Lidar Pipelines for Immersive and Web3D Visualization

Nicholas Polys, ARC, CS
Cully W. Hession, BSE
Peter Sforza, CGIT
John Munsell, Forestry
Adam Taylor, CSC
Haitao Wang, CGIT
Virginia Tech

SilviLaser 2017
Introduction

General Workflow

1. Acquisition
2. Data Processing
3. Analysis
4. Publishing and Visualization
 a. Immersive 3D
 b. Web3D
5. Future Work
Drone-based Lidar

YellowScan Puck payload

https://www.youtube.com/watch?v=DO35QIAPrtg&t=256s
The LiDAR System

- YellowScan® Core System – Mapper
- Integrated w/Vapor35
- Multi-echo LiDAR sensor GNSS RTK + PPK receiver, bi-frequency L1/L2
- Calibrated IMU
- Embedded computer
- Data pre-processing software

- 1 to 2 returns
- ~200 pts/m² @ 20 m
- Data recorded to USB stick, includes:
 - IMU and GPS real-time recordings
 - Scanner data
Processing

.las files co-registered and geolocated…

Noise removed, tiled for processing:

1. LASTools => ARCGIS
 a. HTML5: potree

2. LASTools => CloudCompare
 a. X3D
 b. HTML5: X3DOM
Derived Products

GPS: DTM (TIN), Aspect, Slope, CHM
3D Visualization

MP4: Movie Fly-throughs w/ CloudCompare

Extensible 3D (X3D): Immersive CAVE @ VT Visionarium,
...
... HTML5 + Service-based mashups!

Rendering essentials:
Colors, Normals, visual mass, lighting, ...
Classified Cloud

Interactive 3D
in HTML5
w/ mouse
potree

Initial classification results for Catawba drone scan
Web3D: Extensible 3D (X3D)

TIN, Imagery, Tree locations

Requirements

• Metadata Scheme for provenance throughout the lifecycle:
 – Acquisition
 – Transport
 – Processing

• Include points as well as quantitative, categorical, and nominal attributes per point

• A rich visual Palette to render points to visual form (e.g. Web3DS)
Visualization w/ Web3D Standards

- **Extensible 3D (X3D)** is a royalty-free and openly published ISO/IEC Standard developed by the not-for-profit Web3D Consortium [web3d.org]

- Metadata can annotate any node

- PointSets make coords, colors, and normals easy, but are not lit, texture-mapped, or collide-able.
 - ParticleSets have been demonstrated to address these

- Surfaces, lines, and points can be compressed

- Full-fledged interactive 3D scenes and webpages via OpenGeospatial Consortium (OGC) Web3D Service
HTML5 + X3D

Using 3D Compression

1) 440K points = 23MB.ply, 21MB.x3d

2) Compressed.X3D = 3.4 MB

3) Interaction through Web and WebVR
 - 50-60 fps on laptop

4) Gltf Inline also demonstrated
Future Work

Requirements: Durability, Interoperability, Accessibility

Two fronts:

- Standards Advocacy - ISO/IEC standards to support requirements
- Consumer Advocacy - Vendors to support ISO/IEC standards
Thanks

- VT Stream Lab
- Catawba Sustainability Center
- Advanced Research Computing
- Center for Geospatial Information Technology

See Also:

Annual SIGGRAPH Carto BOF -

Polys & Russalesi present X3D and Web3DS in minutes 8-27 also includes Cesium & ESRI presentations

https://youtu.be/6ttQUhnu4SQ
Join Us~!

Nicholas Polys
npolys@vt.edu

• VT NEWs short form:

• https://vtnews.vt.edu/articles/2017/07/outreach-dronesatcatawba.html

long form *(5 min)

• https://www.youtube.com/watch?v=DO35QlAPrtg&spfreload=5
Aerial Photo Inventory → Drone LiDAR Mission → Ground Truth

Data Collection

Inspection and Cleaning

Data Post-processing

Point Cloud Data (.las)

Data Inspection

Data Tiling & Buffering

Classified Ground / Non-ground Data

Classification

Adaptive Triangulated Irregular Network

LiDAR Returns

Adaptive Triangulated Irregular Network

Digital Terrain Model

Canopy Height Model

Digital Surface Model

Inspection (QA/QC)

Calculate Parameters of Interests

Roughness

Vegetation Covers

... ...

... ...

Estimate Parameters of Interests

Visualization

Color-coded Point Cloud Data

Point Cloud Data Visualization
Locations

Catawba Sustainability Center

32 million points, 8 columns

Stroubles Creek & Doc’s Branch

57 million points, 8 columns