Respiratory Model Architecture

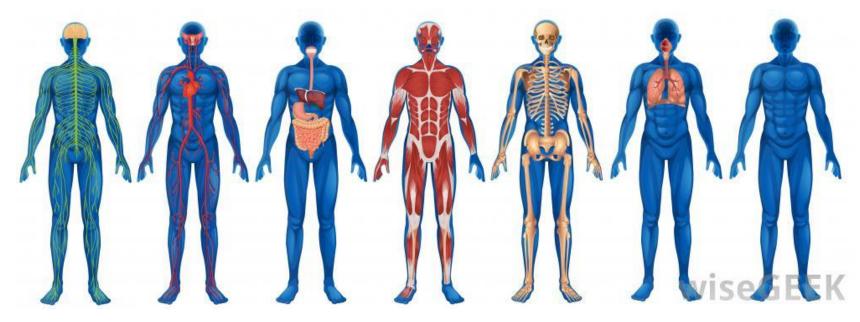
July 29, 2019

SIGGRAPH Korea Chapter Meeting

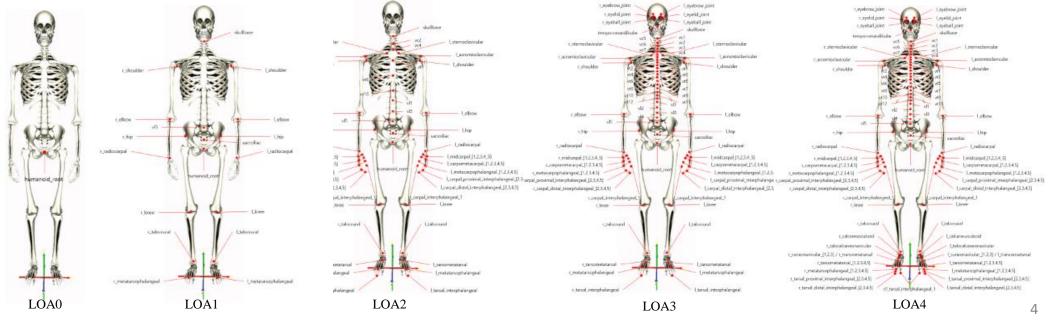
Kwan-Hee Yoo

Chungbuk National University

Objectives

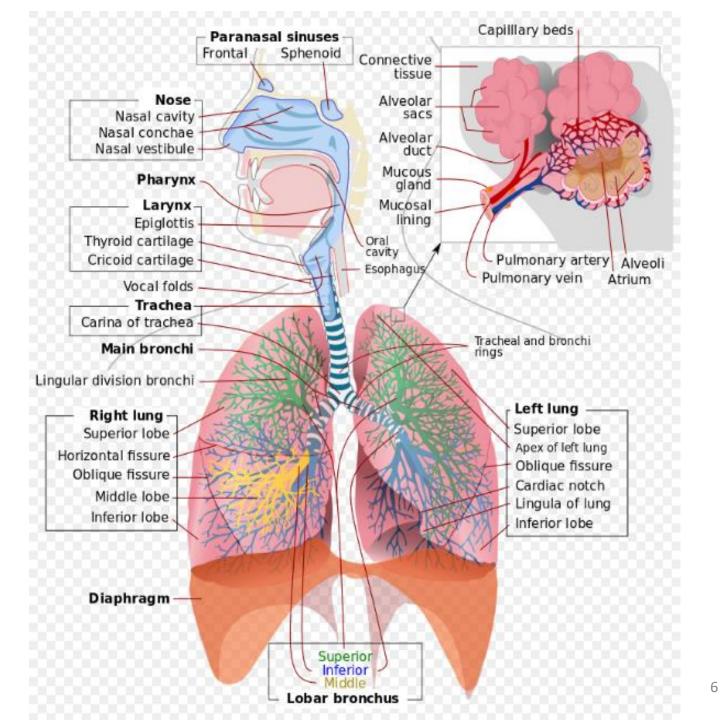

- Respiratory modeling and animation is developed in the purpose of:
 - Construct level of detail of the respiratory modeling features such as:
 - Level of detail of structures (LOD-S) for the whole human respiratory system
 - Level of detail of inner surfaces (LOD-ISs) for the respiratory bronchiole tree
 - Level of detail of lungs (LOD-Lungs) for the lung segments
 - Give joint and segment names of each respiratory structure
 - Generate animation of the respiratory organs based on the modeling structure
 - Male respiratory animation
 - Female respiratory animation

INTRODUCTION


- *Human modeling* represents for human body model, human behavior, and processes that can lead to make the *animation* to the human body.
- The human modeling can be parts of body modeling or anatomy modeling (skeleton, hand, muscles, etc.)

INTRODUCTION

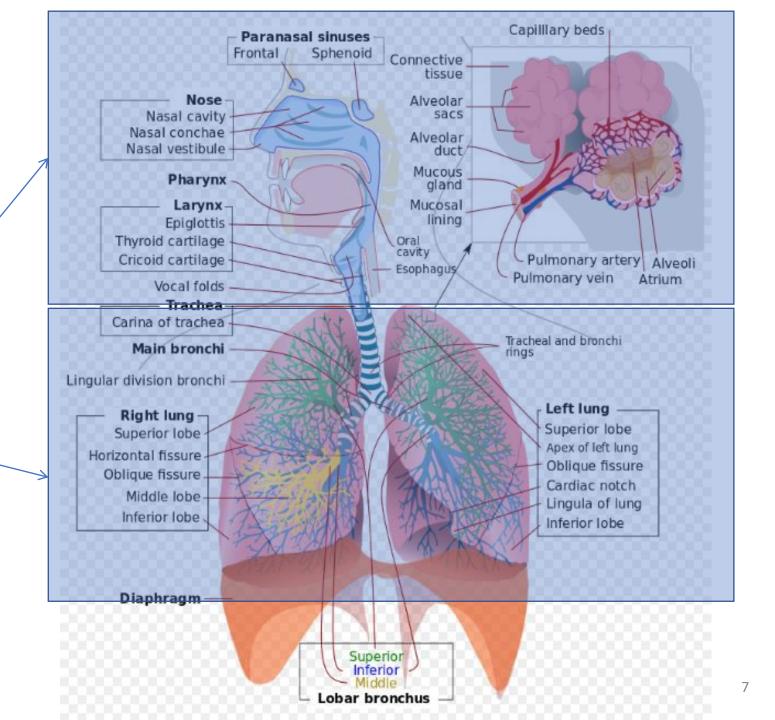
- H-Anim [1-2] the International Standard structure for modeling the skeleton and skin, motion capture, and anatomical simulation of 3D human figures.
- The complexity of joints for a human skeletal hierarchy by levels of articulation (LOA) can generate motion of the skeletons.



INTRODUCTION

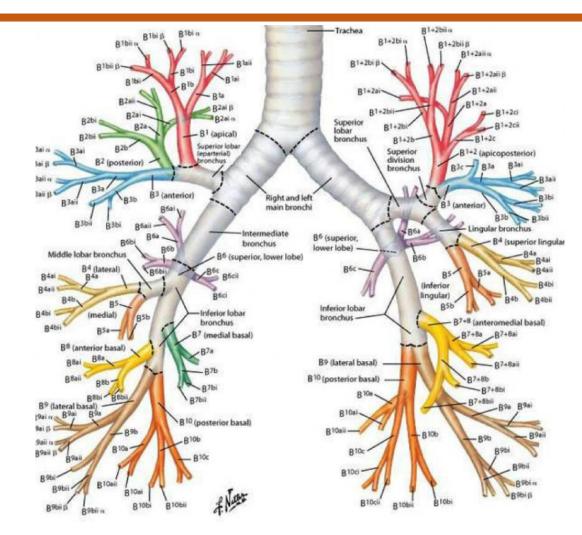
- Even though H-Anim can be used to construct the structure of the human body for giving the modeling and animation to the human figure, H-Anim nowadays is applied for only:
 - Hands
 - Feet
 - Face
 - Body model
- H-Anim hasn't applied for the modeling and animation with human internal organ in 3D scenes yet.

Human respiration Organ



Human respiration Organ

For our human respiratory system model,


it has separated into two parts of

lower and upper respiration tracts.

RESPIRATORY SCHEMA

Nomenclature of bronchi schema

BRONCHIAL TREE

Trachea

--< 2 primary bronchi (Lt/Rt)

--< 2/3 lobar bronchi

--< 8/10 times segments bronchi

--< 10 times segments Bronchiole

(diameter < 1 mm)

--< 5-7 times segments

terminal bronchiole

 Conducting Airways
 Respiratory Unit

 Trachea
 Segmental bronchi
 Subsegmental bronchi (bronchioles)
 Alveolar ducts

 Nonrespiratory
 Respiratory
 Respiratory

 Image: Conducting Airways
 Image: Conducting Airways
 Alveolar ducts

 Image: Conducting Airways
 Image: Conducting Airways
 Image: Conducting Airways

 Image: Conducting Airways
 Image: Conducting Airways
 Image: Conducting Airways

 Image: Conducting Airways
 Image: Conducting Airways
 Image: Conducting Airways

 Image: Conducting Airways
 Image: Conducting Airways
 Image: Conducting Airways

 Image: Conducting Airways
 Image: Conducting Airways
 Image: Conducting Airways

 Image: Conducting Airways
 Image: Conducting Airways
 Image: Conducting Airways

 Image: Conducting Airways
 Image: Conducting Airways
 Image: Conducting Airways

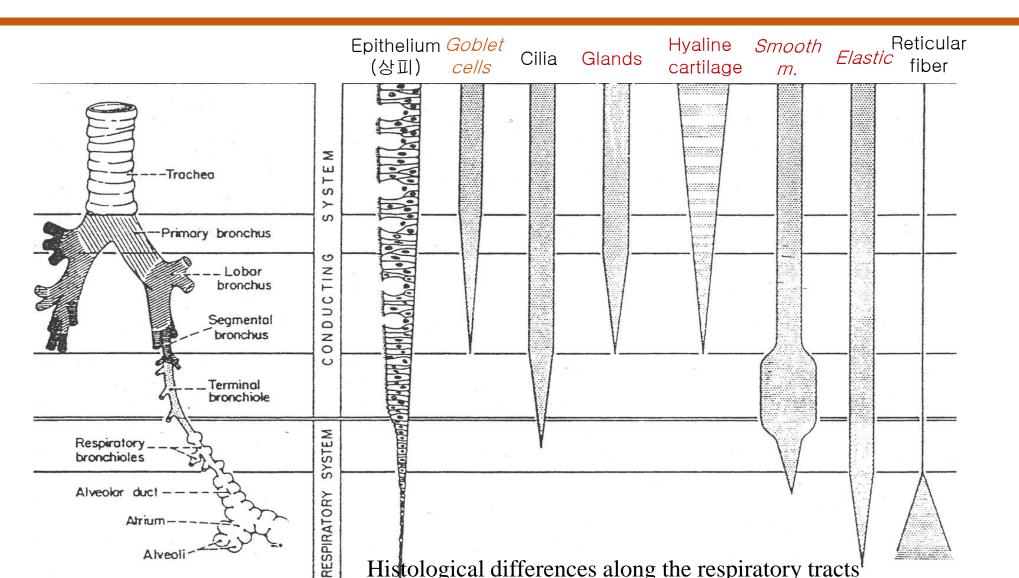
 Image: Conducting Airways
 Image: Conducting Airways
 Image: Conducting Airways

 Image: Conducting Airways
 Image: Conducting Airways
 Image: Conducting Airways

 Image: Conducting Airways
 Image: Conducting Airways
 Image: Conducting Airways

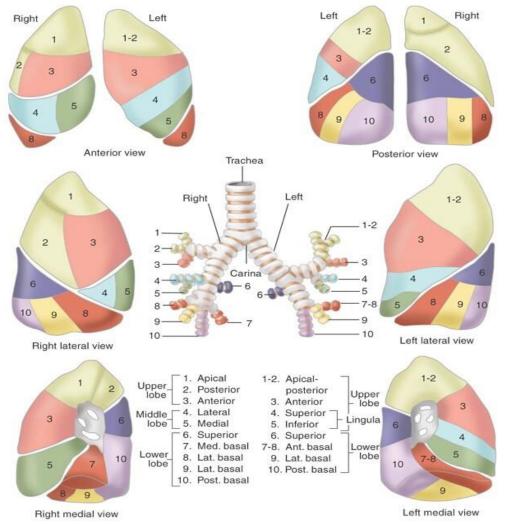
 Image: Conducting Airways
 Image: Conducting Airways
 Image: Conducting Airways

 Image: Conducting Airways
 Image: Conducting Airways
 Image: Conducting Airways


 Image: Cond

--< 18 times segments alveoli

* Pulmonary lobule/ acinus



LEVEL OF DETAIL OF INNER SURFACES (LOD-ISs)

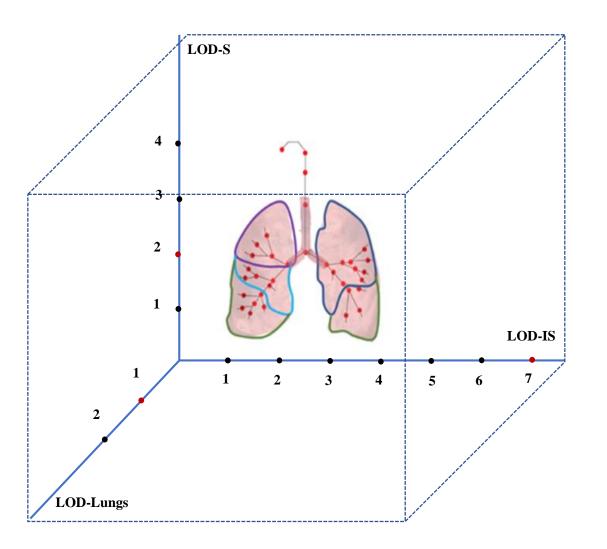
10

Surfaces of left and right lungs

• Right lung has 10 segments:

- The upper lobe contains 3 segments
- The middle lobe contains 2 segments
- The lower consists of 5 segments
- Left lung has 8 segments:
 - The upper lobe contains 2 segments with

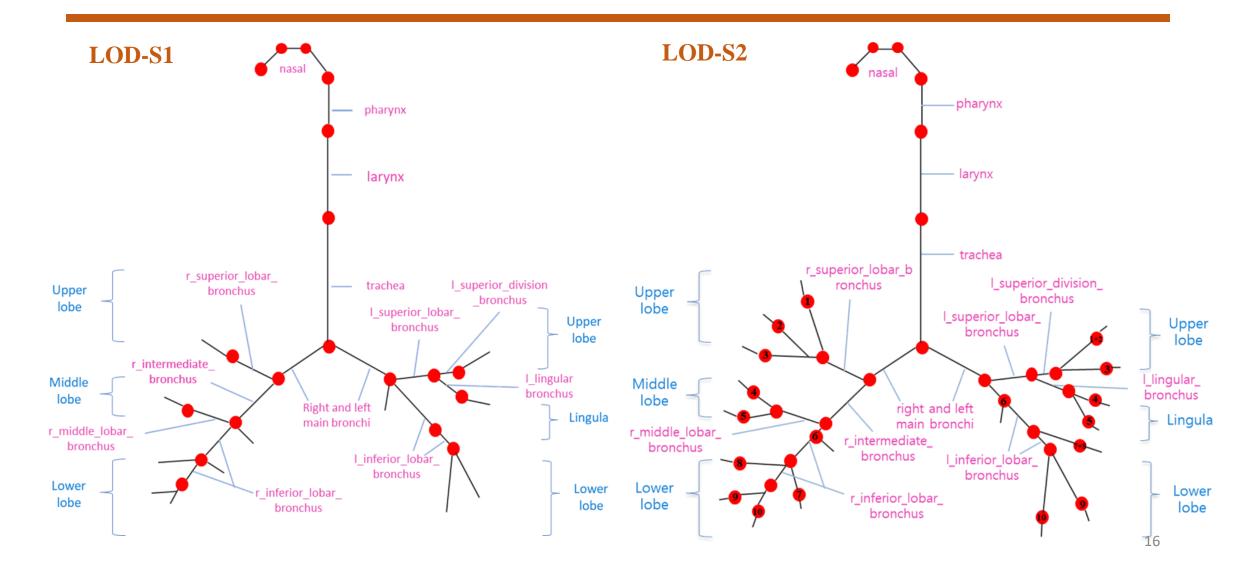
2 lingula segments


• The lower consists of 4 segments

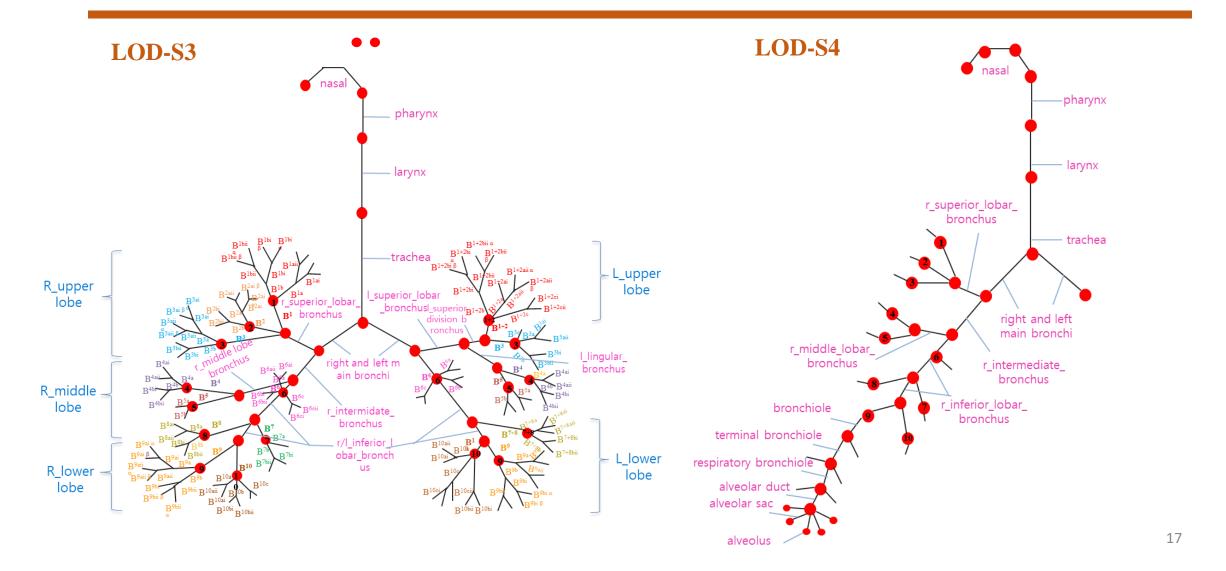
Modeling Strategy for Respiratory organ

- Give modeling of respiratory organ:
 - Construct the level of detail of structure for respiratory skeleton
 - Define the level of detail of inner-surface for the internal organs
 - Define the level of detail of lungs
 - Define joint and segment names of the respiratory structures

- A concept of building the modeling of 3D respiratory organ with a respiratory modeling architecture is to model the organs and give the names of each organ by the combination of 3D axis which represents the level of detail such as:
 - Structures
 - Inner surfaces
 - Lungs



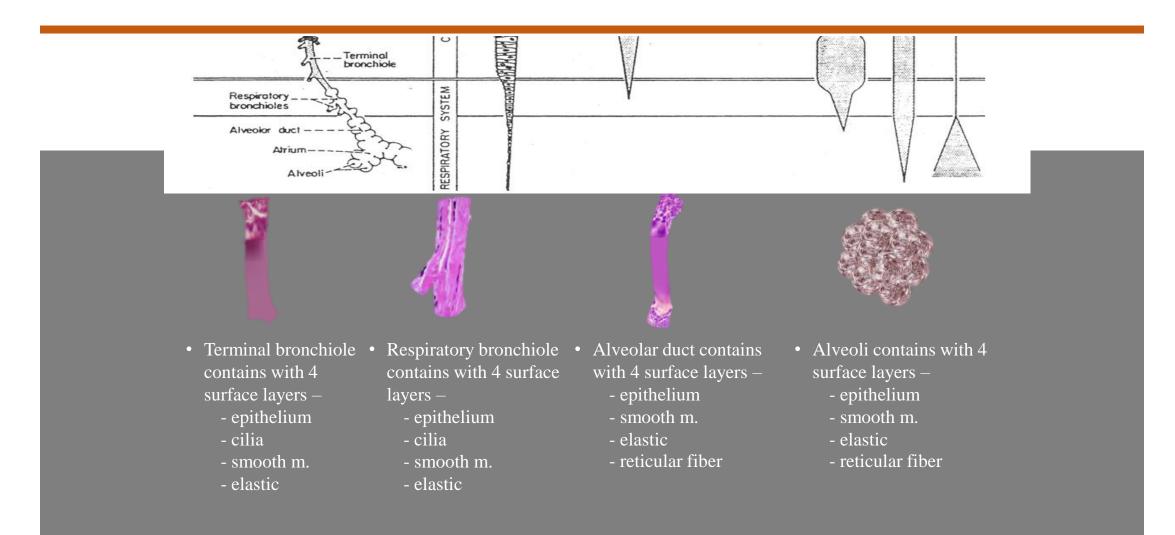
- It refers to structure which contains sets of joint and segment nodes with skin attachment for a humanoid figure.
 - Segments (trachea, larynx, pharynx, nose, bronchus, bronchi, etc.)
 - Joints (larynx-trachea, pharynx-larynx, nose-pharynx, etc.)
 - Skins:
 - Trachea: Epitelilum, Goblet cells, Cillia, Glands, Hyaline Cartilage, Smooth Muscle, Elastic, Reticular Fiber
 - o Terminal Bronchus: Epitelilum, Cillia, Smooth Muscle, Elastic, Reticular Fiber



- *LOD-S1* specifies the simple joint nodes for the respiratory organ *16 joints and 16 segments*.
- *LOD-S2* consists of *34 joints and 34 segments*.
- LOD-S3 combines joints and segments of LOD-S2 with a bunch of bronchiole joints 95 joints and 95 segments.
- LOD-S4 builds on LOD-S3 by adding anatomical detail of each bronchiole tree segment which leads into alveolus.

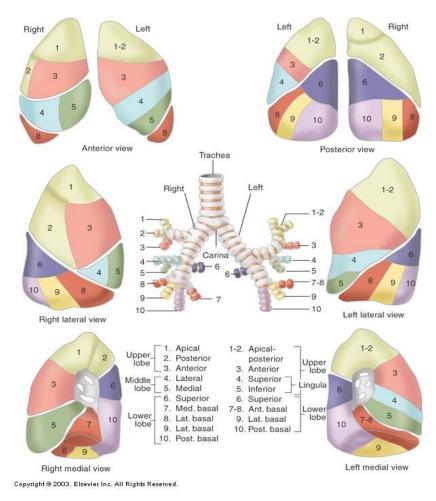
Glands

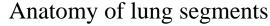
Reticular fiber


LEVEL OF DETAIL OF INNER SURFACES (LOD-ISs)

Textures Surface Layers Epithelium Hyaline cartilage Goblet cells Smooth m. Elastic Smooth m. Hyaline cartilage Cilia Glands Reticular fiber Goblet cells *Epithelium* Cilia Elastic

Surface layers of the trachea, primary bronchus, lobar bronchus, and segmental bronchus contain 8 layers of surfaces by blender tool


LEVEL OF DETAIL OF INNER SURFACES (LOD-ISs)

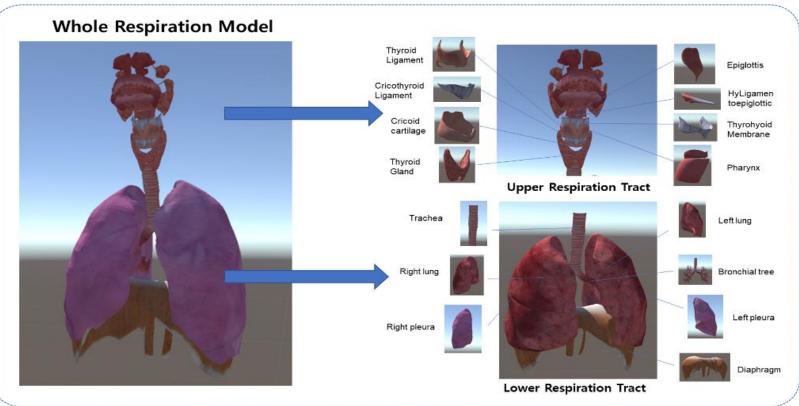

Surface layers of the terminal bronchiole, respiratory bronchioles, alveolar duct and alveoli contain 4 layers of surfaces¹⁹

LEVEL OF DETAIL OF LUNGS (LOD-Lungs)

- Right lung has 10 segments:
 - The upper lobe contains 3 segments
 - The middle lobe contains 2 segments
 - The lower consists of 5 segments
- Left lung has 8 segments:
 - The upper lobe contains 2 segments with 2 lingula segments
 - The lower consists of 4 segments

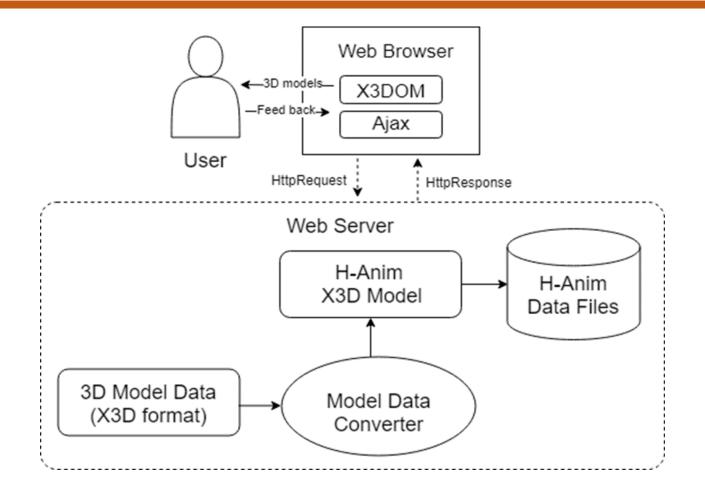
LEVEL OF DETAIL OF LUNGS (LOD-Lungs)

The detail of lungs


	Right Superior/Upper Lobar Bronchus	Right Middle Lobar Bronchus	Right Inferior/Lower Lobar Bronchus
	1. Apical	4. Lateral	6. Superior
Right Lung	2. Posterior	5. Medial	7. Medial Basal
	3. Anterior		8. Anterior Basal
			9. Lateral Basal
			10. Posterior Basal
	Left Superior/Upper Lobar Bronchus	Left Inferior/Lower Lobar Bronchus	
	1+2. Apicoposterior	6. Superior	
Left Lung	3. Anterior	7+8. Anterior Basal	
	4. Superior Lingula	9. Lateral Basal	
	5. Inferior Lingula	10. Posterior Basal	

HUMAN RESPIRATORY SYSTEM

 \succ For our human respiratory system model, it has separated into two parts of lower and


upper respiration tracts.

- Organs involved in respiration system are:
 - 1) nose and nasal cavity
 - 2) pharynx
 - 3) larynx
 - 4) trachea
 - 5) bronchi
 - 6) lungs
 - 7) alveoli, etc.

SYSTEM MODELING ARCHITECTURE

The Respiratory Modeling Architecture

H-ANIM FOR COMPUTER RESPIRATORY MODELING

- To construct for skeletons and surfaces with X3D file format, there are three important nodes composed in H-Anim structure which are:
 - *HAnimHumanoid*: specify the root of H-Anim figure and provide all attachment framework for all part of human (e.g. parts of respiratory organ).
 - *HAnimJoint*: is used to create joint objects and define the relationship of each body segment.
 - *HAnimSegment*: stores each body segment and is a grouping node to create the 3D skeleton and surface model.

The modeling with X3D H-Anim

```
<X3D version="3.0" profile="Immersive"
   xmlns:xsd="http://www.w3.org/2001/XMLSchema-instance"
   xsd:noNamespaceSchemaLocation="http://www.web3d.org/specifications/x3d-3.0.xsd">
 <Scene>
  <HAnimHumanoid DEF='Humanoid Respiratory' name='Humanoid Humanoid Respiratory'>
   <HAnimJoint DEF='hanim HumanoidRoot canvas' containerField='skeleton'
               name='HumanoidBoot'>
    <HAnimJoint DEF='upper respiration' center='0 0 0' name='upper respiration joint'>
     <HAnimSegment DEF='thyroid cartilage' name='thyroid cartilage'>
      <Transform translation='-0.005000 0.4 -0.202600'
                 scale="1.155307 1.215307 1.155307">
        <Shape>
         <Appearance>
          <Material class="remove" diffuseColor="0.588000 0.588000 0.588000"/>
            <ImageTexture DEF="ResTracheaTexture L lung"
                          url="x3dom-master/textures/organs upper throat v53.jpg"/>
         </Appearance>
         <IndexedFaceSet solid="true" creaseAngle="0.5236" texCoordIndex="0 1 2 3 -1 4 5 6
                7 -1 8 9 10 11 -1 12 13 14 15 -1 16 17 18 19 -1 20 21 22 23 -1 24 25 ..."
           coordIndex="0 1 2 3 -1 3 2 4 5 -1 5 4 6 7 -1 7 6 8 9 -1 9 8 10 11 -1 11...">
           <Coordinate DEF="coords ME Thyroid Cartilage Thyroid Cartilage 002"
              point="-0.130095 1.369590 -0.466044 -0.134752 1.369208 -0.481115..."/>
           <TextureCoordinate point="0.1002 0.1790 0.0955 0.1785 0.0965 0.1699..." />
         </IndexedFaceSet>
        </Shape>
      </Transform>
      </HAnimSegment>
     </HAnimJoint>
   </HAnimJoint>
   </HAnimHumanoid>
 </Scene>
</X3D>
```


The modeling and animation with HTML5

<html> <head> ... </head> <body> <!--X3D Content --> <div class="col-md-9 content-model" id="model-3d"> <div class="btn-group" role="group" aria-label="Basic example" style="margin-top:10px;"> <button type="button" id="btnJoint" class="btn btn-secondary">Joint Names</button> <button type="button" id="btnSegment" class="btn btn-secondary">Segment Names</button> <button type="button" id="btnSurface" class="btn btn-secondary">Surface</button> </div> <x3d PrimitiveQuality="High" shows tat="true"> <scene> <inline id="load surface" load="false" nameSpaceName="WebResSkinLayer" mapDEFToID="true" url="RES LOA1 Surface.x3d"> </inline> <inline id="load loa1" nameSpaceName="WebResSkinLayer" mapDEFToID="true" url="RES LOA1 Skeleton.x3d"> </inline> <inline id="load loa2 skeleton" load='false' nameSpaceName="ResLoa2Skelton" mapDEFToID="true" url="RES LOA2 Skeleton.x3d"> </inline> <inline id="load loa3 skeleton" load='false' nameSpaceName="ResLoa3Skelton" mapDEFToID="true" url="RES LOA3 Skeleton.x3d"> </inline> <inline id="load load skeleton" load='false' nameSpaceName="ResLoa4Skeleton" mapDEFToID="true" url="RES LOA4 Skeleton1.x3d"> </inline> <inline id="load loa4 surface" load='false' nameSpaceName="ResLoa4Surface" mapDEFToID="true" url="RES LOA4 Surface.x3d"> </inline> <inline id="load speed1" load='false' nameSpaceName="aaa" mapDEFToID="true" url="MALE-RIB-RES Animation-Speed1.x3d"> </inline> <inline id="load speed4" load='false' nameSpaceName="aaa" mapDEFToID="true" url="MALE-RIB-RES Animation-Speed2.x3d"> </inline> <inline id="load speed1-female" load='false' nameSpaceName="aaa" mapDEFToID="true" url="RES Animation-Speed1-SeparatedKey.x3d"> </inline> <!-- Skeleton Joint and Segment Names --> <inline id="loa1 ske segment" load='false' nameSpaceName="aaa" mapDEFToID="true" url="RES LOA1 Skeleton-Segment.x3d"> </inline> <inline id="loa1 ske joint" load='false' nameSpaceName="aaa" mapDEFToID="true" url="RES LOA1 Skeleton-Joint.x3d"> </inline> <inline id="loa2 ske segment" load='false' nameSpaceName="aaa" mapDEFToID="true" url="RES LOA2 Skeleton-segment.x3d"> </inline> <inline id="loa4 ske segment" load='false' nameSpaceName="aaa" mapDEFToID="true" url="RES LOA4 Skeleton-Segment.x3d"> </inline> <inline id="loa4 ske joint" load='false' nameSpaceName="aaa" mapDEFToID="true" url="RES LOA4 Skeleton-Joint.x3d"> </inline> <inline id="loa2 ske joint" load='false' nameSpaceName="aaa" mapDEFToID="true" url="RES LOA2 Skeleton-Joint.x3d"> </inline>

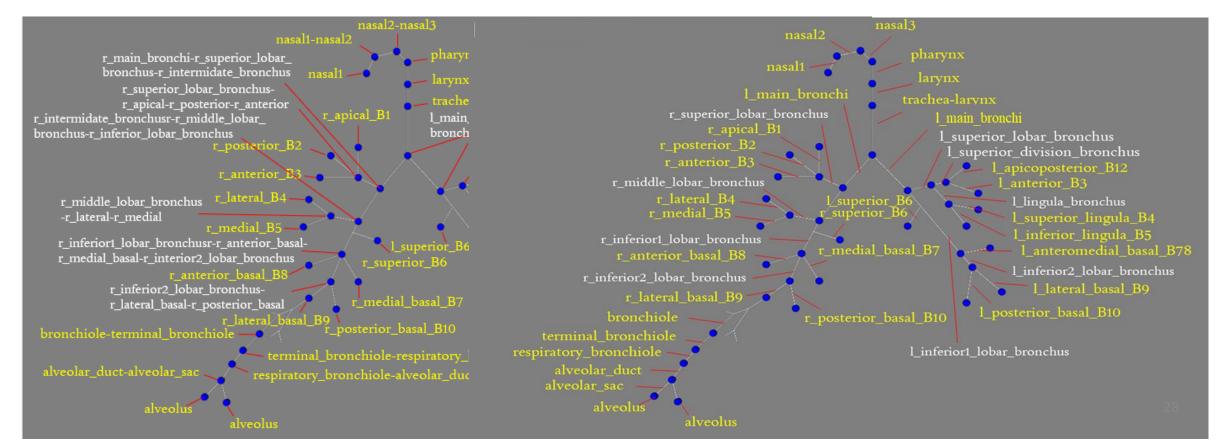
26

</x3d> </div> <!--X3D Content--> </body> </html>

</scene>

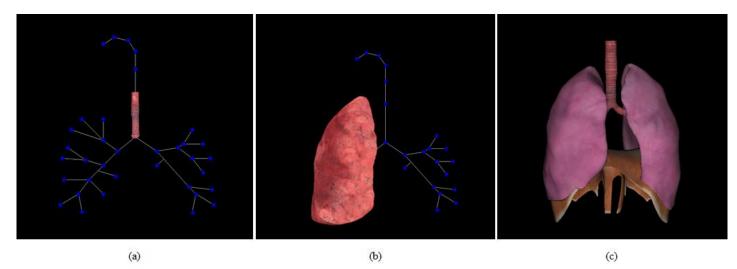
HANIM-X3D STRUCUTUR

HAnimHumanoid object is the root of an H-Anim figure and provides the attachment framewo <Scene> <NavigationInfo speed="1.5" type <Viewpoint centerOfp description="KoreanCharacter01Jin" position="0 1 3" /> <HAnimHumanoid DEF="hanim HAnim" info="humanoidVersion=2.0" containerField="skeleton" name="HAnim" scale="0.0225 0.0225 <HAnimJoint_DEF="hanim_humanoid_root" center="0.000000 30.530001 -0.707600" name="humanoid_root" > <HAnimSegment DEF= name="sacrum" name="sacrum" > <Transform translation="0.000000 <Shape> **HAnimJoint** node is used to define the relationship of each body segment to its imm <Appearance <Material diffuseColor="0.588000 0.588000 0.588000" /> <ImageTexture DEF="KoreanCharacter01JinTextureAtlas" url="Jin.png" /> </Appearance> <IndexedFaceSet creaseAngle="3.14159"</pre> coordIndex="0, 1, 2, -1, 0, 2, 3, -1, 0, ... " texCoordIndex="0, 1, 2, -1, 0, 2, 3, -1, 0, ... " > <Coordinate point="0.0000 10.7900 0.1424, 0.0000 10.0600 -2.8250, ... " /> <TextureCoordinate point="0.6211 0.5754,0.7851 0.5720,0.7614 0.5720, ... " /> </IndexedFaceSet> </Shape> </Transform> </HAnimSegment> <HAnimJoint DEF="hanim sacroiliac" center="0.000000 35.799999 -0.707600" name="sacroiliac" > <HAnimSegment DEF="hanim_pelvis" name="pelvis" > <Transform translation= 0.00000 TO TOTOTO A 707600" > <Shape> HAnimSegment node stores each body segment and is a grouping node that conta <Appearance> <Material diffuseColor="0.588000 0.588000 0.588000" /> <ImageTexture USE="KoreanCharacter01JinTextureAtlas" /> </Appearance> <IndexedFaceSet creaseAngle="3.14159" coordIndex="0, 1, 2, -1, 0, 2, 3, -1, 0, ... " texCoordIndex="0, 1, 2, -1, 0, 2, 3, -1, 0, ... " > <Coordinate point="0.0000 1.0530 0.0273, 0.0000 0.9123 -0.5414, ... " /> <TextureCoordinate point="0.6211 0.5754,0.7851 0.5720,0.7614 0.5720, ... " /> </IndexedFaceSet> </Shape> </Transform> </HAnimSegment> </HAnimJoint> </HAnimJoint> </HAnimHumanoid> </Scene>


RES_LOA2.x3d - Instant Player
 File Navigation View Window ?

nopopmmercial version instant**reality**

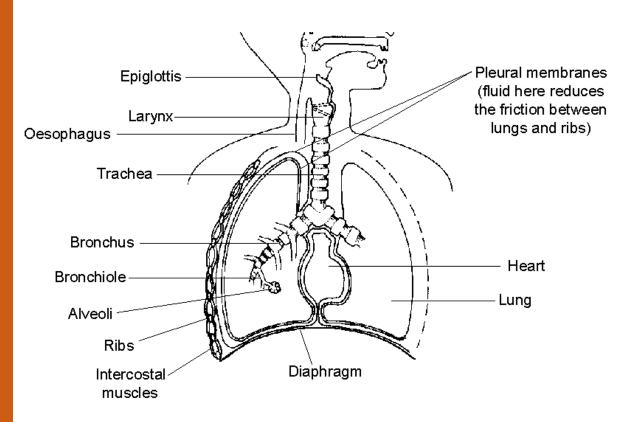
CRITICAL NAMES OF STRUCTURE ORGANS


 By using joint and segment nodes of H-Anim structure, we can define the labels of JOINT and SEGMENT names of each internal organ for the 4 levels of detail of structures.

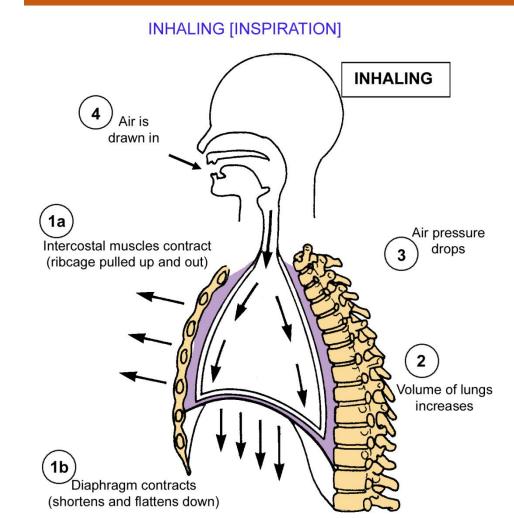
SKINS AND TEXTURES ATTACH

- IndexedFaceSet also contains Coordinate and TextureCoordinate node.
 - Coordinate node is used to construct faces (polygons).
 - **TextureCoordinate** is applied to define a set of 2D texture coordinates used by nodes of vertex-based geometry to map textures to vertices.

Results of skins and surface attach of (a) trachea, (b) lungs, and (c) whole respiratory organ



COMPUTER ANIMATION WITH KERYFRAME ANIMATION


RESPIRATORY SYSTEM

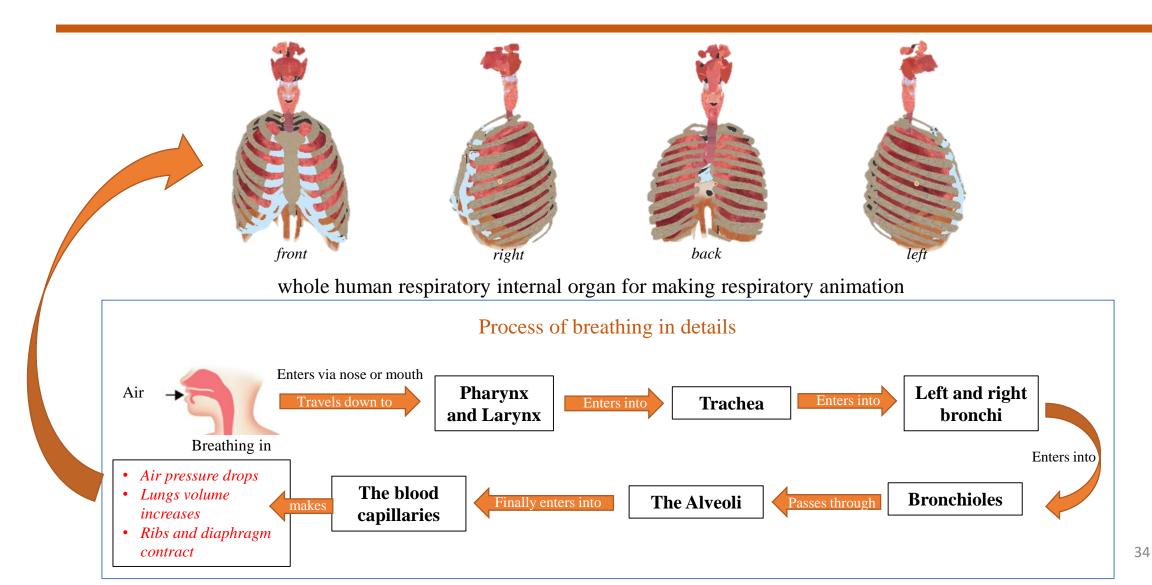
- Lungs are enclosed (along with the heart) between the ribs and the diaphragm.
- The ribs form a protective cage of twelve pairs of bones.
- Intercostal muscles, attached between the ribs to move the ribcage up or down.
- The diaphragm is a sheet of muscle at the base of the ribcage.

MECHANICS OF RESPIRATION

- > Inhaling means breathing in.
- ➤ The brain sends signals to the rib muscles and diaphragm to contract.
- ➤ The ribs are pulled up and out, and the diaphragm also starts flattening downwards.
- \succ The chest volume increases, so the air pressure drops, and air is moved into the lungs and alveoli.

MECHANICS OF RESPIRATION

EXHALING [Expiration]


> Exhaling means breathing out.

➤ The rib muscles and diaphragm relax and move back to the original positions.

 \succ So, air pressure in the lungs increases, and is pushed out from the alveoli.

COMPUTER RESPIRATORY ANIMATION

COMPUTER ANIMATION WITH KEYFRAME ANIMATION

➢ To create computer animation for human respiratory internal organs, we use two types of keyframe animation method that integrate with X3D file format.

- keyframes applied for a whole internal organ
 generates the movements of lungs,
 ribs and diaphragm during breathing by using one interpolation node with the
 keyframe values for a whole organ.
- 2. **different keyframes applied for the separated organs** generates the movements of the respiratory organs with surfaces from trachea to alveoli, which connects with the lung surfaces and makes a contraction of diaphragm during inhaling by using multiple interpolation nodes with the separated keyframe values for each organ.

X3D KEYFRMAE ANIMATION (1/2)

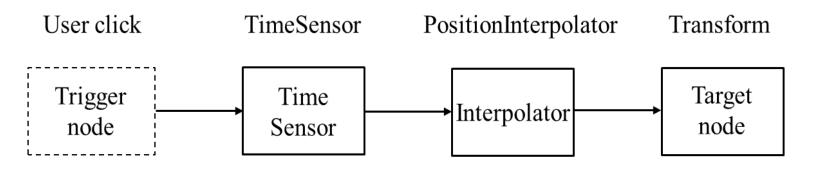


Figure 22. X3DOM keyframe animation routing event model

> How does keyframe animation work for computer respiratory animation?

- 1. the user simply uses HTML events as *onclick* event on his/her nodes to start a timer clock of *timeSensor*.
- 2. Use *timeSensor* node for generating events as time passes and outputting the new event at start of each frame with *cycleInterval* field for duration interval of animation.

<timeSensor DEF="time" cycleInterval="0.2" loop="true"> </timeSensor>

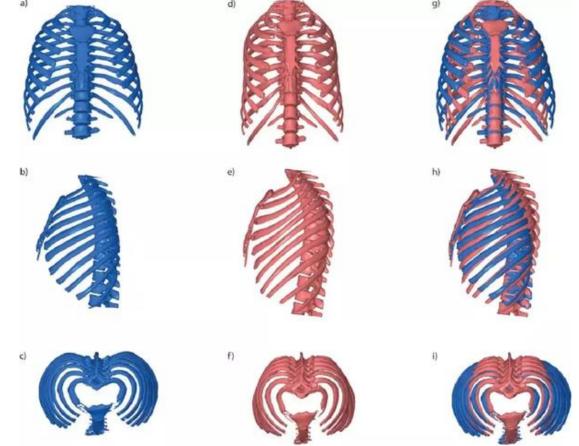
X3D KEYFRMAE ANIMATION (2/2)

3. X3D Interpolator node provides feature of how to use the output to generate by one object to control other objects with X3DOM.

1. Using one interpolation with the keyframe values for a whole organ

<PositionInterpolator DEF="animation" key="0.0 0.2 0.45 0.65 1.0" keyValue="1.0 1.0 1.0, 1.10 1.10 1.10, 1.20 1.20 1.20, 1.30 1.30 1.30, 1.0 1.0 1.0" onoutputchange="diaphragmDown"> </PositionInterpolator>

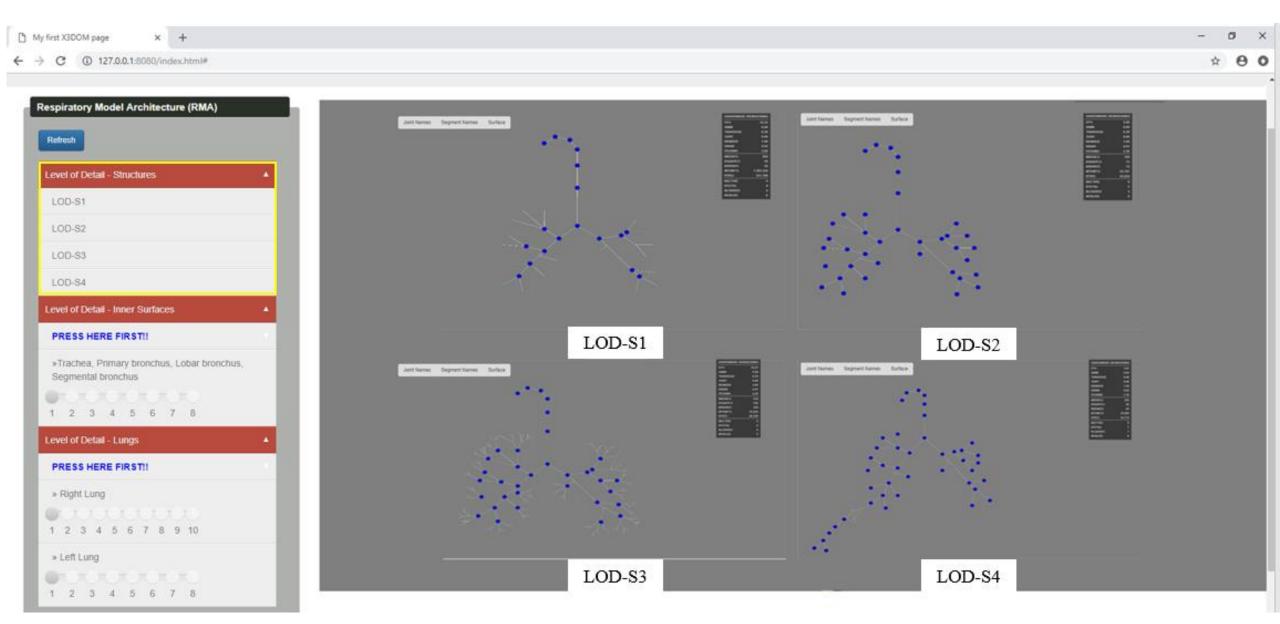
2. Using the separated interpolations with different keyframe values for each organ


<PositionInterpolator DEF='RIBCAGE' key='0.0 0.50 1.0' keyValue='0.53 0.53 0.53 0.63 0.63 0.63 0.53 0.53 0.53 '/>

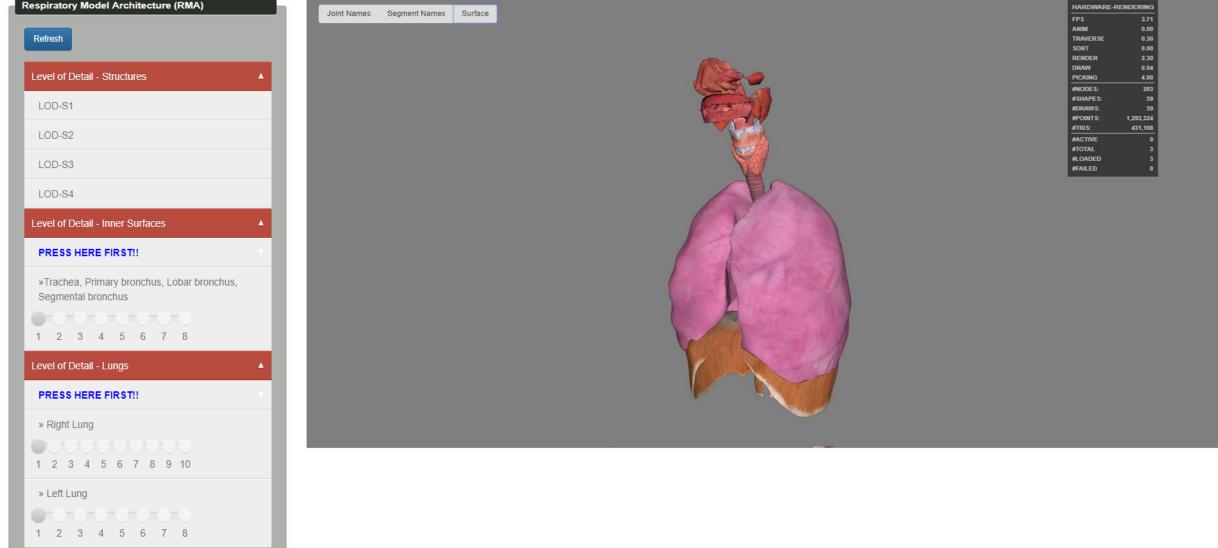
4. ROUTES are used to connect an output field of one node to the input field of another node.

MALE RIBS AND FEMALE RESPIRATORY

- Female respiratory system has smaller radial ribcage, greater inclination of ribs, short diaphragm length, shorter inspiratory time, shorter expiratory time than male respiratory system.
- With this different shape of the respiratory organ, the respiratory organ of male and female performs animation in different ways.



COMPUTER RESPIRATORY MODELING


3D RESPIRATORY VISUALIZATION	Level of Detail - Structure 3	
Refresh Level of Detail - Structures LOD-S1	ames Surface	HARDWARE-RENDERING FPS 9.26 ANIM 1.00 TRAVERSE 0.70 SORT 0.00 RENDER 3.60 DRAW 0.02
LOD-S2 LOD-S3 LOD-S4 Level of Detail - Inner Surfaces		PICKING 4.60 #NODES: 628 #SHAPES: 230 #DRAWS: 230 #POINTS: 22,265 #TRIS: 40,320 #ACTIVE 0 #TOTAL 16 #FAILED 0
Level of Detail - Lungs		
Male breathing animation with a single keyframe		

4 Levels of Detail of Structures

Computer Modeling of Respiratory Internal Organ with Surface

My first X3DOM page × +	-	٥	×
← → C ① 127.0.0.1:8080/index.html#	☆	0	0
			Î

Computer Animation of Respiratory Internal Organ

My first X3DOM page ×	+			-	٥	×
\leftrightarrow \rightarrow C (i) 127.0.0.1:8080/ind	dex.html				☆	9 :
🗅 My first X3DOM page 🛛 🗙	+			-	٥	×
← → C ③ 127.0.0.1:8080/ind	dex.html				☆	9 :
1						

3D RESPIRATORY VISUALIZATION

Slow Breathing Animation of Female Respriatory System

Respiratory Model Architecture (RMA)		
Refresh		
Level of Detail - Structures	•	
Level of Detail - Inner Surfaces	T	
Level of Detail - Lungs	•	

Respiratory Keyframe Animation

- » Male breathing animation with a single keyframe
- Slow breathing
- Fast breathing
- » Female breathing animation with the separated keyframes
- Slow breathing

HARDWARE-	RENDERING
FPS	60.00
ANIM	2.00
TRAVERSE	0.50
SORT	0.00
RENDER	1.70
DRAW	0.03
PICKING	2.90
#NODES:	223
#SHAPES:	63
#DRAWS:	63
#POINTS:	1,332,912
#TRIS:	444,304
#ACTIVE	0
#TOTAL	
#LOADED	
#FAILED	0

CONCLUSION AND FUTURE WORK

- Our proposed methods will create a computer modeling and animation for the human respiratory internal organ.
- We use H-Anim to construct the level of detail of structures, inner surfaces, lungs, and give the names to each structure of joint and segment.
- We use single interpolation and the separated interpolation from keyframe animation to generate respiratory animation.
- We use X3DOM framework for computer respiratory modeling and animation.

THANK YOU!