Efficient Binary Meshes in X3DOM refined: Not just images anymore!

Johannes Behr
Yvonne Jung
Tobias Franke
Timo Sturm

johannes.behr@igd.fraunhofer.de
<!DOCTYPE html >
<html >
<body>
<h1>Hello X3DOM World</h1>
<x3d xmlns='…' profile='†'>
 <scene>
 <shape>
 <box></box>
 </shape>
 </scene>
</x3d>
</body>
</html>
Declarative (X)3D in HTML

Large Datasets: Issue of the current approach

Real 3D applications tend to be huge HTML-files

Unpleasant non-interactive **user experience**

Browser are not build to hold GByte of DOM attribute data (e.g. multiple data copies)

Reference external sub-trees

X3D “Inline” node

black/white-box interface?

xml/json parser architecture

Binary XML decompression
DOM holds structure and data

<!DOCTYPE html>
<html>
<head>
 <link rel='stylesheet' type='text/css' href='http://www.x3dom.org/x3dom/release/x3dom.css'/>
 <script type='text/javascript' src='http://www.x3dom.org/x3dom/release/x3dom.js'></script>
</head>
<body>
 <x3d id='3dstuff' width='400px' height='400px'>
 <scene DEF='scene'>
 <shape>
 <appearance>
 <material diffuseColor='#FF0000'/>
 </appearance>
 <indexedTriangleSet solid='false' index='0 1 2 1 3 2 1 4 3 5 4 1 0 5 1 0 6 5 6 7 5 7 4 7 8 4 7 9 8 7 6 9 6 10 9 10 11 9 10 2 11 10 0 2 6 0 10 11 2 3 8 11 3 4 8 3 11 8 9'>
 <coordinate point='0.447214 0 -0.894427 0.447214 0.850651 -0.276393 1 0 -0 0.447214 0.525731 0.723607 -0.447214 0.850651 -0.276393 0.447214 0.525731 -0.723607 -1 0 0 -0.447214 0 0.894427 -0.447214 0.850651 0.276393 -0.447214 0.525731 -0.723607 -0.447214 0.525731 -0.723607 -1 0 0 -0.447214 0 0.894427 -0.447214 0.850651 0.276393 -0.447214 0.525731 -0.723607 -0.447214 0.525731 -0.723607 -1 0 0 -0.447214 0 0.894427 -0.447214 0.850651 0.276393 0.447214 -0.850651 -0.276393 0.447214 -0.525731 0.723607'>
 </coordinate>
 </indexedTriangleSet>
 </shape>
 </scene>
</x3d>
</body>
</html>
DOM holds structure and data
More than 95% are usually unstructured data
Follow the generic X3DOM approach:

Evaluate the general “**Declarative 3D**” use cases and **requirements** while providing a prototype system which works on **today's W3C/JavaScript/WebGL layer**

General Question: What Container are useful in today's W3C technology stack to support the “Generic Requirements”

- binary
- regular structure
- fast transmission, decoding
- must map to GPU container/buffer

Fraunhofer IGD / Autor /
“General Goals”

Increased User experience

User does not have to wait until the document is loaded

Increased Polygon count

From 0.3 Million to 10 Million Polygon
More data can be delivered in acceptable time

Increased Communication speed

Incremental Updates (similar to jpeg decompression)

Fraunhofer IGD / Autor /
Separate structure and data
HTML element reference external binary data element

DOM / HTML Document

Binary asset resources

Images and Videos
- Encodes int/float arrays (e.g. coordinate, normal, texCoords, generic-attributes) in RGBA-images
- Multiple images per array
- Multiple images per scene

Explicit Binary Container
- Directly loaded to TypedArrays
- Data assignment in JS
- Multiple arrays per file
- Multiple files per scene

Fraunhofer IGD / Autor /
3D Geometry in Images

HeightMap

2D (semi)regular grid with 1D Height-Data

Geometry Images (Hoppe, Siggraph 2002)

Surface usually irregular triangle mesh

=> Remeshing to (semi)regular grid

pro: up/down sampling operation

con: genus-zero surface, parametrization distortion, border-handling

Latest development focus on multi-patch approaches and LOD structures

(see “Adaptive Quad patches” paper)
Idea: Sequential Image Geometry

Implicit mesh does not correlate with the mesh topology
 / <video> as generic binary container

Normalization and **linear Quantization** to 2^n Bytes: n is error/user controlled

Uses **multiple images** to distribute precision
(e.g. 1 Image -> 8bit, 2 images -> 16bit, ...)

LOD and streaming of precision (e.g. closer objects use higher precision)

Decompression for free (only lossless png is useful right now)

Streaming updates for free: WebGL/X3DOM support <video>

Browser/Server well optimized to handle **large number of images** and **parallel downloads** of image => Great user experience
Multi image vertex property encoding
GPU: Single VBO, Extremely fast visualization with Vertex Textures Units, precision grows until vertex texture limit is reached

CPU/GPU: WebGL without Vertex Texture Unit support/ Flash 11
Binary Container
Powerful abstraction for efficient data encoding for Web-apps

Uses new **XHR ability to load binary ArrayBuffer**

Maps to **TypedArray/GPU buffer**

No **JS-Interaction for decoding**

Could be used for RESTful mesh attribute access

e.g. http://meshLand.com/mesh/32/coordinate.bin

Support **quantization with GPU based decoder**

(WebGL can handle 8 and 16 bit TypedArrays)

Standard rendering and shader handling

(Does not need support for Vertex Textures for GPU decoding as SIG)

Support also **incremental updates** through bit distribution over multiple files
Priority controlled **download manager and renderer**

Content: Use/Application given to focus on specific objects

View: Objects which are in the view frustum

Size: Objects which are bigger in world space

Data-Level: Data which represents a more basic level get higher priority

External: External Culling/Visibility service controls priority
Priority controlled **download manager and renderer**

Content: Use/Application given to focus on specific objects

View: Objects which are in the view frustum

Size: Objects which are bigger in world space

Data-Level: Data which represents a more basic level get higher priority

External: External Culling/Visibility service controls priority
“Out of Core” Rendering with PCR
Service Controlled PCR
Uses bidirectional WebSocket connection to distribute computation

"Out of Browser" based Rendering; Using the X3DOM BinaryGeometry Container
BMW F30, 80 Million Polygon Model
Application Example – Desktop
Application Example – Mobile
Combination with textures
Single container type can minimize Download-Management
Low Bandwidth / Mobile device
Online BG-LOD Examples over 3G
Implementation

Decoding & Rendering:

Open source and Part of X3DOM, available on github http://www.x3dom.org

Patch creation and encoding:

Closed source aopt/instantReality 2.2 (release 3. August 2012)

Windows, Mac & Linux

http://www.instantreality.org

New “Large Datasets” tutorial on x3dom.org page

Free for “non commercial use”

Fraunhofer IGD / Autor /
Patch creation and encoding
Using the instantReality/aopt tool

Scene/Mesh statistics

aopt -l foo.x3d -p
aopt -l foo.x3d -J

Patch creation:

aopt -l foo.x3d -u -F subtree:"maxtris(20000)" -N foo-opt.x3d

subtree: Single Node (DEF/id), Node-Type or “Scene”

BinaryGeometry from PrimitiveSet

mkdir binGeo

aopt -l foo-opt.x3d -G binGeo/:saI -x foo-bg.x3d -N foo-
Demos: http://examples.x3dom.org