 
external: 

SA!ExecutionContext 
SAIURL 
SAI_INVALID_OPERATION_TIMING 
SAI_DISPOSED 
None 
no 
no 



The getworldURL service returns the fully qualified URL of this scene. This returns the 
entire URL including any possible arguments that might be associated with a CGI 
call or similar mechanism. If the world was created entirely programmatically, the 
URL shall be NULL. 

6.4. 7 getNode 
parameter s : 

returns : 

er rors: 

SAIExecutionContext, SAIString, SAIAction 
SAINode 
SAI_INVALID_OPERATION_ TIMING 
SAI_ INVALID_ NAME 
SAI_ DISPOSED 
SAI_NODE_ NOT _AVAILABLE 

event s : None 
buffered: No 
external: No 

The get Node service searches for a node based on specified criteria and returns an 
identifier for the node. 

The SAIString is to identify the name of the node that has been marked with one 
of the naming statements DEF, IMPORT or EXPORT in the currently loaded X3D 
scene or previously added with a namedNodeHandling request (see 6.4.10 
namedNodeHandling ). 

The SAIAction shall indicate which of the naming types shall be used to find the 
node. For example, providing an action of rmportNode shall not return a name that 
may be valid, but describes a node named with the DEF statement. Table 6.8 
defines the actions specified in this part of ISO/IEC 19775. 

Table 6.8 - getNode SAIAction values 

Service Action Type 

DEFNode 

getNode IMPORTNode 

EXPORTNode 

Access shall only be available to names in this scene. DEFs in Inlined files shall 
not be accessible in accordance with 4.4.3 DEF/ USE Semantics and 4.4.6, 
Import/Export semantics in ISO/IEC 19775-1. 

If the SAIAction is rMPORTNode and the name is valid but the node defin ition is not 
yet available from the source Inline node, SAI_NODE_NOT_AVAILABLE shall be 
generated. 

6.4.8 createNode 

parameters: 

returns: 

errors: 

SAIExecutionContext , SAISt ring 
SAINode 
SAI_INVALID_OPERATION_TIMING 



SAI_DISPOSED 
SAI_INVALID_NAME 

events: None 
buffered: No 
external: No 

Th.e createNode service creates a new default instance of the node given by the 
SAIString value containing the name of an X3D node type. The availability of the 
node is defined by the containing scene's profile and component declarations. The 
name shall only refer to a built-in node and shall not be used to create instances 
of PROTOs or EXTERNPROTOs. If the node is not available in the currently 
specified profile and components, the browser shall issue the SAI_INVALID_NAME 
error. 

6.4.9 createProto 
parameters: 
returns: 
errors: 

events: 
buffered: 
external: 

SAIExecutionContext, SAIString 
SAINode 
SAI_INVALID_OPERATION_TIMING 
SAI_DISPOSED 
SAI_INVALID_NAME 
None 
No 
No 

The createProto service creates a new default instance of the named PROTO. The 
naming and scoping rules for creating a proto instance for which the current 
execution context is inside another proto are defined by 4.4.7 Run-time name 
scope in ISO/IEC 19775-1. If there is no PROTO declaration available that 
matches the given name, the browser shall generated the SAI_INVALID_NAME 
error. 

6.4.10 namedNodeHandling 

parameters: SAIExecutionContext, SAIAction, SAIAction, SAIString, 
[SAINode I SAIString, [SAIString]] 

returns: None 
errors: SAI_INVALID_OPERATION_ TIMING 

SAI_DISPOSED 
SAI_IMPORTED_NODE 
SAI_NODE_IN_USE 
SAI_INVALID_NAME 

events: None 
buffered: Yes 
external: No 

The namedNodeHandling service is a request to add, remove, or update the node 
identified by the SAIString value where that name is considered to use the DEF, 
or IMPORT semantics. The add/remove/update shall be described by the first 
SAIAction value. If the name already exists as a mapping, the current mapping is 
replaced with the new mapping. When adding a new named node, the new named 
node is not required to be part of this scene. 



The second SAIAction value describes which of the DEF or IMPORT naming 
facilities shall be the target of this service request. This ensures that correct 
semantics are applied. If the action is to add and the name is already registered, 
SAI_NODE_IN_USE is generated. If the action is to replace or update, and the 
node is not already registered, the implementation may treat this as an add 
request. Table 6.9 defines the actions specified in this part of ISO/IEC 19775. 

Table 6.9 - namedNodeHandling SAIAction values 

Service Action Type 

AddDEFNode/UpdateDEFNode 

RemoveDEFNode 

AddIMPORTNode/UpdateIMPORTNode 
namedNodeHandling 

RemoveIMPORTNode 

AddEXPORTNode/UpdateEXPORTNode 

RemoveEXPORTNode 

The first SAIString value identifies a name with a node as it should be known in 
this scene. The name is not an intrinsic property of the node and this only serves 
as a mapping function. 

The second argument provides an option depending on the action being 
undertaken. SAINode value is a reference to the node that may be needed for 
verification of the DEF name addition. For adding IMPORTs, the second string shall 
be the exported node name in the DEF'd inline and the optional third string shall 
be the name to store it as in this scene. 

6.4.11 getProtoDeclaration 
parameters: 

returns: 

errors: 

events: 

buffered: 
external: 

SAIExecutionContext, SAIString 
SAIProtoDeclaration 
SAI_INVALID_OPERATION_TIMING 
SAI_INVALID_NAME 
SAI_DISPOSED 
None 
No 
No 

The getProtoDeclaration service returns the named PROTO declaration representation 
from this scene. This shall only be used to request PROTO declarations. A request 
for an EXTERNPROTO declaration shall generate SAI_INVALID_NAME. 

6.4.12 protoDeclarationHandling 

parameters: SAIExecutionContext, SAIString, SAINode, SAIAction 
returns: None 
errors: 



SAI_INVALID_OPERATION_ TIMING 
SAI_DISPOSED 

events: None 
buffered: Yes 
external: No 

The protoDeclarationHandling service is a request to add, remove or change the 
ProtoDeclaration identified by the SAIString value. 

The SAIAction parameter specifies whether the service request is an add or 
removal of the declaration node. If the name already exists as a mapping, the 
current mapping is replaced with the new map. When adding a new declaration it 
may come from another scene. Table 6.10 defines the actions specified in this 
part of ISO/IEC 19775. 

Table 6.10 - protoDeclarationHandling SAIAction values 

Service Action Type 

AddProto/UpdateProto 
protoDec/arationHandling 

Remove Proto 

6.4.13 getExternProtoDeclaration 
parameters: 

returns: 
errors: 

events: 

buffered: 
external: 

SAIExecutionContext, SAIString 
SAIProtoDec/aration 
SAI_INVALID_OPERATION_ TIMING 
SAI_INVALID_NAME 
SAI_URL_UNAVAILABLE 
SAI_DISPOSED 
None 
No 
No 

The getExternProtoDeclaration service returns the named EXTERNPROTO declaration 
representation from this scene. This shall only be used to request an 
EXTERNPROTO declaration. A request for a PROTO declaration shall generate 
SAI_INVALID NAME. 

6.4.14 externprotoDeclarationHandling 

parameters: SAIExecutionContext, SAIString, SAINode, SAIAction 
returns: None 
errors: SAI_INVALID_OPERATION_ TIMING 

SAI_DISPOSED 
events: None 
buffered: Yes 
external: No 

The externprotoDeclarationHandling service is a request to add, remove or update the 
ExternProtoDeclaration identified by the SAIString value. 



The SAIAction parameter is used to indicate if the service request is an add or 
removal of the declaration node. If the name already exists as a mapping, the 
current mapping is replaced with the new map. When adding a new declaration, it 
may come from another scene. Table 6.11 defines the actions specified in this 
part of ISO/IEC 19775. 

Table 6.11 - externprotoDeclarationHandling SAIAction values 

Service Action Type 

AddE xt er nProto/Updat eExternProto 
externprotoDeclarationHandling 

RemoveExternProto 

6.4.15 getRootNodes 
par amet ers: 
ret urns: 
er rors : 

SAIExecutionContext 
SAINodes 
SAI_INVALID_OPERATION 

~~~b 
_TIMING

SAI_INVALID_NAME
SAI_ DISPOSED

events: None
buffered: No
external: No

The getRootNodes service returns a listing of the current root nodes of the execution
context. If the context was generated from a file, the root nodes are in the order
they were declared in the file. Any added nodes are then appended to the list in
the time order they were received at the browser. If the context was generated
programmatically, the nodes are in the order they were received by the browser.

6.4.16 getRoutes

pa rameters:
returns :
er ror s:

event s :
buffered :
exter nal :

SAIExecutionContext
SAIRoutes
SAI_ INVALID_OPERATION_TIMING
SAI_ DISPOSED
None
No
No

The getRoutes service gets the list of the current routes in the scene. The route
listing returned will only be the top level routes. Routes contained within a PROTO
definition or a prototype instance shall not be included in this list.

6 .4.17 dynamicRouteHandling

parameters : SAIExecutionContext, SAi Node, SAIField, SAINode, SAIField ,
SAIAction

returns :
errors :

None
SAI_INVALID_ OPERATION_TIMING
SAI_INVALID_ NODE

SAI_ INVALID_ FIELD
SAI_DISPOSED

events : None
buffered: Yes
ext e rnal: No

The dynamicRouteHandling service is a request to process a route according to the
action specified by the SAIAction value .

The parameter of type SAIAction specifies whether this should be an add or
delete of this route. Other actions may be added, such as to query the existence
of the nominated route. Actions defined by this part of 1S0/IEC 19775 are
described in Table 6.12 . The SAINode/SAIField pair parameters are considered as
defining the source field and destination fields for the route request.

Table 6 .12 - dynamicRouteHandling SAIAction values

Service Action Type

AddRoute

dynamicRouteHandl ing
DeleteRoute

Route modification requests are to fit with the general event model scheme as
defined in 4.4.8 Event model in 1S0/IEC 19775-1. The end of the event cascade
is considered to be the cascade that is initiated by the application sending events
into the X3D browser environment. Any new cascades generated as a result of
the processing of the initial events shall not be considered for the determination
of the event cascade.

If the action is to delete a route, and the route has previously been deleted, no
error should be generated.

6.4.18 dispose
paramet ers:
returns :

errors:
events :

buffered:

external :

SAIExecutionContext
None
SAI_INVALID_OPERATION_TIMING
SAI_Browser _Shutdown
No
Yes

The dispose service specifies that the client has no further interest in the resource
represented by this execution context. The browser may now take whatever
action is necessary to reclaim any resources consumed by this execution context ,
now or at any time in the future. If this execution context has already been
disposed, further requests have no effect.

• 6.5 Scene services

6 .5.1 Introduction

A scene is an extension of the execution context services with additional services
provided. The Scene services implementation shall include all of the services from
6.4 Execution context services, and include the following additional services.

6.5.2 getMetadata l?>PD ~Flkr- ~ JJ\~
parameters:
returns :
er rors :
event s :
buffered :
external:

SAIScene, SAIString
SAIString
SAI_INVALID_OPERATION_TIMING
None
No
No

The getMetadata service returns an item of metadata from the scene that was
specified using the META statement defined in 7 .2.5.5 META statement in ISO/IEC
19775-1. Metadata specified in the META statement is represented as an
SAIString key/value pair. Each key corresponds to exactly zero or one value.

Optionally, the browser may provide a subservice to discover the valid keys for
this scene as part of this service.

Metadata defined by metadata nodes as defined in Part 1 of ISO/IEC 19775 are
specifically different and can be manipulated using 6.6 Node services.

n o o t....N r<W)e.t ~ 'Ii, a.J <'), d
~~, ?t"'d':J

6.5.3 setMetadata

p~rameters,:·
r et ur ns:
errors :
events :
buffered:
exter nal:

SAIScene, SAIString, SAIString
None
SAI_INVALID_OPERATION_TIMING
None
Yes
No

I) irk. r,~µ~~#~~

The setMetadata service inserts an item of metadata in the scene in the form of a
META statement as defined in 7.2.5.6 META statement in ISO/IEC 19775-1.
Metadata is represented as a SAIString key/value pair. Each key corresponds to
exactly zero or one value. Setting an item with a key that already exists replaces
the existing value. If the value is NULL for the given key, the META statement
associated with that key is removed from the scene.

Metadata defined by metadata nodes as defined in ISO/IEC 19775-1 are
specifically different and can be manipulated using 6.6 Node services.

6.5.4 namedNodeHandling

In addition to the capabilities described in 6.4.10 namedNodeHandling, the Scene
services expand the capability to also work with exporting nodes. The definition is
expanded to the following:

The namedNodeHandling service is a request to add, remove or change the node
identified by the SAIString value where that name is considered to use the DEF,
or IMPORT or EXPORT semantics. The add/ remove/update shall be described by
the first SAIAction parameter value. If the name already exists as a mapping, the

current mapping is replaced with the new mapping. When adding a new named
node, it is not required to be a part of this scene.

The second SAIAction parameter value describes which of the DEF, IMPORT or
EXPORT naming facilities shall be the target of this service request. This ensures

· that correct semantics are applied. If the action ' is to add and the name is already
. registered then SAI_NODE_IN_USE is generated. If the action is to replace or

update, and the node is not already registered, the implementation may treat this
as an add request.

The first SAIString value specifies a name with a node as it should be known in
this scene. The name is not an intrinsic property of the node and this only serves
as a mapping function .

The second argument provides an option depending on the action being
undertaken. The SAINode value is a reference to the node that may be needed for
verification of an EXPORT or DEF name addition. For adding IMPORTS, the second
string shall be the exported node name in the DEF'd inline and the optional third
string shall be the name to store it as in this scene (this corresponds with the
Classic VRML syntax of IMPORT inlined_def.export_name [AS import_name]) . For
adding EXPORTS the second argument shall be the string, which is the optional
name to export the node as. If the first SAIString does not describe a node
marked with DEF, it shall generate a SAI_INVALID_NAME error. l ~

$; ""V f,a..r '\ e..cl,\.Q,J I~ f (I

6.5.5 rootNodeHandling SA 1 >'l _ ,L "'\~ ~ oJl~-l'iif,
. v- ~--,- k°""~,t..,,., v~D

paramet e r s: ' · SAIScene, SAINode, SAIAction I /'-
. -- returns: None S" ~k.

errors: SAI_INVALID_OPERATION_TIMING \
SAI_ INVALID_ NODE
SAI_DISPOSED
SAI_ IMPORTED_NODE
SAI_ NODE_IN_USE
SAI_INSUFFICIENT _CAPABILITIES

events: None
buffered: Yes
exter nal: No

The r ootNodeHandling service is a request to add and remove a root node of this
scene.

The SAIAction parameter is used to indicate if the service request is an add or
removal of the node. If the action is to remove and the node is not a known root
node, this shall generate an error. If the action is to add the node, it shall be
appended to the current list of root nodes. Table 6.13 defines the actions specified
in this part of ISO/IEC 19775.

Table 6.13 - rootNodeHandling SAIAction values

Service Action Type

rootNodeHandling AddRootNode

Remove Root Node

Nodes are bound by the capabilities of the containing scene. No node shall be of
greater capabilities than the scene's declared profile and additional components.
SAI_INSUFFICIENT _CAPABILITIES shall be generated if the action is to add a
node to the scene and that node requires greater capabilities than the scene
permits.

If the action is to add a node and the node or any of its children is currently part
of another scene, generate SAI_ NODE_IN_USE.

If the action is to remove a node and the node is not a known value of this field,
the request shall be silently ignored.

• 6.6 Node services

6.6.1 Introduction

The following services can be requested of an individual node. Each service
requires an identifier for that node. After a request of an individual node to
dispose of their resources, any further request made to a node service shall
generate a disposed error.

Although not specified, all services are capable of throwing an
SAI_CONNECTION_ERROR whenever a request is made if the session between
the application and the browser has failed.

6.6.2 getTypeName
parameters :
returns:

errors:
events :

buffe red :
ext e rnal :

SAINode
SAIString
SAI_ DISPOSED
None
No
No

The get Ty peName service returns the name of the type of the referenced node. The
type name is the name as specified in ISO/ IEC 19775-1 where the node type is
defined (see Node index in ISO/IEC 19775-1 for easy access to a node definition) .
If the node represents a PROTO node instance, the type name returned is the
name of the PROTO declaration.

6.6.3 getType
parameters:

returns:
err or s:

events :
buffe red:

external:

SAINode
SAINodeType
SAI_ DISPOSED
None
No
No

The getType service returns the type indicator for the referenced node. The type
indicator is either the type defined for the basic node types in the X3D
specification, or the PROTO type name if it is a prototyped node. This service is
not required to be supported for a conforming implementation.

6.6.4 getfield
parameters:

returns:

errors:

events:
buffered:

external:

SAINode, SAIFieldName
SAIField
SAI_INVALID_OPERATION_ TIMING
SAI_INVALID_NAME
SAI_DISPOSED
None
No
No

The getField service returns a field identifier so that operations can be performed
on the node properties. If the field requested is an inputOutput field, either the
field name or the set_ and _changed modifiers may be used to access the
appropriate form of the node as required. Access to fields is implementation
dependent.

6.6.5 getFieldDefinitions
parameters:

returns:

errors:

events:

buffered:
external:

SAINodeType
SAIFie/ds
SAI_INVALID_OPERATION_TIMING
SAI_INVALID_NAME
SAI_DISPOSED
None
No
No

The getFieldDefinitions service returns a list of all the field definitions of the
referenced node. The definitions provide a limited form of the SAIField that has all
the same services except the ability to read or write the value of the field for a
specific node instance. This request returns the SAIField values as generic
responses for every instance of this node rather than for a specific instance.

6.6.6 dispose
parameters:

returns:

errors:

events:
buffered:
external:

SAINode
None
SAI_INVALID_OPERATION_TIMING
None
Yes
No

The dispose node service indicates that the client has no further interest in the
resource represented by this node. The browser may take whatever action is
necessary to reclaim any resources consumed by this node, now or at any time in
the future. If this node has already been disposed, further requests have no
effect.

Disposing of a node does not remove the node from the scene graph (if it was
inserted in the first place) but rather removes any local information per client to
it. The underlying X3D node representation is only disposed if no other
applications or scene graph structures contain references to this node. The
responsibility and timing for this action is browser-implementation specific.

• 6.7 Field services

6.7.1 Introduction

The following are services that can be requested of individual fields of a node. If
the node from which a field was retrieved has been disposed, field services are
still permitted to operate providing that the field reference has been obtained
before disposing of the node. If a call is made to a field service after requesting
disposal of the field, a disposed error shall be generated.

Although not specified, all services are capable of throwing an
SAI_CONNECTION_ERROR whenever a request is made if the session between
the application and the browser has failed.

6. 7. 2 getAccessType
parameters:

returns:
errors:

events:
buffered:

external:

SAINode, SAIField
SAIFieldAccess
SAI_INVALID_OPERATION_TIMING
SAI_DISPOSED
None
No
No

The getAccessType service returns the access type for the specified field of the
referenced node.

6. 7 .3 getType
parameters:
returns:

errors:

events:

buffered:

external:

SAINode, SAIField
SAIFieldType
SAI_DISPOSED
None
No
No

The getType field service returns the type for the specified field of the referenced
node.

6. 7 .4 getName
parameters:

returns:

errors:

events:

buffered:

SAINode, SAIField
SAIFieldName
SAI_DISPOSED
None
No

external: No

If supported by the implementation, the getName field service returns the name of
the field as it was requested from the node. If the service requested the
set_children field of a grouping node, this shall return "set_children", but if a
different request was for children on the same node, "children" shall be returned.

6.7.5 getValue
parameters:
returns:
errors:

events:
buffered:
external:

SAINode, SAIField
SAIFieldValue
SAI_INVALID_OPERATION_TIMING
SAI_INVALID _ACCESS_ TYPE
SAI_DISPOSED
None
No
No

The getvalue field service returns the value represented by the specified field as it
exists in the world. This represents the current value of the field at the time of
the request. If the request is made of a field that has a setValue request buffered
through seginupdate, the value returned shall be the old value prior to the setValue
request. The value of the field may be a node if the field represents an MFNode or
SFNode.

All field types shall support the option to return a single value from multi-valued
arrays.

6.7.6 setValue
parameters:
returns:
errors:

events:
buffered:
external:

SAINode, SA!Field, SAIFieldValue
None
SAI_INVALID_OPERATION_TIMING
SAI_INVALI D _ACCESS_ TYPE
SAI_IMPORTED_NODE
SAI_DISPOSED
None
Yes
No

The setvalue field service sets the value of the specified field. Set requests shall
obey the requirements as specified for buffered events services.

The value of the field may be an SAINode value if the field represents an MFNode
or SFNode. It is permitted to send a null to a node or field in order to clear the
value from that field. For example sending a null to the appearance inputOutput
field of a Shape node as specified in 12 Shape component in ISO/IEC 19775-1,
shall result in the appearance field being cleared and set to the default value of
NULL.

If the SAINode value is registered as an IMPORTed node in this file, it shall
generate the SAI_IMPORTED_NODE error.

All field setting services implementations shall include the ability to set individual
values. Fields that describe multi-value arrays shall also include the ability to
append and remove items from the existing field.

6. 7. 7 registerFieldinterest
parameters-:

returns:
errors:

events:

buffered:
external:

SAINode, SAIField, SAIAction, SA!Requester
None .
SAI_INVALID_OPERATION_TIMING
SACINVALID_ACCESS_ TYPE
SAI_INSUFFICIENT _CAPABILITIES
SAI_NODE_IN_USE
SAI_DISPOSED
SAIFieldEvent
No
No

The registerFieldinterest service nominates the requester as the receiver of all
SAIFieldEvents. The act of making this service request itself does not imply any
events shall be generated. Table 6.14 defines the actions specified in this part of
ISO/IEC 19775.

Table 6.14 - registerFieldlnterest SAIAction values

Service Action Type

Addinterest

registerFieldlnterest
Remove Interest

The parameter of type SAIRequester can be inferred from the source of the input
and may not need to be part of the parameters.

The parameter of type SAIAction specifies whether this is a request to add
interest in events or to remove interest in the events.

Which capabilities are permitted to be listened to are implementation dependent.
For example, some implementations may permit listening to inputOnly values and
outputOnly values while others will only permit listening to outputOnly values.

6. 7 .8 dispose

parameters:

returns:

errors:

events:
buffered:

external:

SAIField
None
SAI_INVALID_OPERATION TIMING
None
Yes
No

The dispose field service indicates that the client has no further interest in the
resource represented by this field. The browser may take whatever action is
necessary to reclaim any resources consumed by this field, now or at any time in
the future. If this field has already been disposed, further requests have no effect.

$ -

• 6.8 Route services f)a . , ,.
e,.8". l .. ~...J ~ J\)c,i,,J . IV)t9JJ\ fQ11Jt~

6.8.1 getSourceNode c...il k "f~i'J {',.,.. ~,JJ~ R..~~
~:::;~:~rs: ~:~~~~~e ft~ Ci! r,J ~U Al c, }, ~ l CJ2S'
errors: SAI_INVALID_OPERATION_TIMING ~ Jl~ ~
events: None (J.J
buffered: No

external: No

The getsourceNode service returns the source node of the specified route.

6.8.2 getSourceField
parameters:
returns:
errors:
events:
buffered:
external:

SAIRoute
SAIString
SAI_INVALID_OPERATION_TIMING
None
No
No

The getsourceField service returns the name of the source field of the specified
route .

6.8.3 getDestinationNode
parameters:
returns:
errors:
events:
buffered:
external:

SAIRoute
SAINode
SAI INVALID_OPERATION_TIMING
None
No
No

The getoestinationNode service returns the destination node of the specified route.

6.8.4 getDestinationField
parameters:
returns:
errors:
events:
buffered:
external:

SAIRoute
SAIString
SAi INVALID_OPERATION_TIMING
None
No
No

The getDestinationField service returns the name of the destination field of the
specified route.

6.8.5 dispose

parameters:

returns:

errors:

events:

buffered :

external:

SAIRoute
None
SAI_INVALID_OPERATION_TIMING
None
Yes
No

The dispose route service indicates that the client has no further interest in the
resource represented by this route. The browser may take whatever action is
necessary to reclaim any resources consumed by this route, now or at any time in
the future. If this route has already been disposed, further requests have no
effect.

Disposing of a route does not remove the route from the scene graph (if it was
inserted in the first place) but rather removes any local information per client to
it. The underlying X3D node representation is only disposed of if no other
applications or scene graph structures contain references to this route and the
responsibility and timing for this action is browser implementation specific.

~ ~.~). Pre~ ~•uJ~ONJ , \
• 6.9 Prototype services J:t k ~' r tJ
6.9.1 isExternproto ~r- ~....i ,.,_,".) pl)~~~ rt W

parameters: SAIProtoDeclaration c.J kx,.~ Nd Je.. J'A >-....11 CJL.f Ol.J'l
returns: SAIBoolean '{ a~ .,
errors: SAI_ DISPOSED aJ ~ d .
events: None
buffered: No '
external: No

The isExt.ernproto service checks to see if the prototype declaration represents a
. PROTO or EXTERN PROTO. If it is an EXTERN PROTO, a TRUE value shall be returned,
·and PROTO declarations·'shall return FALSE.

6.9.2 createinstance
parameters:

returns :

errors :

events:

buffered:

external:

•. !.

SAI ProtoDecla ration
SAINode
SAI_ INVALID_OPERATION_TIMING
SAI_INVALID_NODE
SAI_DISPOSED
None
No
No

The creaternstance service creates a new instance from the declaration of either a
PROTO or EXTERNPROTO. An EXTERNPROTO instance may fail with
SAI_INVALID_NODE if the definition has not yet been loaded.

6.9.3 getFieldDefinitions
parameters:

returns:
SAI Proto Deel a ration

err ors :

events:
buffe r ed :
external:

SAIField(s)
SAI_INVALID_OPERATION_TIMING
SAI_DISPOSED
None
No
No

The getFieldDefinitions service returns a list of all the field definitions of the PROTO
or EXTERNPROTO declaration. The definitions provide a limited form of the
SAIField value that has all the same services except the ability to read or write
the value of the field for a specific node instance.

6.9.4 checkloadState
parameters :
returns:
error s :

events :
buf fe red :

external:

SA! Proto Deel a ration
SAILoadState
SAI_ INVALID_ NODE
SAI_ INVALID_ URL
SAI_DISPOSED
None
No
No

The checkLoadstate service checks on the current load state of the EXTERNPROTO
definition. The state shall .be one of NOT _STARTED, IN_ PROGRESS, COMPLETE or
FAILED. If this is called on a PROTO, a SAI_INVALID_NODE error shall be
generated .

6.9.5 requestlmmediateload
par ameters:
retu rns :
e r r ors:

events:

buffered :
exter nal :

SAIProtoDeclaration
None
SAI_ INVALID_OPERATION_ TIMING
SAI_DISPOSED
None
No
No

If the SAIProtoDeclaration value represents an EXTERNPROTO, the
requestimmediateLoad service requests that the browser start immediate loading of
that definition. If the definition is already loaded or the load is already in
progress, this request shall be silently ignored .

• 6.10 Configuration services

6.10.1 Introduction

The services specified here allow an application to identify the configuration of the
current world .

An SAIComponentDeclaration value specifies a component declaration containing
the information specified by the COMPONENT statement as defined by 7.2.5.4

COMPONENT statement in ISO/IEC 19775-1 . The services defined are the
minimum required. An implementation may provide additional informational-only
services.

An SAIProfileDeclaration value specifies a profile declaration containing the
information specified by the PROFILE statement as defined by 7.2.5.3 PROFILE
statement in ISO/IEC 19775-1 and by the profile definition contained in the
annexes of ISO/IEC 19775-1. The services defined are the minimum required . An
implementation may provide additional informational-only services.

6.10.2 getComponentName
parameters:
returns :
errors:
events:
buffered:
external:

SAIComponentDeclaration
SAIString
None
None
No
No

The getcomponentName service returns the formal name of the specified component.

6.10.3 getComponentlevel

parameters:
returns:
errors:
events:
buffered:
external:

SAIComponentDeclaration
SAIString
None
None
No
No

The getcomponentLevel service returns the support level specified for the component.
When the SAIComponentDeclaration comes from the browser services, it shall
represent the maximum level supported by the browser. When it comes from the
scene services, the level represents the requested support level for that scene.

6.10.4 getProfileName
parameters:
returns:
errors:
events:
buffered:
external:

SAIProfi le Declaration
SAIString
None
None
No
No

The getProfileName service returns the formal n·ame of the specified profile.

6.10.5 getProfileComponents
parameters:
returns:
errors:
events:
buffered:

SAIProfileDeclaration
SAIComponentDeclaration(s)
None
None
No

external: No

The getProfilecomponents service returns a list of SAIComponentDeclaration instances
specifying the allowed support for each component of which the profile is
comprised.

6.10.6 getProviderName
parameters:
returns:
errors:
events:
buffered:
external:

SA!ProfileDeclaration
SA!String
None
None
No
No

The getProviderName service is an information-only service that returns an SAIString
value containing the name of the person or company that implemented this
profile.

6.10.7 getUnitCategory

parameters:
returns:
errors:

events:
buffered:
external:

SA!UnitDeclaration
SA!String
SAI_INVALID_OPERATION_TIMING
SAI_DISPOSED
None
No
No

The getunitcategory service returns the formal category of the specified unit
declaration.

6.10.8 getUnitConversion
parameters:

returns:
errors:

events:
buffered:
external:

SA!UnitDeclaration
SA!String
SAI_INVALID_OPERATION_TIMING
SAI_DISPOSED
None
No
No

The getunitconversion service returns the conversion factor of the specified unit
declaration.

6.10.9 getUnitName
parameters:
returns:
errors:

events:
buffered:
external:

SA!UnitDeclaration
SA!String
SAI_INVALID_OPERATION_TIMING
SAI_DISPOSED
None
No
No

The getunitName service returns the user-provided name of the specified unit
declaration.

• 6.11 Services provided by script content

6.11.1 Introduction

When an author provides the executable content of a script, certain conventions
shall be satisfied. This allows the browser to communicate status information
unambiguously regardless of the type of content language. This clause defines
services that are required to be defined by the individual language bindings in a
manner such that script content may be informed in a consistent, unambiguous
manner. Script content shall be required to run identically regardless of language
used to author the content. In contrast to the other services specifications, the
browser shall make these service requests of the user's code, and therefore the
user code shall provide implementations of these, where necessary. All services
are defined at the user's discretion and if the user does not define the service
implementation, the browser shall silently continue.

6.11.2 Creation phase

During the creation phase, the script content is downloaded and an instance of
the content created in the appropriate execution engine. Some content may
require separate interpreters, while others may be created in the same address
and execution space as the browser code (e.g., scripts created in the same
language in which the browser itself was written). Apart from the instantiation
process, which is language dependent, the browser shall not require any services.

6.11.3 Setup phase

During the setup phase, the browser provides the script with all of the run-time
information that it will be able to use in the system.

6.11.3.1 setBrowser

parameters:

returns:

errors:

events:
buffered:

external:

SAIBrowserRef
None
None
None
No
No

The setBrowser service passes to the script implementation code the the
SAIBrowserRef value to be used. There is no other way of acquiring the
SAIBrowserRef during the lifetime of the script, so if the user code needs to know
about it, it should store it now. This service shall be performed before any other
service requests are made. The browser may call this service at any time between
the creation phase and before the Initialize service request is made. The browser
is not required to request it during the initialization process as defined 4.4.8

Event model in ISO/IEC 19775-1 although that is time when the Browser
implementers are encouraged to request this service.

6.11.3.2 setfields

paramet ers :

r etur ns :
errors :
event s :
buffered:

exter nal:

parameters:

returns :
errors:
events:
buffe red :

external :

SAINode, SAIField(s)
None
None
None
No
No

None
None
None
None
No
No

The initialize script service provides notification to the script that all basic
initialization has been completed and that the user code is active in the scene
graph. At this point, the user code may access script field values and change the

state of the script. Jk or-i~,-.,t:J ~<. fv, ~ 1 J SVV)Q Is /tvi'\h ,J,~
1

6.11.4Realized phase t.J ~,clv 1> t:',,.,J, 0 ,J.,Jl".l ~v,v~I- o-id

6.11.4.1 prepareEvents st--J\ k >✓ ffor+tJ
par ameters : None
returns : None
er rors : None
events : None
buffer ed: No
exter nal: Yes

The pr epa r e Events service provides notification that the browser is about to start the
event cascade processing in accordance with step 4 of the event execution model
as described in 4.4.8.3 Execution model in ISO/IEC 19775-1. All values changed
during this call shall have the current time stamp, but events shall not be
immediately propagated upon return from the user code. This service request
shall be called every frame regardless of whether the containing node received
any events. If the containing node provides directOutputs, these shall be passed
immediately to the underlying nodes .

6.11.4.2 eventsProcessed

parameters:

returns:
errors:

events:

buffered:

external:

SAIBrowserRef
None
None
SAI_Browser_Shutdown
No
Yes

The eventsProcessed service provides notification that the current event cascade
processing has finished and that the containing node is now allowed to make
updates to the scene graph. This is useful for user code that wishes to be more
efficient and only generate new events after a collection of field changes are
received. Within a given frame, user code may have this service called more than
once. User code cannot guarantee that all changes to the containing node will be
received by this time and should take appropriate precautions. This service ·
request shall only be called after the containing node has received one or more
events in this timestamp. If the containing node has received no events in the
current timestamp it shall be an error for the browser to request this service.

6.11.5 Disposed phase

6.11.5.1 shutdown

parameters:

returns:
errors:

events:
buffered:
external:

None
None
None
SAI_Browser _Shutdown
No
Yes

The shutdown service provides notification that the user code has been disposed of
by the containing node. This may be due to the complete shutdown of the
browser, the loaded world changing or the containing node changing the user
code to another implementation. After this service request has been completed,
user code will no longer be functional or executed.

• 6.12 Matrix services

6.12.1 Introduction

Matrix objects represent the standard mathematic matrix capabilities using
double precision numbers and column-major order. All services here shall be
interpreted using standard mathematical definitions of matrices.

Implementations shall provide matrices that are 3x3 and 4x4. They may define
other orders of matrices. Implementations may also define additional convenience
services in addition to this minimum subset; for example, the ability to
individually access matrix elements. Implementations may allow direct access to
the individual row and column values of the matrix.

In the following service definitions, the parameters describe single precision
inputs. An implementation shall also provided overloaded definitions that include
double precision input.

6.12.2 set
parameters:

returns:
errors:

events:

buffered:

external:

SAIMatrix, SFVec3f, SFRotation, SFVec3f,
SFRotation, SFVec3f
None
None
None
No
No

The set matrix service sets the matrix to the new value calculated from the
parameters. The parameters are defined to represent, in order: translation,
rotation, scale, scaleOrientation, and center. If a value for a parameter is not
specified, the default value for that parameter shall be the default value for the
equivalent field of the Transform node defined in 10.4.4 Transform in ISO/IEC
19775-1.

6.12.3 get

parameters: SAIMatrix, SFVec3f, SFRotation, SFVec3f, SFRotation, SFVec3f
returns: None
errors: None
events: None
buffered: No
external: No

The get service computes and returns the transformation values from the matrix.
The parameters are defined to represent, in order: translation, rotation, scale,
scaleOrientation and center.

6.12.4 inverse
parameters:

returns:
errors:
events:

buffered:
external:

SAIMatrix
None
None
None
No
No

The inverse service calculates the inverse of this matrix in place.

6.12.5 transpose
parameters:

returns:

errors:
events:

buffered:
external:

SAIMatrix
None
None
None
No
No

The transpose service transposes this matrix in place.

6.12.6 multiply
parameters:

returns:

errors:

events:

buffered:

external:

SAIMatrix, SAIMatrix
None
None
None
No
No

The multiply service multiplies the first matrix by the second matrix instance
placing the result in the first matrix. Implementations shall define multiplication
operations in both directions: left and right.

6.12.7 multiplyWithVector

parameters:

returns:

errors:

events:

buffered:

external:

SAIMatrix, SFVec3f
SFVec3f
None
None
No
No

The multiplyWithVector service multiplies this matrix and a vector together.
Implementations shall define multiplication operations in both directions: left and
right.

~ -

'

Extensible 3D (X3D)
Part 2: Scene access interface (SAi)

7 Conformance and minimum support
requirements

---- ---·$ ·-

• 7 .1 Introduction and topics

7.1.1 Introduction

This clause defines the minimum required support for language bindings
conforming to this part of ISO/IEC 19775.

7.1.2 Topics

Table 7 .1 lists the topics for this clause.

Table 7.1 - Topics

• 7.1 Introduction and toRics

o 7 .1.1 Introduction

o 7.1.2 TORiCS

o 7 .1.3 Objectives

o 7 .1.4 SCORe

• 7.2 Conformance

o 7.2.1 Conformance to this Rart of ISO/IEC 19775

o 7 .2.2 Language Binding~

• 7.3 Minimum SURROrt reguirements

o 7.3.1 Reguirements for imRlementations

o 7.3.2 SURROrting internal and external interactions

o 7.3.3 Level 1

o 7.3.4 Level 2

o 7.3.5 Level 3

• Table 7.1 - TORiCS

• Table 7 .2 - SRecifications for SAi data ttRe imRlementations

• Table 7 .3 - SRecifications for SAi browser imRlementations

• Table 7.4 - SRecifications for SAi general services

• Table 7 .5 - SRecifications for SAI scriRt content interaction •

• Table 7 .6 - SRecifications for SAI utilitY. services

7.1.3 Objectives

This clause addresses conformance of X3D browsers that provide a scene
~interface (SAI). "

The primary objectives of the specifications in this clause are: A JJ CtJ~
a. to promote interoperability by eliminating arbitrary subsets of ISO/IEC

19775;

b. to promote extensibility within a well-defined environment;
c. to promote uniformity in the development of conformance tests;
d. to promote consistent results across X3D browsers;
e. to facilitate automated test generation.

7.1.4 Scope

Conformance is defined for language bindings to this specification and therefore
X3D Browsers and applications that use the facilities provided by the Scene
Authoring Interface language-specific bindings as specified in ISO/I EC 19777.

Due to the abstract nature of this specification, it is not possible to specify the
conformance tests of individual language bindings of the specification. Separate
Conformance sections shall be provided within each language binding that provide
the necessary information to implement language-specific binding conformance
tests.

A concept of base profile conformance is defined to ensure interoperability of X3D
applications and X3D browsers. Base profile conformance is based on a set of
limits and minimal requirements. Base profile conformance is intended to provide
a functional level of reasonable utility for X3D language bindings while limiting the
complexity and resource requirements of X3D browsers. Base profile conformance
may not be adequate for all uses of the SAL

• 7 .2 Conformance

7.2.1 Conformance to this part of ISO/IEC 19775

A X3D browser is only conformant to this part of ISO/IEC 19775 if it also
conformant to the current profile as specified in ISO/IEC 19775-1. In addition,
the following conditions shall be met:

a. Requests of the Browser services shall conform exactly to the behaviour as
specified in this part of ISO/IEC 19775.

b. Where a browser is required to read and parse X3D content, it shall be able
to handle any X3D file that conforms to the profile being supported as

defined in ISO/IEC 19775-1 or separate specification for such profiles.
c. Only nodes in the top level world (the file defined by the getworldURL service)

that are named with the DEF construct shall be visible to the getNode browser
service request.

d. There shall be no difference in treatment of events that result from an
external service request compared to events generated within the X3D
browser environment. That is, externally generated event cascades shall
have no favoured treatment.

7.2.2 Language bindings

A language binding to this part of ISO/IEC 19775 is conforming if:

a. It implements the services defined in this specification including return
values, error conditions and asynchronous events.

b. The services implemented conform to the required functionality for the
subject profile.

c. It provides sections outlining conformance and minimum requirements of
implementations of that binding.

• 7.3 Minimum Requirements

7 .3.1 Requirements for implementations

All profiles supporting the authoring component shall support the Level 1
functionality as defined in this section. There are two levels of conformance, that
of the language binding and the browser implementation. ()

.-1\o,.&,\oft ... ~c~., ~ "'- 11-ULU c~tJ ¥-er-
A language binding shall at a minimum implement the services required for the
profile to be supported. It may also define its own optional set of minimum
requirements that are no less than the requirements of this section. A browser
implementation shall, in addition to the base support for the subject profile, also
support the minimum capabilities defined for the subject profile. In general, the
browser requirements are spe~ified as genw al re~ irements that deal ~ t~--

1
L ./;

specific langua~ issues. lit.. ,s k"'J o-¥ t.t,J'ht.N-\~c.t 19 5'"~ ~r r- ft
a." ii e.J' • d'-~ N-C.~ S'iv-t ~ + ~ o ck.J' cwd oJ .rt, ~~, 1'91'1"\ td'11 c. tJ.f'tN J., cAI ,, r'

Where a browser implements two or more language bindings with different levels)(8{)
of minimum requirements, the browser shall support the minimum requirements,i~
for each language separately. Therefore, if one language has higher requirements,
the lower requirements of the other shall not be used.

7 .3.2 Supporting internal and external interactions

Although external interactions use a superset of the services defined for internal
interactions, language bindings to the abstract specification are not required to
implement both. They may choose one or the other or both. (It is strongly
recommended that a binding support both.)

A conformant browser implementation is not required to provide both internal and
external implementations of a given language binding. It shall be possible for a

•
browser to support internal interactions only with language A and external
interactions only with language B. In addition, the browser may choose to support
only internal interactions or only external interactions. There is no requirement to
support both internal and external interactions.

7 .3.3 Level 1

Table 7 .2 through Table 7 .6 define the minimum requirements for a base profile.
The first column specifies the item for which conformance is being defined. These
refer to the services as defined by this specification. The second column specifies
the requirements for a language binding specification of that item. The third
column specifies the requirements of a browser implementation of that service.
SAI implementations shall throw an SAIError (such as SAI_NOT _SUPPORTED) if a
capability is not supported.

For all these requirements, it shall be assumed that the language binding shall
provide complete implementation of all the parameters required for the individual
services. Language bindings of data types may be implemented as primitive types
in the target language rather than as separate data types. Table 7.2 through
Table 7 .6 indicate where this is permitted.

A browser conformant to this level shall support bindings to the X3DNode and
X3DMetadataObject abstract representations along with all field types.

Table 7 .2 - Specifications for SAi data type implementations

Item Binding support
Minimum browser

support
~

Full support as required by
SAIAction the individual service As defined by the language

request

SAIBoolean Full Support Full Support

Full Support if Optional
" createBrowser supported . (based on

SAIBrowserApp '
;

Not required if only gE=tBrowser/ createBrowser
getBrowser supported. requirements)

SAIBrowserName Primitive Type Full Support

SAIBrowserRef Full Support Full Support

SAIBrowserVersion Primitive type Full Support

SAIComponentDeclaration
Primitive type describing at

Full Support
least name and level

SAIComponent Primitive type Full Support

SAIEncoding Specifies the type of Full Support

encoding.

I SAIExecutionContext Provides access to a
Full Support

subscene.

Separate data types for the
SAIFieldAccess four types defined by Full Support

ISO/IEC 19775-1.

Provide information on
SA!FieldDeclaration access type, data type and Full Support

name

SA!Field Full Support Full Support

SAIFieldName Primitive type Full Support

Separate data types for all

SAIFieldType types defined in 5 Field
Full Support

type reference of ISO/IEC
19775-1.

Primitive type as
appropriate to the given Number of values for setting and

SAIFieldValue
field. getting as defined in the
Where field is an applicable profile as defined in
SF/MFNode shall be ISO/IEC 19775-1.
SAINodeID

SA!FrameRate Primitive Type Full Support

SA!Layer!D Primitive Type Full Support if the Layering
component is supported.

SAILoadState Primitive Type Full Support

SAi Matrix Primitive Type Full Support

SA!NavSpeed Primitive Type Full Support

SA!Node Full Support Full Support

SAIN ode Type Primitive type
SA!String representation of the
node name

SA!Parameterlist
As required by langauge Dependent on language and
and service definition. browser implementation

Description of at least
SA!ProfileDeclaration name and components Full Support

used in the profile

SA!Propertylist Primitive type
5 key-value pairs. Values
dependent on language bindings

SAi Proto Deciaration Full Support n/a •

SAIRequester Full Support Full Support

SAIRoute Full Support Full Support

SAIScene Full Support Full Support

SAIScript Full Support Full Support

SAIScriptimplementation Full Support Full Support

SAIStream Full Support Full Support

SAIString Full Support Full Support

SAIUnitDeclaration Full Support
One entry for each type of unit
category.

As specified in the applicable
SAIURL Both URL and URN support profile defined in ISO/IEC 19775-

1 for all url fields

Separate types for each

SAIError error condition that may Generate error conditions as
occur as defined in 5.3 appropriate
Error Tv.12es.

Table 7 .3 - Specifications for SAI browser implementations

Binding Minimum Minimum external Item internal support
support

support

Establishing a connection

At least one method of
At least one of connection with a browser

getBrowser, getBrowser or shall be provided.

create Browser create Browser N/A Unsupported connection
services shall be methods shall throw an
provided. error.

Ignore SAIParameterList

Browser services

getName Shall provide
Return NULL if Return NULL if not
not supported supported

getVersion Shall provide
Return NULL if Return NULL if not
not supported. supported

getCurrentSpeed Shall provide Return 0.0 if Return 0 .0 if not supported

not supported

getCu rrentFrameRate Shall provide
Return 0.0 if

Return 0.0 if not supported
not supported

getSupportedProfiles Shall provide Full Support Full Support

getProfile Shall provide Full Support Full Support

getSupportedComponents Shall provide Full Support Full Support

getExecutionContext Shall provide Full Support Full Support

create Scene Shall provide
Support creating scenes for the same profiles
and components as used by data encodings.

replaceWorld Full support Full support Full support

importDocument Shall provide Return NULL if Return NULL if not
not supported supported

Full support.
Ignore Full support. Ignore

loadURL Shall provide SAIPropertyList SAIPropertyList parameter
parameter values.
values.

setDescription Shall provide No restriction No restriction

Support File Limits as specified in the
createX3DFromString Shall provide applicable profile defined in ISO/IEC 19775-

1.

Provision
dependent of

Support File Limits as specified in the
createX3DFromStream

language
applicable profile as defined in ISO/IEC

capabilities for 19775-1.
creating raw 1/0
streams

Support File Limits as specified in the
createX3DFromURL Shall provide applicable profile as defined in ISO/IEC

19775-1.

SAIActions of

updateControl start buffering N/A Full support
and end
buffering

SAIActions of
Events for initialization, shutdown, invalid

registerBrowserlnterest add and remove URLs and connection lost.
interest.

getRenderingProperties Shall provide No restrictions No restrictions

getBrowserProperties Shall provide
0

No restrictions No restrictions

setBrowserOptions Shall provide No restrictions No restrictions

changeViewpoint Shall provide No restrictions No restrictions

print/println Shall provide No restrictions No restrictions

dispose Shall provide No restrictions No restrictions

Table 7 .4 - Specifications for SAi general services

Item Binding Support Minimum Browser
Support

Execution context services

getSpecificationVersion Full Support Full Support

getEncoding Shall provide Full Support

getProfile SAIProfileDeclaration Full support.

getComponents SAIComponentDeclarations Full Support

getUnits SAIUnitDeclarations Full Support

getWorldURL Shall provide Full Support

getNode Full Support Full Support

create Node Full Support Full Support

create Proto Full Support Full Support

namedNodeHandling SAIActions of add and
Full support.

delete nodes and imports

getProtoDeclaration Shall provide Full Support

protoDeclarationHandling SAIActions of add and
Full Support

delete PROTO

getExternProtoDeclaration Full Support Full Support

externprotoDecla ration Hand Ii ng SAIActions of add and
Full support.

delete EXTERNPROTO

getRootNodes Shall provide Full Support

getRoutes Shall provide Full Support

dynamicRouteHandling SAIActions of add and Full support.

'

I
delete route

dispose Shall provide No restrictions

Scene services

getMeta Data Shall provide Full Support

setMetaData Shall provide Full Support

namedNodeHandling SAIActions of add and
Full support

delete exports

rootNodeHandling SAIActions of add and
Fu 11 support

delete nodes

Node services

getTypeName Shall provide Full support

getType Shall provide no restrictions

All fields shall be accesible
dependent on access rules

getField Full Support for internal and external
interactions and node
lifecycle ..

getFieldDefinitions Full Support Full Support

dispose Shall provide No restrictions

Field services

dispose Full support Full support

getAccessType Shall provide Full support

getType see SAIFieldType Full support

getName Full Support Field name without set_ or
_changed modifiers

getValue getl Value not required Full Support

Full Support. Where fields
are MF fields, minimum

setValue setl Value not required number of values to be
supported as specified in the
applicable profile defined in
ISOL!EC 19775-1.

registerFieldlnterest SAIActions of add and As per supported langauge
remove interest binding(s).

outputOnly and the output '
side of inputOutput fields
shall be supported

Route services

dispose Full support Full support

getSourceNode Full support Full Support

getSourceField Full support Full Support

getDestinationNode Full support Full Support

getDestinationField Full support Full Support

Prototype services

isExternProto Full support Full Support

createlnstance Full support Full Support

getFieldDefintions Full support Full Support

checkloadState Full support Full Support

requestlmmediateload Full support Full Support

Configuration services

getComponentName Full support Full Support

getComponentlevel Full support Full Support

getProfileName Full support Full Support

getProfileComponents Full support Full Support

getProviderName Full support Full Support

getUnitCategory Full support Full Support

getUnitConversion Full support Full Support

getUnitName Full support Full Support

Table 7 .5 - Specifications for SAI script content interaction

Item Binding support Minimum browser support

setBrowser Full support Full Support

setFields Full support Full Support

initialize Full support Full Support

pre pa re Events Full support Full Support

events Processed Full support Full Support

shutdown Full support Full Support

Table 7 .6 - Specifications for SAI utility services

Item Binding support Minimum browser support

Matrix At least 3x3 and 4x4 sizes Full Support

7 .3.4 Level 2

A browser conformant to Level 2 shall support everything in Level 1 and shall
support all abstract node types derived from X3DNode for the components
implemented in the browser. The browser shall also support all additional objects
that may be introduced by the implementation.

7 .3.5 Level 3

A browser conformant to Level 3 shall support all of the requirements of Level 2
and also support binding specific interfaces for each concrete node
representation .

Extensible 3D (X3D)
Part 2: Scene access interface (SAI)

Annex A

(informative)

VRML scripting backwards compatibility

$ -

A.1 Introduction and topics

A.1.1 Introduction

This annex provides a detailed description of how an X3D compliant application
may provide support for backwards compatibility for scripting code originally
designed and implemented for ISOIIEC 14772-1 Virtual Reality Modeling
Language (VRML) Functional specification and UTF-8 encoding. It is provided for
backwards-compatibility purposes only and shall not be required for any browser
to implement if they do not conform to part 1 of ISO/IEC 14772.

The VRML event and scripting model had a number of flaws and incompatibilities
even between languages. It is strongly recommended that this annex not be
implemented by browsers that do not claim to support ISO/IEC 14772-1 in
addition to ISO/IEC 19775-1.

A.1.2 Topics

Table A. l lists the topics for this annex.

Table A.1 - Topics

• A.1 Introduction and to12ics

o A.1.1 Introduction

o A.1.2 To12ics

• A.2 Conce12ts

o A.2.1 Introduction

• A.2.1.1 Reguirements for backwards com12atibilitY-

• A.2.1.2 Differences between VRML and X3D

o A.2.2 Behaviour for unsUQRorted scriRting

o A.2.3 Behaviour on encountering exRosedFields

• A.3 ECMAScriRt language binding

o A.3.1 Reguirements

o A.3 .2 Determination of reguired SRecification

o A.3.3 SUQROrted scriRt URLs

• A.3.3.1 Inline scriRt definition

• A.3.3.2 MIME ty_Res

• A.4 Java language binding

o A.4.1 Reguirements

o A.4.2 Determination of reguired SRecification

• Table A. l - TORiCS

A.2 Concepts

A.2.1 Introduction

A.2.1.1 Requirements for backwards compatibility

'" .

This annex specifies the requirements for browsers that wish to conform to this
specification and also support the ability to run scripts written for the
programmatic interfaces and event model semantics defined in ISO/IEC 14772-1,
within an X3D environment. That is, the URL in the Script node specified in 29.4.1
Script in ISO/IEC 19775-1 defines content that uses one of the interfaces defined
in this part of ISO/IEC 19775.

A browser shall not be conformant to this specification if it only supports scripting
interface defined in ISO/IEC 14772-1. A conformant browser to this Annex shall
also support the full requirements of this part of ISO/IEC 19775 including all
required language bindings.

A.2.1.2 Differences between VRML and X3D

The main difference between 1S0/IEC 14772-1 and this part of ISO/IEC 19775 is
the definition of the event model. ISO/IEC 14772-1 leaves many decisions up to
the browser implementer and therefore a lot of Script node content can be
incompatible. The major issue is dealing with the way scene graph changes are
propagated when the user code writes to the field . In the Java language annex
values need to be delivered immediately, yet the ECMAScript language annex said
they are to be deferred until the user code has exited execution. Such
incompatibilities mean supporting direct backwards compatibility is an optional
only feature.

A.2.2 Behaviour for unsupported scripting

' .
Determination of the supported script capabilities shall follow the rules specified
in 9 Networking Component in ISO/IEC 19775-1. The browser shall attempt to
load the URis in the required order, determining whether an individual script file is
supported. Rejection of unsupported script types shall be based on the rules
defined in the corresponding annexes of ISO/IEC 14772-2. A browser shall not
preferentially support one specification over another beyond the preference order
defined by the script node definition. For example, if the user content defines a
ISO/IEC 14772-1 conformant script code in the url field before a ISO/IEC 19775-
1 conformant script code, and the browser implementation supports backwards
compatibility in a language as defined in this Annex, then the ISO/IEC 14772-1
script shall be executed.

When user content defines internal interaction code that includes ISO/IEC 14772-
1 -conformant scripts and the browser implementation does not support
backwards compatibility, or does not support backwards compatibility in that
language, the browser shall ignore that script and move to the next item in the
url listings. This is the same behaviour as not being able to locate a file or the
code is not in a language supported by the browser.

A.2.3 Behaviour on encountering exposedFields

ISO/IEC 14772-1 does not permit the use of read and write fields (i.e .,
exposedFields) . The use of such fields is permitted in this part of ISO/IEC 19775 .
It is possible, though a highly discouraged practice, to define a scripting node
with an exposedField and define the user code conformant to ISO/IEC 14772-1.

In this situation, the browser shall treat the exposedField as a separate set of
eventin, eventOut and field objects. When the exposedField is written from the
event model, the user code shall be notified like a normal eventin notification.
After this point, the rules for reading and writing the value of the exposedField
semantics defined in 4.8.3.8 inRutOutRut fields and the containing node shall be
followed.

A.3 ECMAScript language binding

A.3.1 Requirements

If a browser intends to support ISO/IEC 14772 backwards compatibility for the
ECMAScript language in the script node, it shall do so in conformance with Annex
C ECMAScript language binding in ISO/IEC 14772-1.

A.3.2 Determination of required specification

A browser shall determine which version of the specification is supported through
the use of the protocol definition or MIME type given with the external file. No
other indicators shalT be used. ©

A.3.3 Supported script URLs

A.3.3.1 Inline script definition
,,. .

Browsers supporting the ECMAScript backwards compatibility shall support the
use of inlined script nodes through the use of the customized protocol definition
javascript. The support specified in 7 Conformance and minimum support
requirements in ISO/IEC 14772-1 is required in addition to the other required
protocols for the ECMAScript specification as specified in Annex C ECMAScript
scripting reference in ISO/IEC 14772-1. An example of the inlined script definition
is:

Script {
url "javascript: function foo() { . . . }"

}

The url field may contain multiple URL's referencing either a remote file or in-line
code as shown in the following example:

Script {
url [

}

"http: //foo .com/myScript. js",
"javascript: function foo() { . . . }"

•
The use of the javascript" protocol shall require the browser to support the objects
and semantics defined in the Annex A specification. It shall be an error for a
browser that conforms to this part of ISO/IEC 19775 to support the javascript
protocol with script content that uses Objects defined in Annex A of this part of
ISO/IEC 19775.

The use of the ecmascript: protocol shall indicate the script conforms to Annex A
of this part of ISO/IEC 19775. A browser shall not provide ISO/IEC 14772-1-
defined objects to a script that uses the ecmascript: protocol.

A.3.3.2 MIME types

The MIME type for ISO/IEC 14772-1 ECMAScript source code is defined as
follows:

application/javascript

For backwards compatibility with old web servers, it is recommended browsers
also support the following mime type:

application/x- javascript

The use of the application/ecmascript or application/x-ecmascript MIME types shall
indicate the script conforms to Annex A of this specification. A browser shall not
provide VRML-defined objects to a script that uses these MIME types.

A.4 Java language binding

A.4.1 Requirements

~ -

' ' If a browser intends to support 1S0/IEC 14772-1 backwards compatibility for the
Java language in the script node, they shall do so in conformance with Annex B
Java platform scripting reference in ISO/IEC 14772-1.

A.4.2 Determination ~f required specifi_::j-n ½Jl
'>1 N U. ._ r'\, t. e,ko.,..1 a.J" "'\ IS ~ t!t t' g (! ~ 1 "j /
A5 it is i11 ,possmle to predetermine which set of classes and interfaces a Java
class file implements through the use of the URL protocol or MIME type, a
browser shall determine which version of the specification is supported by
examining the base class or interfaces implemented by the user code.
Determination of this may be made through the language introspection
capabilities or using the instanceof operator.

A Java script that claims to support 1S0/IEC 14772-1 shall extend the base class
vrml.node . Script. If a script class file extends the ISO/IEC 14772-1 base class and
implements the org. web3d. x3d. sai.X3DScriptimplementation interface then the browser
shall use the X3D SAi semantics and execution and is not required to support
ISO/IEC 14772-1 or objects that conform to ISO/IEC 14772-1. It is recommended
that a browser issue a warning when it detects such a situation.

$ -

