X3D Physical Sensors (updates)

Web3D Korea Standardization Meeting at SIGGRAPH
Los Angeles, CA, USA

July 31, 2017

Myeong Won Lee (The University of Suwon) and Kwan-Hee Yoo (Chungbuk National University)
Physical Sensor Representation in X3D

MIXED REALITY (MR)

REAL ENVIRONMENT → AUGMENTED REALITY (AR) → AUGMENTED VIRTUALITY (AV) → VIRTUAL ENVIRONMENT

Real world simulation of sensor functions in X3D scenes
Before and After X3D

• Before
 • 3D representation of real object appearance
 • Modeling, rendering, and animation for 3D appearance in VR
 • Focus on appearance as it is in the real world

• After
 • 3D simulation and representation of sensor device functions
 • Modeling, rendering, animation, and simulation of real objects in X3D
 • Focus on real world simulation and functional representation in X3D
 • IoT device and sensor representation in X3D
X3D Physical Sensor and SC24 WG9 NP

- ISO/IEC JTC 1/SC 24/WG 9 NWIP
 - Sensor representation in MAR
 - A reference model for physical sensor representation in 3D scenes
 - All sensor types are covered with abstract models and interfaces
 - XML definition of physical sensors

- X3D Physical sensor
 - Physical sensor representation in X3D scenes
 - New proposal for ISO/IEC JTC 1/SC 24/WG6 NWIP
 - Selective sensor types are covered with existing X3D abstract data model and interface
 - X3D based definition of physical sensors requires X3D schema expansion
 - Implementation of X3D physical sensor viewers and simulators
Physical Sensor Representation in X3D

- Camera sensor
- Chemical sensor
- Electric sensor
- Environment sensor
- Flow sensor
- Light sensor
- Navigation sensor
- Pressure sensor
- Proximity sensor
- Sound sensor
- Temperature sensor
Sensor MAR World

3D VR World

- Shape
- Appearance
- Scaling

GPS MAR World

- GPS synchronization
- Exact location and orientation of 3D objects
- Unit specification

Sensor MAR World

- Functional representation of sensors
- Exact location and orientation of sensors

3D copied real world

3D copied real world with sensors
Exact Location and Orientation (1)

1. Define the Geo coordinate system of a 3D virtual environment aligned with a GPS box

- Four GPS sensor values
- One Geo origin per 3D scene
Exact Location and Orientation (2)

2. Define orientation (pitch–yaw–roll) for each sensor in a 3D virtual environment aligned with the Geo coordinate system.

- Four GPS sensor values
- One Geo origin per 3D scene
- Orientation (pitch–yaw–roll) for each sensor
Exact Location and Orientation (3)

3. Define real length with units aligned with the local coordinate system and the orientation (pitch–yaw–roll) frame.

- Four GPS sensor values
- One Geo origin per 3D scene
- Orientation (pitch–yaw–roll) per sensor
- Length units

GPS1

Length & unit

GPS2

GPS3

GPS4

4m

5m

3m
Exact Location and Orientation (4)

4. Define enhanced graphics pipeline including geo coordinates, orientation, and unit coordinate system

- Four GPS sensor values
- One Geo origin per 3D scene
- One relative compass frame
- Length units

GPS sensor
Length & unit
5m
4m
3m
GPS1
GPS2
GPS3
GPS4

Local coordinate system
Global coordinate system
Geo based coordinate system
Pitch-yaw-roll and unit coordinate system
Objectives of X3D Physical Sensors

• Define X3D objects with physical sensors using physical properties
• Representation of physical properties of each physical sensor
• Provide physical sensor interfaces for event processing to/from each physical sensor in X3D
Physical Sensors

- Camera Sensor
- Chemical Sensor
- Electric Sensor
- Environment Sensor
- Flow Sensor
- Force Sensor
- Light Sensor
- Movement Sensor
- Navigation Sensor
- Particle Sensor
- Position Sensor
- Pressure Sensor
- Proximity Sensor
- Sound Sensor
- Temperature Sensor
- Other sensors

Sensor representation and simulation with physical functions in an X3D scene

GOAL
Physical Sensors in X3D

- Camera Sensor
- Chemical Sensor
- Electric Sensor
- Environment Sensor
- Flow Sensor
- Force Sensor
- Light Sensor
- Movement Sensor
- Navigation Sensor
- Particle Sensor
- Position Sensor
- Pressure Sensor
- Proximity Sensor
- Sound Sensor
- Temperature Sensor
- Other Sensors

Sensor representation and simulation with physical functions in an X3D scene

GOAL
Camera Sensor

• Requires a 3D object to represent the camera sensor in an X3D scene and a camera functions user interface to control and change the 3D scene

• Simulation procedure
 • Process the state of the camera with On/Off
 • Represent and process a camera event
 • Represent and process physical functions of the camera, such as play, pause, zoom, etc.

• Examples
 • CCTV, phone camera, standard camera
Environment Sensor

• Requires a 3D object to represent the environment sensor in an X3D scene and a functions user interface to display and control the sensor and to change the scene

• Simulation procedure
 • Process the state of the environment sensor device with On/Off
 • Acquire and represent changing weather information from the device, including temperature and humidity
 • Represent and process physical functions of the device

• Examples
 • Thermometer, hygrometer
Light Sensor

• Requires a 3D object to represent the light sensor in an X3D scene and a light functions user interface to control and change the 3D scene

• Simulation procedure
 • Represent the state of the physical light sensor
 • Represent light information, such as physical intensity, location, orientation, material, etc.
 • Provide interfaces for event processing to/from a physical light

• Examples
 • Fluorescent light, streetlight
Navigation Sensor

- Requires a 3D object to represent the navigation sensor in X3D and a functions user interface to control and change the 3D scene
- Simulation procedure
 - Process the state of the navigation sensor with On/Off
 - Acquire navigation information events such as GPS
 - Represent and control navigation information from the sensor
- Examples
 - Magnetic compass, GPS
Position Sensor

• Requires a 3D object to represent the position sensor in an X3D scene and a functions user interface to control and change the 3D scene

• Simulation procedure
 • Process the state of the position sensor with On/Off
 • Acquire location information events
 • Represent and control location information from the position sensor

• Examples
 • Range finder, telemeter, angle finder, measuring instrument
Sound Sensor

• Requires a 3D object to represent the sound sensor in an X3D scene and a sound functions user interface to control and change the 3D scene

• Simulation procedure
 • Process the state of the sound with On/Off
 • Represent and control sound device events
 • Represent sound information through the sound device

• Examples
 • Speaker, microphone
X3D Physical Sensor Architecture

Adding physical sensor format

Representation of in/out data stream of physical sensors to/from 3D Scene

Communication of sensor access information with external applications
Sensor 3D Scene Graph (after)

- MR Object
 - 3D Object
 - Shape
 - Material
 - Interfaces with virtual worlds
 - Geometry
 - Interfaces with virtual worlds

- Physical Sensor
 - Shape
 - Material
 - Interfaces with virtual worlds
 - Geometry
 - Interfaces with virtual worlds

- MR space
 - GPS origin
 - GPS bounding info
 - Physical size with length
 - Orientation (pitch/yaw/roll)
 - Physical properties
 - Interfaces with real worlds
Physical Properties of a Physical Sensor (device)

Example

```xml
<GUID>111-111-111</GUID>
(NAME>Airconditioner</NAME>
<EVENT_TYPE>TEMP</EVENT_TYPE>
<CONTROL_TYPE>TEMP</CONTROL_TYPE>
<DESC>sensor type</DESC>
```
Physical Sensor Device Properties

<table>
<thead>
<tr>
<th>Device Properties Fields</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUID</td>
<td>Unique ID for recognizing a device (Globally Unique Identifier, an implementation of Universally Unique identifier (UUID))</td>
</tr>
<tr>
<td>NAME</td>
<td>Device name</td>
</tr>
<tr>
<td>EVENT_TYPE</td>
<td>Available data type that can access a physical sensor device</td>
</tr>
<tr>
<td>CONTROL_TYPE</td>
<td>Available data type that can send to a physical sensor device</td>
</tr>
<tr>
<td>Description</td>
<td>Additional description of a physical sensor device</td>
</tr>
</tbody>
</table>
Physical Interface of a Physical Sensor (Connection Information)

<table>
<thead>
<tr>
<th>Physical Interface (Connection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
</tr>
<tr>
<td>DESC</td>
</tr>
<tr>
<td>IP</td>
</tr>
<tr>
<td>PORT</td>
</tr>
<tr>
<td>ID</td>
</tr>
<tr>
<td>PASSWORD</td>
</tr>
<tr>
<td>PROTOCOL</td>
</tr>
</tbody>
</table>

Example

```xml
<NAME>Airconditioner manager</NAME>
<DESC>Connection info</DESC>
<IP>1.1.1.1</IP>
<PORT>8080</PORT>
<ID>user1</ID>
<PASSWORD>pass1</PASSWORD>
<PROTOCOL>TCP</PROTOCOL>
```
Physical Sensor Connection Description

<table>
<thead>
<tr>
<th>Connection Info. Fields</th>
<th>Physical Sensor Device Connection Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>Name related to connection information</td>
</tr>
<tr>
<td>DESC</td>
<td>Description of connection information</td>
</tr>
<tr>
<td>IP</td>
<td>IP address for a physical sensor device</td>
</tr>
<tr>
<td>PORT</td>
<td>Port for a physical sensor device</td>
</tr>
<tr>
<td>ID</td>
<td>User account for accessing a physical sensor device</td>
</tr>
<tr>
<td>PASSWORD</td>
<td>User account password for accessing a physical sensor device</td>
</tr>
<tr>
<td>PROTOCOL</td>
<td>Communication protocol</td>
</tr>
</tbody>
</table>
Data Structure of Physical Sensor Properties in a Scene

Physical Sensor’s Physical Info

<table>
<thead>
<tr>
<th>Device</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUID</td>
<td>NAME</td>
</tr>
<tr>
<td>NAME</td>
<td>DESC</td>
</tr>
<tr>
<td>EVENT_TYPE</td>
<td>IP</td>
</tr>
<tr>
<td>CONTROL_TYPE</td>
<td>PORT</td>
</tr>
<tr>
<td>DESC</td>
<td>ID</td>
</tr>
<tr>
<td>PASSWORD</td>
<td>PROTOCOL</td>
</tr>
</tbody>
</table>

Physical Properties of a Physical Sensor
- `<Device properties>`
 - `<GUID>`
 - `<Name>`
 - `<EventType>`
 - `<ControlType>`
 - `<Desc>`

Physical Interface of a Physical Sensor
- `<Connection>`
 - `<Name>`
 - `<Desc>`
 - `<IP>`
 - `<Port>`
 - `<ID>`
 - `<Password>`
 - `<Protocol>`
Implementation of an X3D Physical Sensor Viewer

- X3D document parsing
- Generate X3D geometric data for 3D representation using X3D library

- Display X3D geometric data
- Edit X3D and physical sensors

- Include all libraries for displaying X3D data
 - Physical sensors interface
 - UI library
X3D Schema Redefinition for Physical Sensors (1)

```xml
<xs:redefine schemaLocation="x3d-3.2.xsd">
  <xs:annotation>
    <xs:appinfo>We extend the group GroupingNodeChildContentModel and type X3DGroupingNode by adding a reference to the group ChildContentModelPhysicalSensor.</xs:appinfo>
    <xs:documentation source="http://..."/>
  </xs:annotation>
  <xs:group name="ChildContentModel">
    <xs:annotation>
      <xs:appinfo>ChildContentModel is the child-node content model corresponding to X3DChildNode, combining all profiles. ChildContentModel can contain most nodes, other Grouping nodes, Prototype declarations and ProtoInstances in any order and any combination</xs:appinfo>
    </xs:annotation>
  </xs:group>
</xs:redefine>
```
X3D Schema Redefinition for Physical Sensors (2)

<xs:choice>
 <!-- ChildContentModelCore omitted here since included in X3DNode type definition -->
 <xs:group ref="ChildContentModel"/>
 <!-- new content model for physical sensor components -->
 <xs:group ref="ChildContentModelPhysicalSensor"/>
</xs:choice>
</xs:group>
</xs:redefine>
X3D Schema Redefinition for Physical Sensors (3)
X3D Schema Redefinition for Physical Sensors (4)

<xsl:group name="ChildContentModelPhysicalSensor">
 <xsl:annotation>
 <xsl:appinfo>Child-node content model corresponding to Physical Sensor and GPS.</xsl:appinfo>
 <xsl:documentation source="http://..."/>
 </xsl:annotation>
 <xsl:choice>
 <xsl:element ref="PhysicalSensor"/>
 <xsl:element ref="GPS"/>
 </xsl:choice>
</xsl:group>

<xsl:element name="PhysicalSensor" type="AbstractSensorType">
 <xsl:annotation>
 <xsl:appinfo>Child-node content model representing a physical sensor.</xsl:appinfo>
 <xsl:documentation source="http://..."/>
 </xsl:annotation>
</xsl:element>
X3D Abstract Physical Sensor Type (1)

```xml
<xs:complexType name="AbstractSensorType">
  <xs:complexContent mixed="false">
    <xs:extension base="X3DChildNode">
      <xs:sequence>
        <xs:element name="SensorType">
          <xs:simpleType>
            <xs:restriction base="xs:string">
              <xs:enumeration value="Camera" />
              <xs:enumeration value="Electric" />
              <xs:enumeration value="Environment" />
              <xs:enumeration value="Light" />
              <xs:enumeration value="Movement" />
              <xs:enumeration value="Navigation" />
              <xs:enumeration value="Position" />
              <xs:enumeration value="Sound" />
              <xs:enumeration value="Others" />
            </xs:restriction>
          </xs:simpleType>
        </xs:element>
      </xs:sequence>
    </xs:extension>
  </xs:complexContent>
</xs:complexType>
```
X3D Abstract Physical Sensor Type (2)

<x:s:element ref="Shape" maxOccurs="1" minOccurs="0" />
<x:element name="PhysicalProperties"
 type="PhysicalPropertiesType" minOccurs="0" />
<x:element name="PhysicalInterface"
 type="PhysicalInterfaceType" minOccurs="0" />
</x:s:sequence>
 <x:attribute name="id" type="ID" />
 <x:attribute name="activated" type="xs:boolean" />
</x:s:extension>
</x:s:complexType>
X3D Physical Sensor Attribute Type (1)

```xml
<xs:complexType name="IntWithUnitType">
   <xs:simpleContent>
      <xs:extension base="xs:integer">
         <xs:attribute name="unit" type="xs:string" />
      </xs:extension>
   </xs:simpleContent>
</xs:complexType>

<xs:complexType name="IntRangeWithUnitType">
   <xs:attribute name="min" type="xs:integer" />
   <xs:attribute name="max" type="xs:integer" />
   <xs:attribute name="value" type="xs:integer" />
   <xs:attribute name="unit" type="xs:string" />
</xs:complexType>
```
X3D Physical Sensor Attribute Type (2)

```xml
<xs:complexType name="FloatWithUnitType">
  <xs:simpleContent>
    <xs:extension base="xs:float">
      <xs:attribute name="unit" type="xs:string" />
    </xs:extension>
  </xs:simpleContent>
</xs:complexType>

<xs:complexType name="FloatRangeWithUnitType">
  <xs:attribute name="min" type="xs:float" />
  <xs:attribute name="max" type="xs:float" />
  <xs:attribute name="value" type="xs:float" />
  <xs:attribute name="unit" type="xs:string" />
</xs:complexType>

<xs:complexType name="StringWithUnitType">
  <xs:simpleContent>
    <xs:extension base="xs:string">
      <xs:attribute name="unit" type="xs:string" />
    </xs:extension>
  </xs:simpleContent>
</xs:complexType>
```
X3D Physical Properties Type (1)

```
<xs:complexType name="PhysicalPropertiesType">
  <xs:sequence>
    <xs:element name="Device">
      <xs:complexType>
        <xs:sequence>
          <xs:element name="GUID" type="GUIDType" />
          <xs:element name="Name" type="xs:string" />
          <xs:element name="EventType" type="EventType" minOccurs="0" />
          <xs:element name="ControlType" type="ControlType" minOccurs="0" />
          <xs:element name="Desc" type="xs:string" minOccurs="0" />
        </xs:sequence>
      </xs:complexType>
    </xs:element>
  </xs:sequence>
</xs:complexType>
```
X3D Physical Properties Type (2)

```
<x:simpleType name="GUIDType">
  <xs:restriction base="xs:string">
    <xs:pattern value="[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{12}" />
  </xs:restriction>
</x:simpleType>

<x:simpleType name="EventType">
  <xs:restriction base="xs:string">
    <xs:enumeration value="Temp" />
    <xs:enumeration value="EventTypeName1" />
    <xs:enumeration value="EventTypeName2" />
    <!-- Other values can be added -->
  </xs:restriction>
</x:simpleType>

<x:simpleType name="ControlType">
  <xs:restriction base="xs:string">
    <xs:enumeration value="Temp" />
    <xs:enumeration value="ControlName1" />
    <xs:enumeration value="ControlName2" />
    <!-- Other values can be added -->
  </xs:restriction>
</x:simpleType>
```
X3D Physical Interface Type (1)

```xml
<xs:complexType name="PhysicalInterfaceType">
  <xs:sequence>
    <xs:element name="Connection">
      <xs:complexType>
        <xs:sequence>
          <xs:element name="Name" type="xs:string" />
          <xs:element name="Desc" type="xs:string" minOccurs="0" />  
          <xs:element name="IP" type="IPv4AddressType" />
          <xs:element name="Port" type="PortType" />
          <xs:element name="ID" type="xs:string" />
          <xs:element name="Password" type="xs:string" />
          <xs:element name="Protocol" type="xs:string" />
        </xs:sequence>
      </xs:complexType>
    </xs:element>
  </xs:sequence>
</xs:complexType>
```
X3D Physical Interface Type (2)

```
<xs:simpleType name="IPv4AddressType">
    <xs:restriction base="xs:string">
        <xs:pattern value="((25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9][0-9]|0\.){3}(25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9][0-9]|0\.)" />
    </xs:restriction>
</xs:simpleType>

<xs:simpleType name="PortType">
    <xs:restriction base="xs:unsignedShort">
        <xs:minInclusive value="1" />
    </xs:restriction>
</xs:simpleType>
```
X3D Physical Sensors Example (1)

<?xml version="1.0" encoding="UTF-8"?>
<X3D version="3.2" profile="Immersive"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="x3d-3.2-ext.xsd">
 <head>
 <meta name='filename' content='chair.x3d' />
 </head>
 <Scene>
 <Viewpoint position="0.0 0.0 1.0" description="1M view" />
 <NavigationInfo type=""EXAMINE" "ANY"" />
 <Background groundColor="0.05 0.1 0.3" skyColor="0.05 0.1 0.3 " />
 <Transform scale="1 1 1" translation="-900 600 -900">
 <Shape>
 <Appearance>
 <Material diffuseColor="0.0902 0.05882 0" />
 </Appearance>
 </Shape>
 </Transform>
 </Scene>
</X3D>
X3D Physical Sensors Example (2)

```xml
<IndexedFaceSet
    coordIndex=" 20, 19, 18, -1, 20, 18, 17, -1, 21, 20,
        22, 21, 16, -1, 22, 16, 15, -1, 23, 22, 15, -1, 23, 15, 14, -1">
    <Coordinate point="448.6 326.6 -55.04, 448.6 289.1 -65.81" />
</IndexedFaceSet>
</Shape>
<PhysicalSensor activated="true" id="id0"
xsi:type="CameraSensorType">
    <SensorType>Camera</SensorType>
    <Shape>
        <Sphere radius='10' />
        <Appearance>
            <Material diffuseColor="0.0 0.0 1.0" />
        </Appearance>
    </Shape>
</PhysicalSensor>
```
X3D Physical Sensors Example (3)

<PhysicalProperties>
 <Device>
 <GUID>21EC2020-3AEA-4069-A2DD-08002B30309D</GUID>
 <Name>Camera-101</Name>
 <EventType>Temp</EventType>
 <ControlType>Temp</ControlType>
 <Desc>Description of sensor device and type</Desc>
 </Device>
</PhysicalProperties>
<PhysicalInterface>
 <Connection>
 <Name>Camera manager</Name>
 <Desc>Connection info</Desc>
 <IP>111.111.222.222</IP>
 <Port>8080</Port>
 <ID>user1</ID>
 <Password>passwd1</Password>
 <Protocol>TCP</Protocol>
 </Connection>
</PhysicalInterface>
X3D Physical Sensors Example (4)

```xml
<Width unit="mm">1.0</Width>
<Height unit="mm">1.0</Height>
<AspectRatio unit="percent">10.0</AspectRatio>
<ActualPixelCount>10</ActualPixelCount>
<Megapixels>10</Megapixels>
</PhysicalSensor>
</Transform>
<Transform translation=''-2.4 0.2 1.0' rotation='0.0 0.707 0.707 0.9'>
<Shape>
  <Box />
  <Appearance>
    <Material diffuseColor='0.0 0.0 1.0' />
  </Appearance>
</Shape>
</Transform>
```
X3D Physical Sensors Example (5)

```xml
<PhysicalSensor activated="true" id="id1"
  xsi:type="MovementSensorType">
  <SensorType>Movement</SensorType>
  <Shape>
    <Sphere radius='2.3' />
    <Appearance>
      <Material diffuseColor="1.0 1.0 1.0" />
    </Appearance>
  </Shape>
  <PhysicalProperties>
    <Device>
      <GUID>11EC2020-3AEA-4069-A2DD-08002B30309D</GUID>
      <Name>Movement-101</Name>
      <EventType>Temp</EventType>
      <ControlType>Temp</ControlType>
      <Desc>Description of sensor device and type</Desc>
    </Device>
  </PhysicalProperties>
</PhysicalSensor>
```
X3D Physical Sensors Example (6)

```xml
<PhysicalInterface>
  <Connection>
    <Name>Movement manager</Name>
    <Desc>Connection info</Desc>
    <IP>111.111.222.222</IP>
    <Port>8080</Port>
    <ID>user1</ID>
    <Password>passwd1</Password>
    <Protocol>TCP</Protocol>
  </Connection>
</PhysicalInterface>
</PhysicalSensor> <GPS />
</Transform>
```
<Shape>
 <Cone />
 <Appearance>
 <Material diffuseColor='0.0 1.0 0.0' />
 </Appearance>
</Shape>

<PhysicalSensor activated="true" id="id2" xsi:type="NavigationSensorType">
 <SensorType>Electric</SensorType>
 <Shape>
 <Sphere radius='15.5' />
 <Appearance>
 <Material diffuseColor="0.0 1.0 1.0" />
 </Appearance>
 </Shape>
</PhysicalSensor>
X3D Physical Sensors Example (8)

```xml
<X3D>
  <Scene>
    <PhysicalSensor activated="true" id="id3" xsi:type="ProximitySensorType">
      <SensorType>Proximity</SensorType>
      <Shape>
        <Sphere radius='10' />
        <Appearance>
          <Material diffuseColor="0.0 0.0 1.0" />
        </Appearance>
      </Shape>
    </PhysicalSensor>
  </Scene>
</X3D>
```
X3D Physical Sensor Viewer (1)

- Camera sensor
- Light sensor
- Environment sensor
- Sound sensor
X3D Physical Sensor Viewer (2)

Light sensor
Camera sensor
Electric sensor
Proximity sensor
X3D Physical Sensor Viewer (3)
Implementation of Bike Sensor Representation
Architecture

- X3D Document
 - MAR data
 - MAR Object Manager
 - Visual object
 - Sensor object
 - MAR Scene Graph Manager
 - X3D transform node data
 - MAR Scene / Event Graph
 - Represent information about riding bicycle in a scene
 - Event data
 - Physical Sensor Interface
 - Event Controller
 - External application (to connect sensor)
 - Event streams

- Sensor information collecting device and agent
Operation

- ANT+ communication
- Test using Cycling computer (Sensor values are obtained by GARMIN)
- Collect sensor information using mobile devices considering movement
- External application (to connect sensor)
- Transfer event information to a scene using socket communication
- MAR Scene / Event Graph
- Test using Cycling computer (Sensor values are obtained by GARMIN)
- Collect sensor information using mobile devices considering movement
- External application (to connect sensor)
- Transfer event information to a scene using socket communication
- MAR Scene / Event Graph
X3D Document

Specify bike sensor definition, sensor availability, event type in an X3D document

```xml
<Sensor_Node available="true" type="CYCLE" id="vrlab_Cycle">
  <server type="TCP" ip="192.168.0.11" port="5559" id="anonymous" passwd="" />
  <event_list available-event="CADENCE, SPEED, GPS" />
</Sensor_Node>
```
Bike sensor definition

Sensor format

<table>
<thead>
<tr>
<th>Device</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUID</td>
<td>Name</td>
</tr>
<tr>
<td>Name</td>
<td>Desc</td>
</tr>
<tr>
<td>Event type</td>
<td>IP</td>
</tr>
<tr>
<td>Control type</td>
<td>Port</td>
</tr>
<tr>
<td>Desc</td>
<td>ID</td>
</tr>
<tr>
<td></td>
<td>Password</td>
</tr>
<tr>
<td></td>
<td>Protocol</td>
</tr>
</tbody>
</table>

User defined

- **CYCLE SENSOR**
 - **CADENCE**
 - **SPEED**
 - **Heart Rate**
Bike sensor information specified in the X3D document is transferred to the MAR object manager in the Parser.

```csharp
#region SetData

public void AddX3DData(int nIndex, string strDir, string strFileName, DataSet dsData)
{
    m_Scene.AddX3D(nIndex, strDir, strFileName, dsData);
}

#endregion
Mar Object Manager

MAR object manager transfers sensor information transformed in the Parser to the Scene Graph

```csharp
if (dsData.Tables.Contains("Sensor_Node") == true)
{
 string Sensor_Node_id = dsData.Tables["Sensor_Node"].Rows[0]["Sensor_Node_Id"].ToString();

 bSensor = true;
 strSensorID = dsData.Tables["Sensor_Node"].Rows[0]["ID"].ToString();
 strSensorType = dsData.Tables["Sensor_Node"].Rows[0]["type"].ToString();
```
External Application

Application collects event generated by bike sensors and transfers it to the event controller.

Event generated from sensors is collected by the mobile device and is transferred to the event controller by the application on the device.
The event controller receives event generated from bike sensors, saves the event, and transfer it to an object.

Sensor data is processed in relation to SensorID, Event type (CADENCE, SPEED, GPS) defined in the X3D document.

```csharp
public void SetEvent(DataTable dtEvent)
{
 string ID = dtEvent.Rows[0]["ID"].ToString();
 string TYPE = dtEvent.Rows[0]["TYPE"].ToString();
 string EVENT = dtEvent.Rows[0]["EVENT"].ToString();
 string VALUE = dtEvent.Rows[0]["VALUE"].ToString();

 if (m_dicEvent.ContainsKey(ID) == true)
 {
 string USER = string.Empty;
 if (dtEvent.Columns.Contains("USER") == true)
 {
 USER = dtEvent.Rows[0]["USER"].ToString();
 dtEvent.Columns.Remove("USER");
 }
 m_dicEvent[ID].Rows.Add(dtEvent.Rows[0].ItemArray);
 }
}
```
Mar Scene Graph Manager

MAR scene graph manager integrates and manages sensor data and represents it to the scene.
MAR Scene and event graph represents bike 3D and sensor data received by bike sensors.

```csharp
public override bool Draw()
{
 //DrawTile();

 m_Camera.Update(new Vector2(m_Mainclass.EngineInput.MouseRightMovement.X, -m_Men

 if (m_dtModel != null)
 {
 foreach (DataRow dr in m_dtModel.Rows)
 {
 X3DModel model = (X3DModel)dr["MODEL"];
 int nIndex = int.Parse(dr["INDEX"].ToString());

 bool bPick = false;

 foreach (X3DTransform transform in model.m_lTransform)
 {
```
Bike Sensor Representation Video
(Implementation Results)

- Bike sensor information: time, latitude, longitude, elevation, cadence, temperature
Conclusions

• X3D based physical sensor representation
• Extended data definition for representing and simulating physical sensors in X3D
• Scene graph definition including physical sensors
• Definition of physical properties and interface of each physical sensor
• Implementation of a physical sensor viewer and user interface for each type of physical sensor
• Implementation of bike sensors representation