

nefarious activities. Such activities may include virus-like modification of the

— — user's compute;.kor denial of service activitiesﬁor any other activity deemed a

—_ security risk an_thﬁd-ay ’

4.8.4 External interactions
4.8.4.1 Permitted interactions

L
User code that is interacting with a"browser from an external perspective is QFLN’L
considered to hgve, complete control over the entire lifecycle e scene
— graph batatss th&BFowser. External interactions therefore have the full range of
control over the browser.

Because an application is consider to be external to the browser, it does not have

Dvee X intimmate knowledge of T internal state and therefore when actions may or ma
not be safe to make. Therefore, the external interactions are defined-te-be in an
advisory capacity. An external interaction requests the browser make changes
and then the browser shall decide exactly when it it safe to act on those requests.
A browser shall honour all requests made, within the bounds of the individual

services guideling outlined below. PN
T

An exte&ngibapplication may glso wish to monitor changes in nodes, fields and

— even thé& Browser itself. Th&browser shall inform the external application of the
changes, but shall do so in an asynchronous way. That is, any updates are . J.)._
considered to be notifications only, and shall not the browser's internal 3
evaluations. The result is that notifications may make it to the external
application with some delay from when they happened within the browser.

—_— %

EXAMPLE Delays may occur for data transfer between an external application sitting on a remote
computer and a browser, due to transmission lags throughout the system.

323 D

4.8.4.2ﬂBrowser interactions

33D Browser interactions for external interactions include all the basic services
provided to intec{‘gnal interactions. et is @ number of additional
interactions areﬁaﬁrowed. A single external application is permitted to interact with

“ more than ong browser at a time. It may also instruct multip '}T)rowsers toact PXed
3D ‘-‘fegéfﬁEr_eTéEEsingle entity or to work individually. The lifetime of the external
application is independent of the%rowser.

4.8.4.3 Updating the scene graph
AL I e ’\\?J ?Eﬂr;\

A characteristic of external applications is that they y make a t@f changesin 9
bursts to the X3D browser. It is also possible that a single browser may have a
number of applications connected to it, all making requests of the browser.
Sere. K31
) 3 Events can be batched to aid in performance of the application (see 6.3.19
M&‘b
|

updateControl). The i provided by this is a simple gate mechanism to
hold all requests (Beginupdate){to update the currently loaded world until the gate is
released (endupdate).
() ,.,ﬂ—\/“\ ’.ﬂ/qs c\'[’(‘éﬂ-d\ﬂ .EAJQ%LQ/ co\znu-e-»)'i: /\
-u/\éa.Ere.J‘ o caned ? Phoc Yo Tha A

Lo bz IFend) aladin § CrNe e Ncaf‘“"-ly{?j

Parameters are listed by data type and are shown separated by a comma (,) and
a space. A parameter shown in square brackets [] indicates a single optional
value of the data type specified within the brackets. The "[Js" symbology, square
brackets followed by the "s" character, indicates multiple optional parameters of
that type are allowed. For example, [SAIURL]s indicates that multiple instances of
the data type SAIURL may be provided while [SAIURL] indicates that only a single
SAIURL instance may be provided.

All characteristics defined for every service shall be implemented for each orts erm“
language binding. At the end of eact¥table, explanatory text includes efdra '~
information pertinent to the implementation of that service. o@t?i-h Md

6.2 Establishing a connection

6.2.1 Introduction
The following services can be used to establish a session and obtain a browser

reference, Individual browser implementations may support one or both of these
methods. At |least one service shall be supported.

6.2.2 getBrowser

parameters: SAlParameterList

returns;: SAIBrowserRef

errors: SAI BROWSER_UNAVAILABLE
events: none '

buffered: N/A

The getsBrowser service returns a reference to an instance of an X3D browser
through which other service requests may be processed.

This is a blocking call. No further requests from this external application will be
processed until an SAIBrowser value has been generated (which may include the
need to start a new instance of an X3D browser) or an error condition is
generated.

If an application makes a request for the same browser twice in the same session
then the same browser identifier shall be returned.

An implementation may define more than one variant of this service with different
parameter types. For example there may be alternate forms to access a browser
embedded in a HTML page and one for remote access from another machine
within the same language binding.

Additional error types may be added by individuai language bindings to deal with
p[atform;speciﬁc issues,

6.2.3 createBrowser

parameters: SAlParameterList, SAIPropertyList
returns: SAIBrowserApp
errors: SAI_BROWSER_UNAVAILABLE

No
external! No

The getsupportedprofiles service returns the list of all profiles that are supported by
this browser. All browsers shall support at least one profile. It shall be an error if
the browser returns a declaration for a profile that it does not fully support.

6.3.7 getProfile

parameters: SAlBrowserRef, SAIString

returns: SAlProfileDeclaration

errors: SAI_DISPOSED
SAI_NOT_SUPPORTED

events: None

buffered: No

external: No

The getprofile service returns the declaration of the named profile. The value of
the SAIString parameter is the name of a profile from which to fetch the
declaration and shall conform exactly to the name specified in ISO/IEC 19775-1.
It shall be an error if a name with the wrong case, incorrect spelling, or anything
other than an exact match is provided. The browser is only required to return an
SAIProfileDeclaration value if it supports the named profile. If it does not support
the named profile, SAI_NOT_SUPPORTED shall be generated.

6.3.8 getSupportedComponents

parameters: SAIBrowserRef - 3
returns: SAIComponentDeclaration [SAIComponentDeclaration]s BU Pl\c:?ﬂ*’t— :
errors: SAT_DISPOSED

events: None

buffered: No

external! No

The getsupportedcomponents service returns a list of all components that are supported
by this browser. All browsers shall support at least one component, as required to
support profiles.

6.3.9 getComponent

parameters: SAlBrowserRef, SAIComponent

returns: SAICompaenentDeclaration

errors: SAI_DISPOSED
SAI_NOT_SUPPORTED

events: None

buffered: No

external: No

The getcomponent service returns the declaration of the named component. The
value of the SAIComponent parameter is the name of a component and level from
which to fetch the declaration and shall conform exactly to the naming
conventions used in the file format. It shall be an error if the user provides a
name with the wrong case, incorrect spelling or anything other than an exact

returns: SAIScene

errors: SAI_INVALID_X3D
SAI_INVALID_OPERATION_TIMING
SAI_DISPOSED
SAI_NOT_SUPPORTED

events: None
buffered: No
external; No

The createx3oFromstring service creates nodes from a string. The string shall contain
valid X3D syntax; otherwise an error is generated. If any relative URLs are
encountered in this string, the base is assumed to be the current browser
location. The string is not required to contain the X3D file header. If it is present,
it shall be treated as an indicator to the version of X3D contained. If absent, the
default version assumed shall be that specified in 7.2.5.2 Header statement in

ISO/IEC 19775-1. A browser is not required to support any versions prior to
ISO/IEC 19775.

If the string contains legal X3D statements but does not contain any node
instances, a valid SAIScene value shall still be returned containing no root nodes,
but with the appropriate declaration identifiers. For example the string may
contain EXTERNPROTO declarations but no instances of any node. If the SAIString
provides the content in an encoding format that the browser implementation does
not support, the browser shall generate an SAI_NOT_SUPPORTED error.

6.3.17 createX3DFromStream

parameters: SAIBrowserRef, SAIStream
returns: SAIScene
errors: SAI_INVALID_X3D

SAI_INVALID_OPERATION_TIMING
SAI_DISPOSED
SAI_NOT_SUPPORTED

events: None
buffered: No
external: No

The createxapFromstream Service creates nodes from an arbitrary, user-provided
stream of input data. The stream shall contain valid X3D syntax from the first
character; otherwise, an error is generated. If any relative URLs are encountered
in this string, the base is assumed to be the current browser location. The stream
is required to include the X3D File Header in accordance with the encoding
requirements for the format.

If the string contains legal X3D statements but does not contain any node
instances, a valid SAIScene value shall still be returned containing no root nodes,
but with the appropriate declaration identifiers. For example, the string may
contain EXTERNPROTO declarations but no instances of any node. If the stream
identified by SAIStream provides the content in an encoding format that the
browser implementation does not support, the browser shall generate an
SAI_NOT_SUPPORTED error.

6.3.18 createX3DFromURL

parameters: SAIBrowserRef, SAIURL [SAIURL]s

returns: SAIScene

errors: SAI_INVALID_URL
SAI_INVALID_OPERATION_TIMING
SAI_DISPOSED

events: SAIL_Browser_URL_Error
buffered: No
external: No

The createx3prromurL S€rvice creates nodes from the contents of the file represented
by the URL. The URL may be a relative URL which is considered to be using the
browser location as the base document. The scene described by that URL shall be
identified by the returned SAIScene value.

6.3.19 updateControl

parameters: SAIBrowserRef, SAIAction
returns: None

errors: SAI DISPOSED

events: None

buffered: N/A

external: Yes

The updatecontrol specifies the manner in which buffered updates are processed.

The SAIAction parameter specifies the actions that may be applied against the
buffer. Other actions may be added, such as to query the number of items, or the
state of the buffer and are implementation dependent. Table 6.3 defines the
actions specified in this part of ISO/IEC 19775.

Table 6.3 — updateControl SAIAction values

Service Action Type

BeginUpdate

updateControl

EndUpdate

The timestamp of events generated at the call to endupdate are implementation
dependent but should be consistent with the time within the current world. That
is, timestamps cannot be in the "past" relative to the other current events
generated internally with event model at the time when they are generated.

BeginUpdate and Endupdate are not nesting calls. Once seginupdate has been called, it
may be called any number of times, but only a single endupdate call is needed to
release the buffered events into the scene graph. A call o endupdate without a
previous matching seginupdate has no effect.

6.3.20 registerBrowserlInterest

parameters: SAlBrowserRef, SAIAction, SAIRequester
returns: None

errors: SAI_INVALID_OPERATION_TIMING

Property Value | Description
Name data
type

Shading String The type of shading algorithm in use, Typical values are Flat,
Gouraud, Phong, Wireframe.

MaxTextureSize | String The maximum texture size supported. The format shall be
WIDTHXHEIGHT describing the number of pixels in each
direction (for example 1024x1024}.

TextureUnits Integer } The number of texture units supported for deing multitexture.

AntiAliased Boolean | True or false if the rendering is currently anti-aliased or not

ColorDepth Integer | The number of bits of colour depth supported by the screen.
Allows for optimized selection of textures, particularly for lower
colour depth screen capabilities.

TextureMemory | Float The amount of memory in megabytes available for textures to
be placed on the video card.

The user shall not be able to directly effect the rendering properties of the
browser by modifying the properties returned by this service.

6.3.22 getBrowserProperties

parameters: SAlBrowserRef

returns: SAIPropertylList

errors: SAI_INVALID_OPERATION_TIMING
SAI_DISPOSED

events: None

buffered: No

external: No

The getBrowserproperties service is used to query for the capabilities of the browser
reference itself, This gives a list of the expanded interfaces that this browser
reference is capable of supporting. For example it may be used to query for the
existence of browser implementation-specific extensions to the defined browser
class or future extensions as provided by this specification.

Table 6.6 defines some standard property names that are reserved by part of
ISO/IEC 19775. Where a browser implementer chooses to add additional
capabilities, the naming convention of these additional properties shall follow the
guidelines defined in 4.1.3 Conventions used in part 1 of of ISO/IEC 19775 (see
2.[119775-11]).

Table 6.6 — Standard properties describing extension capabilities

! ;
Property Name | Value Description

CLASSIC_VRML_ENCODING

Boolean | The browser supports the
Classic VRML enceding.

The browser supports the

COMPRESSED_BINARY _ENCODING | Boolean . . .
binary file format encoding.
6.3.23 changeViewpoint
parameters: SAIBrowserRef, SAIAction, SAlLayerID
returns: None
errors; SAI_INVALID_ OPERATION_TIMING
SAI DISPOSED
events: None
buffered: Yeg
external; No

The changeviewpoint service changes the currently bound X3DViewpointNode

instance on the specified Layer to the instance defined by the action. Valid action
types are previous, next, first and last. If a layer ID is not specified, the current
activeLayer is used. When the viewpoint is changed using this service request,

the browser shall first unbind the current instance and then bind the new

instance. That is, the number of items on the bindable stack bindable nodes shall
not increase as a result of making this service request. Table 6.7 defines the

actions specified in this part of ISO/IEC 19775.

Table 6.7 — changeViewpoint SAIAction values

Service

Action Type

changeViewpoint

Next

Previous

First

Last

This service request implies that there is a standard, well-known ordering of the

X3DViewpointNode instances so that consistent visual behaviour shall be
observed. The order shall be based on the following rules:

1. The order is declared in the originally parsed file or stream, including
resolution of PROTO instances, but not including EXTERNPROTO or

X3DInlineNode instances.

2. Dynamically created node instances are always appended.

3. Instances located in X3DInlineNode instances and EXTERNPROTO instances
shall be in the order in which the external scene is resolved, and appended
to the list. The inclusion of these external instances is also dependent on the

browser property EnableinlineViewpoints.

An invalid SAILayerID shall result in the operation being ignored. Requests for
SAllLayerID values less than zero or greater than or equal to the number of
defined layers are considered invalid and shall cause error
SAT_INVALID_OPERATION_TIMING to be issued.

If the world only contains the default X3DViewpointNode instance, this request
has no effect on the visual output.

6.3.24 print/printin

parameters: SAlBrowserRef, SAIString
returns: None

errors: None

events: SAI_DISPOSED

buffered: No

external: No

The print service prints a message to the browser's console. The language-specific
bindings may provide overloaded variations on this service that do not take an
SAIString value, but take other data types. Other variants may include the ability
to automatically add linefeed/newline characters without the need to explicitly
declare them in the SAIString value. A binding shall provide at least the base
SAIString variant (print) and a variant that appends linefeed/newline characters
(printin).

User code may call this service at any time, without restriction, unless the
browser reference has been disposed of,

6.3.25 dispose

parameters: SAIBrowserRef

returns: None

errors: SAI_INVALID_OPERATION_TIMING
events: SAI_B_Shutdown

buffered: No

external: Yes

The dispose service indicates that the client is about to exit this session and the
browser is free to dispose of any resources that this client may have consumed.
An SAI_Browser_Shutdown event is sent only to this client and may be generated
internally by the language implementation on the client machine (that is, it is not
required that the browser itself generate this event, just that the event is
generated). If any events have been held because eeginupdate has been called,
disposing of the browser shall also call endupdate to release those events to the
browser for final processing.

6.3.26 setBrowserOption

parameters: SAIBrowserRef, SAIString, SAIObject
returns: SAlBoolean

errors: SAI_INVALID_ _OPERATION_TIMING
events: None

buffered: No

6. BIFS: For MPEG-4 BIFS-encoded format specified in ISQ/IEC 14496-1.

6.4.3 getProfile

parameters: SAlExecutionContext

returns: SAIProfileDeclaration

errors: SAI_INVALID_OQPERATION_TIMING
SAI_DISPOSED

events: None

buffered: No

external: No

The getprofile service returns the profile that is used to describe this scene. If the
specification version is for a specification version prior to X3D, the profile shall be
VRML. If no profile is provided, this shall return nuLL.

6.4.4 getComponents

parameters: SAlIExecutionContext

returns: [SAIComponentDeclaration]s

errors: SAIL_INVALID_OPERATION_TIMING
SAI_DISPOSED

events: None

buffered: No

external: No

The getcomponents service returns the component(s) used to describe the scene. The
list returned shall represent only explicit component declarations and not the
implied components from the profile declaration. If no component definitions are
set, nuLL shall be returned.

6.4.5 getUnits

parameters: SAlExecutionContext

returns: [SAIUnitDeclaration]s

errors: SAI_INVALID_QOPERATION_TIMING
SAI_DISPOSED

events: None

buffered: nao

external: no

The getunits service returns all of the units used to describe the scene. The list

returned shall represent all explicit unit declarations and the currently applied
default units.

6.4.6 getWorldURL

parameters: SAlExecutionContext

returns: SAIURL

errors: SAI_INVALID_OPERATION_TIMING
SAI_DISPOSED

events: None

buffered: no

external: no

SAI_DISPOSED
SAI_INVALID_NAME

events: None
buffered: No
external: No

The createnode Service creates a new default instance of the node given by the
SAIString value containing the name of an X3D node type. The availability of the
node is defined by the containing scene’'s profile and component declarations. The
name shall only refer to a built-in node and shall not be used to create instances
of PROTOs or EXTERNPROTOs. If the node is not available in the currently

specified profile and components, the browser shall issue the SAI_INVALID NAME
error.

6.4.9 createProto

parameters: SAIExecutionContext, SAIString
returns: SAINode
errors: SAI_INVALID_OPERATION_TIMING

SAI_DISPOSED
SAI_INVALID_NAME

events: None
buffered: No
external: No

The createrroto service creates a new default instance of the named PROTO. The
naming and scoping ruies for creating a proto instance for which the current
execution context is inside another proto are defined by 4.4.7 Run-time name
scope in ISO/IEC 19775-1. If there is no PROTO declaration available that

matches the given name, the browser shall generated the SAI_INVALID_NAME
error.

6.4.10 namedNodeHandling

parameters: SATExecutionContext, SAIAction, SAIAction, SAIString,
[SAINode | SAIString, [SAIString]]
returns; None
errors: SAI_INVALID_OPERATION_TIMING
SAI_DISPOSED
SAI_IMPORTED_NODE
SAI_NODE_IN_USE
SAI_INVALID_NAME

events: None
buffered: Yes

external: No

The namedNodeHandling Service is a request to add, remove, or update the node
identified by the SAIString value where that name is considered to use the DEF,
or IMPORT semantics. The add/remove/update shall be described by the first
SAIAction value, If the name already exists as a mapping, the current mapping is
replaced with the new mapping. When adding a new named node, the new named
node is not required to be part of this scene.

The second SAIAction value describes which of the DEF or IMPORT naming
facilities shall be the target of this service request. This ensures that correct
semantics are applied. If the action is to add and the name is already registered,
SAI_NODE_IN_USE is generated. If the action is to replace or update, and the
node is not already registered, the implementation may treat this as an add
request. Table 6.9 defines the actions specified in this part of ISO/IEC 19775.

Table 6.9 — namedNodeHandling SAIAction values

Service Action Type

AddDEFNode/UpdateDEFNode

RemoveDEFNcde

AddIMPORTNode/ UpdateIMPORTNode
namedNodeMandling

Remove IMPORTNode

AddEXPORTNode/UpdateEXPORTNode

RemoveEXPORTNode

The first SAIString value identifies a name with a node as it should be known in

this scene. The name is not an intrinsic property of the node and this only serves
as a mapping function.

The second argument provides an option depending on the action being
undertaken. SAINode value is a reference to the node that may be needed for
verification of the DEF name addition. For adding IMPORTSs, the second string shall
be the exported node name in the DEF'd inline and the optional third string shall
be the name to store it as in this scene.

6.4.11 getProtoDeclaration

parameters: SAIlExecutionContext, SAIString
returns: SAIProtoDeclaration
errors: SAI_INVALID OPERATION_TIMING

SAI_INVALID_NAME
SAI_DISPOSED

events: None
buffered: No
external: No

The getprotobeciaration service returns the named PROTO declaration representation
from this scene. This shall only be used to request PROTO declarations. A request
for an EXTERNPRQOTO declaration shall generate SAI_INVALID_NAME.

6.4.12 protoDeclarationHandling

parameters: GATExecutionContext, SAIString, SAINode, SAIAction

returns: None
errors:

SAI_INVALID_OPERATION_TIMING
SAI_DISPOSED

events: None
buffered: Yes
external: No

The protobeclarationHandling Service is a request to add, remove or change the
ProtoDeclaration identified by the SAIString value.

The SAIAction parameter specifies whether the service request is an add or
removal of the declaration node. If the name already exists as a mapping, the
current mapping is replaced with the new map. When adding a new declaration it

may come from another scene. Table 6.10 defines the actions specified in this
part of ISO/IEC 19775.

Table 6.10 — protoDeclarationHandling SAIAction values

Service Action Type

AddPr‘cto/UpdatePr-oto
protoPeclarationHandling

RemoveProto

6.4.13 getExternProtoDeclaration

parameters: SAlExecutionContext, SAIString
returns: SAIProtoDeclaration
errors: SAI_INVALID_OPERATION_TIMING

SAI_INVALID_NAME
SAI_URL_UNAVAILABLE
SAI_DISPOSED

events: None
buffered: No
external: No

The getexternprotobeclaration Service returns the named EXTERNPROTO declaration
representation from this scene. This shall only be used to request an

EXTERNPROTO declaration. A request for a PROTO declaration shall generate
SAI_INVALID_NAME.

6.4.14 externprotoDeclarationHandling

parameters: SAJExecutionContext, SAIString, SAINode, SAIAction

returns: None

errors: SAI_INVALID_OQPERATION_TIMING
SAI_DISPOSED

events: None

buffered: Yes

external: No

The externprotobeclarationHandling Service is a request to add, remove or update the
ExternProtoDeclaration identified by the SAIString value.

The gettype service returns the type indicator for the referenced node. The type
indicator is either the type defined for the basic node types in the X3D
specification, or the PROTO type name if it is a prototyped node. This service is
not required to be supported for a conforming implementation.

6.6.4 getField

parameters: SAINode, SAlIFieldName
returns: SAlField
errors: SAI_INVALID_OPERATION_TIMING

SAI_INVALID_NAME
SAI_DISPOSED

events: None
buffered: No
external: No

The getField service returns a field identifier so that operations can be performed
on the node properties. If the field requested is an inputQutput field, either the
field name or the set_ and _changed modifiers may be used to access the

appropriate form of the node as required. Access to fields is implementation
dependent.

6.6.5 getFieldDefinitions

parameters: SAINodeType
returns: SAlFields
errors: SAI_INVALID_OPERATION_TIMING

SAI_INVALID_NAME
SAI_DISPOSED

events: None
buffered: No
external: No

The getrieldpefinitions service returns a list of all the field definitions of the
referenced node. The definitions provide a limited form of the SAIField that has all
the same services except the ability to read or write the value of the field for a
specific node instance. This request returns the SAIField values as generic
responses for every instance of this node rather than for a specific instance.

6.6.6 dispose

parameters: SAINode

returns: None

errors: SAI_INVALID _OPERATION_TIMING
events: None

buffered: Yes

external: No

The dispose node service indicates that the client has no further interest in the
resource represented by this node. The browser may take whatever action is
necessary to reclaim any resources consumed by this node, now or at any time in

the future. If this node has already been disposed, further requests have no
effect.

Disposing of a node does not remove the node from the scene graph (if it was
inserted in the first place) but rather removes any local information per client to
it. The underlying X3D node representation is only disposed if no other
applications or scene graph structures contain references to this node. The
responsibility and timing for this action is browser-implementation specific.

6.7 Field services

6.7.1 Introduction

The following are services that can be requested of individual fields of a node. If
the node from which a field was retrieved has been disposed, field services are
still permitted to operate providing that the field reference has been obtained
before disposing of the node. If a call is made to a field service after requesting
disposal of the field, a disposed error shall be generated.

Although not specified, all services are capable of throwing an
SAI_CONNECTION_ERROR whenever a request is made if the session between
the application and the browser has failed.

6.7.2 getAccessType

parameters: SAINode, SAIField

returns: SAIFieldAccess

errors: SAI_INVALID_OPERATION_TIMING
SAI_DISPOSED

events: None

buffered: No

external: No

The getaccessType service returns the access type for the specified field of the
referenced node.

6.7.3 getType

parameters: SAINode, SAlIField
returns: SAlFieldType
errors: SAI_DISPOSED
events: Naone

buffered: No

external: No

The getType field service returns the type for the specified field of the referenced
node.

6.7.4 getName

parameters: SAINode, SAIField
returns: SAIFieldName
errors: SAI_DISPOSED
events: None

buffered: No

external: No *

If supported by the implementation, the getname field service returns the name of
the field as it was requested from the node. If the service requested the

set _children field of a grouping node, this shall return "set_children”, but if a
different request was for children on the same node, "children" shall be returned.

6.7.5 getValue

parameters: SAINode, SAlField
returns: SAIFieldValue
errors: SAI_INVALID OPERATION_TIMING

SAI_INVALID_ACCESS_TYPE
SAI_DISPOSED

events: None
buffered: No
external : No

The getvalue field service returns the value represented by the specified field as it
exists in the world. This represents the current value of the field at the time of

the request. If the request is made of a field that has a setValue request buffered
through Beginupdate, the value returned shall be the old value prior to the setValue

request. The value of the field may be a node if the field represents an MFNode or
SFNode.

All field types shall support the option to return a single value from multi-valued
arrays.

6.7.6 setValue

parameters: SAINode, SAIField, SAIFieldvalue
returns: None
grrers: SAI_INVALID_ OPERATION_TIMING

SAI_INVALID_ACCESS_TYPE
SAI_IMPORTED_NODE
SAI_DISPOSED

events: None
buffered: Yes
external: No

The setvalue field service sets the value of the specified field. Set requests shall
obey the requirements as specified for buffered events services.

The value of the field may be an SAINode value if the field represents an MFNode
or SFNode. It is permitted to send a null to a node or field in order to clear the
value from that field. For example sending a nul1 to the appearance inputOutput
field of a Shape node as specified in 12 Shape component in ISQ/IEC 19775-1,

shall result in the appearance field being cleared and set to the default value of
NULL,

If the SAINode value is registered as an IMPORTed node in this file, it shall
generate the SAI_IMPORTED_NODE error.

All field setting services implementations shall include the ability to set individual
values. Fields that describe multi-value arrays shall also include the ability to
append and remove items from the existing field.

-~ 6.7.7 registerFieldInterest

parameters: SATNode, SAIField, SAIAction, SAIRequester

returns: . None

errors: SAI_INVALID_OPERATION_TIMING
SAI_INVALID_ACCESS_TYPE
SAI_INSUFFICIENT_ CAPABILITIES
SAI_NODE_IN_USE
SAI_DISPOSED

events: SAIFieldEvent
buffered: No
external: No

The registerfieldInterest S€rvice nominates the requester as the receiver of all
SAIFieldEvents. The act of making this service request itself does not imply any

events shall be generated. Table 6.14 defines the actions specified in this part of
ISO/IEC 19775.

Table 6.14 — registerFieidInterest SAIAction values

Service Action Type

AddInterest
registerFieldInterest

Removelnterest

The parameter of type SAIRequester can be inferred from the source of the input
and may not need to be part of the parameters.

The parameter of type SAIAction specifies whether this is a request to add
interest in events or to remove interest in the events.

Which capabilities are permitted to be listened to are implementation dependent.
For example, some implementations may permit listening to inputOnly values and
outputOnly values while others will only permit listening to outputOnly values.

6.7.8 dispose

parameters: SAIField

returns: None

errors: SAI_INVALID_OPERATION_TIMING
events: None

buffered: Yes

external: No

The dispose field service indicates that the client has no further interest in the
resource represented by this field. The browser may take whatever action is
necessary to reclaim any resources consumed by this field, now or at any time in
the future. If this field has already been disposed, further requests have no effect.

external: No

The getprofilecomponents service returns a list of SAIComponentDeclaration instances

specifying the allowed support for each component of which the profile is
comprised.

6.10.6 getProviderName

parameters: SAlProfileDeclaration
returns; SAIString

errors: None

events: None

buffered: No

external: No

The getprovidername Service is an information-only service that returns an SAIString
value containing the name of the person or company that implemented this
profile.

6.10.7 getUnitCategory

parameters: SAIUnitDeclaration

returns: SAIString

errors: SAI_INVALID_OPERATION_TIMING
SAI_DISPOSED

events: None

buffered: No

external: No

The getunitcategory service returns the formal category of the specified unit
declaration.

6.10.8 getUnitConversion

parameters: SAIUnitDeclaration

returns: SAIString

errors: SAI_INVALID_OPERATION_TIMING
SAI_DISPOSED

events: None

buffered: No

external: No

The getunitconversion service returns the conversion factor of the specified unit
declaration.

6.10.9 getUnitName

parameters: SAIUnitDeclaration

returns: SAIStr]ng

errors: SAI_INVALID_OPERATICN_TIMING
SAI_DISPOSED

events: None

buf-fered; No

external: No

The getunitname Service returns the user-provided name of the specified unit
declaration.

6.11 Services provided by script content

6.11.1 Introduction

When an author provides the executable content of a script, certain conventions
shall be satisfied. This allows the browser to communicate status information
unambiguously regardless of the type of content language. This clause defines
services that are required to be defined by the individual language bindings in a
manner such that script content may be informed in a consistent, unambiguous
manner. Script content shall be required to run identically regardless of language
used to author the content. In contrast to the other services specifications, the
browser shall make these service requests of the user's code, and therefore the
user code shall provide implementations of these, where necessary. All services
are defined at the user's discretion and if the user does not define the service
implementation, the browser shall silently continue.

6.11.2 Creation phase

During the creation phase, the script content is downloaded and an instance of
the content created in the appropriate execution engine. Some content may
require separate interpreters, while others may be created in the same address
and execution space as the browser code (e.g., scripts created in the same
language in which the browser itself was written). Apart from the instantiation
process, which is language dependent, the browser shall not require any services.

6.11.3 Setup phase

During the setup phase, the browser provides the script with all of the run-time
information that it will be able to use in the system.

6.11.3.1 setBrowser

parameters: SAIBrowserRef
returns: None

errors: None

events: None

buffered: No

external: No

The setBrouser Service passes to the script implementation code the the
SAIBrowserRef value to be used. There is no other way of acquiring the
SAIBrowserRef during the lifetime of the script, so if the user code needs to know
about it, it should store it now. This service shall be performed before any other
service requests are made. The browser may call this service at any time between
the creation phase and before the Initialize service request is made. The browser
is not required to request it during the initialization process as defined 4.4.8

6.11.4.2 eventsProcessed

parameters: SAIBrowserRef

returns: None

errors; None

events: SAI Browser Shutdown
buffered: No

external: Yes

The eventsprocessed Service provides notification that the current event cascade
processing has finished and that the containing node is now allowed to make
updates to the scene graph. This is useful for user code that wishes to be more
efficient and only generate new events after a collection of field changes are
received. Within a given frame, user code may have this service called more than
once. User code cannot guarantee that all changes to the containing node will be
received by this time and should take appropriate precautions. This service
request shall only be called after the containing node has received one or more
events in this timestamp. If the containing node has received no events in the
current timestamp it shall be an error for the browser to request this service.

6.11.5 Disposed phase
6.11.5.1 shutdown

parameters: None

returns: None

errors: None

events: SAI_Browser_Shutdown
buffered: No

external: Yes

The shutdown Service provides notification that the user code has been disposed of
by the containing node. This may be due to the complete shutdown of the
browser, the loaded world changing or the containing node changing the user
code to another implementation. After this service request has been completed,
user code will no longer be functional or executed.

& 6.12 Matrix services

6.12.1 Introduction

Matrix objects represent the standard mathematic matrix capabilities using
double precision numbers and column-major order. All services here shall be
interpreted using standard mathematical definitions of matrices.

Implementations shall provide matrices that are 3x3 and 4x4. They may define
other orders of matrices. Implementations may also define additional convenience
services in addition to this minimum subset; for example, the ability to
individually access matrix elements. Implementations may allow direct access to
the individual row and column values of the matrix.

In the following service definitions, the parameters describe single precision
inputs. An implementation shall also provided overloaded definitions that include
double precision input.

6.12.2 set
parameters: SAIMatrix, SFVec3f, SFRotation, SFVec3f,
SFRotation, SFVec3f

returns: None

errors: None

events: None

buffered: No

external: No

The set matrix service sets the matrix to the new value calculated from the
parameters. The parameters are defined to represent, in order: translation,
rotation, scale, scaleOrientation, and center. If a value for a parameter is not
specified, the default value for that parameter shall be the default value for the
equivalent field of the Transform node defined in 10.4.4 Transform in ISO/IEC
19775-1.

6.12.3 get

parameters: SATMatrix, SFVec3f, SFRotation, SFVec3f, SFRotation, SFVec3f
returns: None
errors: None

events: None
buffered: No

external: No

The get service computes and returns the transformation values from the matrix.
The parameters are defined to represent, in order: translation, rotation, scale,
scaleOrientation and center.

6.12.4 inverse

parameters: SAIMatrix
returns: None
errors: None
events: None
buffered: No
external: No

The inverse service calculates the inverse of this matrix in place.

6.12.5 transpose

parameters: SAIMatrix
returns: None
errors: None
events: None
buffered: No

external: No

encoding.

Provides access to a

SAlExecutionContext Full Support
subscene,
Separate data types for the
SAIFieldAccess four types defined by Full Support
ISO/IEC 19775-1.
Provide information on
SAlFieldDeclaration access type, data type and | Full Support
name
SAIField Full Support Full Support
SAIFieldName Primitive type Full Support
Separate data types for all
SAIFieldType types defined in 5 Field Full Support

type reference of ISQ/IEC
19775-1.

SAlIFieldValue

Primitive type as
appropriate to the given
field.

Where field is an
SF/MFNode shall be

Number of values for setting and
getting as defined in the
applicable profile as defined in

ISO/IEC 19775-1,

SAINodeID

SAIFrameRate Primitive Type Full Support

SAlLayeriD Primitive Type Full Support‘ If the Layering
component is supported.

SAlLoadState Primitive Type Full Support

SAIMatrix Primitive Type Full Support

SAINavSpeed Primitive Type Full Support

SAINode Full Suppoert Full Support

SAINodeType Primitive type SAIString representation of the
node name

SATParameterList As required by langauge Dependent on language and

and service definition.

browser implementation

SAIProfileDeclaration

Description of at least
narme and components
used in the profile

Full Support

SAlIPropertylist

Primitive type

5 key-value pairs. Values
dependent on language bindings

getBrowserProperties Shalt provide No restrictions No restrictions
setBrowserOptions Shall provide No restrictions No restrictions
changeViewpoint Shall provide No restrictions No restrictions
print/printin Shall provide No restrictions No restrictions
dispose Shall provide No restrictions No restrictions

Table 7.4 — Specifications for SAI general services

Minimum Browser

Iteim Binding Support Support
Execution context services
getSpecificationVersion Full Support Full Support
getEncoding Shall provide Full Support
getProfile SAIProfileDeclaration Full support.
getComponents SAIComponentDeclarations ;| Full Support
getUnits SAlUnitDeclarations Full Support
getWorldURL Shall provide Full Support
getNode Full Support Full Support
createNode Full Support Full Support
createProto Full Support Full Support
namedNodeHandling igﬁ;ti:g;ezfaandddiﬁjn;mts Full support.
getProtoDeclaration Shall provide Full Support
protoDeclarationHandling g:ﬁgg?ggﬁé add and Full Support
getExternProtoDeclaration Full Support Full Support
externprotoDeclarationHandling Z’Q&SEQ_{S_EOJNE'SSO?FS Full support.
getRootNodes Shall provide Full Support
getRoutes Shall provide Full Support

dynamicRouteHandling

SAIActions of add and

Full support.

delete route

dispose Shali provide No restrictions
Scene services
getMetaData Shall provide Full Support
setMetaData Shall provide Full Support
namedNodeHandling iglleﬁgtzxnpsoﬁsadd and Full support
rootNodeHandling Sgﬁgtfgjezf add and Full support
Node services
getTypeName Shall provide Full support
getType Shall provide no restrictions
All fields shall be accesible
dependent on access rules
getField Full Support for internal and external
interactions and node
lifecycle..
getFieldDefinitions Full Support Full Support
dispose Shall provide No restrictions
Field services
dispose Full support Full support
getAccessType Shall provide Full support
getType see SAIFieldType Full support
getName Full Support Eggnr?en;emvg;;?:éset or
getValue getiValue not required Full Support
Full Support. Where fields
are MF fields, minimum
setValue set1Value not required number of values to be

supported as specified in the

applicable profile defined in
ISO/IEC 19775-1.

registerFieldInterest

SAIActions of add and
remove interest

As per supported langauge
binding(s).

outputOnly and the oufput
side of inputOutput fields
shall be supported

H

Route services

dispose Full support Full support
getSourceNode Full support Full Support
getSourceField Full support Full Support
getDestinationNode Full support Full Support
getDestinationField Fuli support Full Support
Prototype services
isExternProto Full support Full Support
createlnstance Full support Full Support
getFieldDefintions Full support Full Support
checkloadState Full support Ful] Support
requestImmediatel.oad Full support Fuli Support
Configuration services
getComponentName Full support Full Support
getComponentlLevel Full support Full Support
getProfileName Full support Full Support
getProfileComponents Full support Full Support
getProviderName Full support Full Support
getUnitCategory Full support Full Support
getUnitConversion Full support Full Support
getUnitName Full support Full Support

Table 7.5 — Specifications for SAI script content interaction

Item

Binding support Minimum browser support

setBrowser

Full support

Full Support

Eﬂ’)}&ﬁ% Jderm(2e oy ”W°J/“*

