Multimodal Synchronization in VR

Gerard Kim, Korea University



VR Is multimodal

* VR as a media to deliver rich experience tends to be or will be
multimodal relying and leveraging on many sensing and motor

capabilities of the user

VR Interaction events

 For input and output

* One event - many modalities

« The multimodal input or output for a single event
must occur within “short” time duration (usually
100~300 msec) to be recognized as a single event

by the computer or user - Synchronization issue




Issue 1

 Specifying the need for synchronization - content issue

e Information model for MAR contents

« Added to support for representing multimodal event/behavior
« Simultaneity
« Strict timing
* Input vs. output

* SMIL



SMIL

SMIL (pronounced "smile") stands for "Synchronized Multimedia Integration Language"
and defines scheduling ("Synchronized"), video, audio, images, text ("Multimedia"), multi-

zone screen layout ("Integration”) in an XML-based text file format ("Language").

It is an open specification (royalty-free to use) created by the World-Wide Web

Consortium.

SMIL playlists may be scheduled to play at specific times and repeat intervals. This is the
single greatest difference between SMIL and other XML-based multimedia markup
languages.

 Play at specific time each day

« Play at a given day of week

« Play at a specific time



<smil>
<head />
<body>
<se(q repeatCount="indefinite">
<video src="ad1_15s.mpg" />
<video src="ad2_30s.mpg" />
</seq>
</body>
</smil>



Issue 2

« How to achieve synchronization —browser/implementation issue

 Performance benchmark (vs. theoretical conceptual simulation model)

 Default ergnonmic requirement

* Protocol/Methods in scripting/API for multimodal I/O



A Typical multimodal VR architecture (Avanzini and Crosato, 2006)

sound rendering

Audio +—= Modal 3D

Force - Synthesis Sound -
i ]

| Collision = Simulation
Detection Lo Engine
Simulation|

Y

Control Ll Haptic Y
Algorithms Force Graphics
Engine

Haptic rendering Visual rendering




Usual approach — Best effort

* E.g.
 Collision is detected by the physical simulator
 Visual scene is simulated and updated as fast as possible
« Then it is sent to visual renderer (graphics hardware) as fast as possible

« Sound effect is created/computed/retrieved as fast as possible

« Then it is sent to sound generator as fast as possible

« Haptic feedback is computed as fast as possible

« Then it is sent to the haptic device as fast as possible

« Q: Will all output be synchronized within the time threshold?



Collision Visual/Scene Sound Effect Haptic Graphics Sound Haptic
Physical Simulation Simulation / Update =~ Computation Computation Hardware Hardware Hardware

y

- 100~300ms?

v




Usual approach — Best effort

* Best effort will work e.g. when

Model is not complex and the hardware/software is relatively very fast

We usually disregard hardware response time

Visual/Aural/Haptic rendering time often changes dynamically depending on

the scene situation

We can expect that future VR will require much more processing load on each

of these simulation and rendering threads

 Best effort will someday not work properly movie



Semaphores, Messages, Genlock, Software lock ...

e Let's have these variable processes/threads exchange messages (or apply
existing synchronization schemes) to align output (or input) timing

e Definesem =0

Each thread when finished with simulation and computation and ready to output to

hardware will increment the sem by 1

« Assume hardware will response immediately (for now)

If sem is equal to total number of threads (e.g. 3) then output to respective device

Otherwise thread waits and spins checking the value of sem

When outputs are made, the sem is set back to 0



Zero network delay
Zero device delay

Sem =0

Common event If less than 3

wait for Sem = 3

Haptic

Simulation

Visual

Simulation Aural
Simulation \When Sem = 3

When Sem = 3
(set Sem back to 0) When Sem = 3\
device

device

device



