
Multimodal Synchronization in VR

Gerard Kim, Korea University

VR is multimodal

• VR as a media to deliver rich experience tends to be or will be

multimodal relying and leveraging on many sensing and motor

capabilities of the user

• VR interaction events

• For input and output

• One event - many modalities

• The multimodal input or output for a single event

must occur within “short” time duration (usually

100~300 msec) to be recognized as a single event

by the computer or user Synchronization issue

Issue 1

• Specifying the need for synchronization - content issue

• Information model for MAR contents

• Added to support for representing multimodal event/behavior

• Simultaneity

• Strict timing

• Input vs. output

• SMIL

SMIL

• SMIL (pronounced "smile") stands for "Synchronized Multimedia Integration Language"

and defines scheduling ("Synchronized"), video, audio, images, text ("Multimedia"), multi-

zone screen layout ("Integration") in an XML-based text file format ("Language").

• It is an open specification (royalty-free to use) created by the World-Wide Web

Consortium.

• SMIL playlists may be scheduled to play at specific times and repeat intervals. This is the

single greatest difference between SMIL and other XML-based multimedia markup

languages.

• Play at specific time each day

• Play at a given day of week

• Play at a specific time

<smil>

<head />

<body>

<seq repeatCount="indefinite">

<video src="ad1_15s.mpg" />

<video src="ad2_30s.mpg" />

</seq>

</body>

</smil>

Issue 2

• How to achieve synchronization –browser/implementation issue

• Performance benchmark (vs. theoretical conceptual simulation model)

• Default ergnonmic requirement

• Protocol/Methods in scripting/API for multimodal I/O

A Typical multimodal VR architecture (Avanzini and Crosato, 2006)

Usual approach – Best effort

• E.g.

• Collision is detected by the physical simulator

• Visual scene is simulated and updated as fast as possible

• Then it is sent to visual renderer (graphics hardware) as fast as possible

• Sound effect is created/computed/retrieved as fast as possible

• Then it is sent to sound generator as fast as possible

• Haptic feedback is computed as fast as possible

• Then it is sent to the haptic device as fast as possible

• Q: Will all output be synchronized within the time threshold?

Collision
Physical Simulation

Visual/Scene
Simulation / Update

Sound Effect
Computation

Haptic
Computation

Graphics
Hardware

Sound
Hardware

Haptic
Hardware

100~300ms?

Usual approach – Best effort

• Best effort will work e.g. when

• Model is not complex and the hardware/software is relatively very fast

• We usually disregard hardware response time

• Visual/Aural/Haptic rendering time often changes dynamically depending on

the scene situation

• We can expect that future VR will require much more processing load on each

of these simulation and rendering threads

• Best effort will someday not work properly
movie

Semaphores, Messages, Genlock, Software lock …

• Let’s have these variable processes/threads exchange messages (or apply

existing synchronization schemes) to align output (or input) timing

• Define sem = 0

• Each thread when finished with simulation and computation and ready to output to

hardware will increment the sem by 1

• Assume hardware will response immediately (for now)

• If sem is equal to total number of threads (e.g. 3) then output to respective device

• Otherwise thread waits and spins checking the value of sem

• When outputs are made, the sem is set back to 0

Sem = 0

Visual
Simulation Aural

Simulation

Haptic
Simulation

If less than 3
+1 to Sem

and busy wait for Sem = 3

When Sem = 3
(set Sem back to 0) When Sem = 3

When Sem = 3

device

device

device

Common event

Zero network delay
Zero device delay

