Virginia Tech

US Navy Workshop

December 6, 2019

Advanced Research Computing (ARC) Center for Geospatial Information Technology (CGIT)

Topic Overview

Goal:

cover Virginia Tech's experience and outlook on 3D GIS & Facilities Management over the last 18 years and into the future

We will cover 3 topics:

- CGIT
- ARC
- Collaborations & Impact

Virginia Tech (VT): Ut Prosim

- A land-grant University serving the Public Good
- Science and the Reproducibility of Research is a core mission
- Investments in a broad spectrum of digital content **and access**:
 - Capture (i.e. scanning)
 - Design
 - Simulation
 - Archival and sharing
 - Analytics
- International Standards provide: interoperability, accessibility, and durability
 the basis for a long-term strategy

CGIT

GIS Interoperability

Data Fusion, Analytics, and Web apps to solve real problems

Integrating:

- Climate
- Tides
- Flooding
- Connectivity (Broadband)
- BIM

VT Advanced Research Computing

X3D Blacksburg

X3D Blacksburg

An ongoing collaborative to build a Mirror World / Digital Twin of our campus, town, and surround

- Used lidar data to establish more accurate building elevations
- Used Lidar to provide tree locations, which were then populated with different 3D LOD models
- <u>Videos</u>
 - <u>https://vimeo.com/279335135</u>
 - <u>https://www.youtube.com/watch?v=Y5ViPrmJ848</u>

Online

X3D Blacksburg on GeoSer

X3D LODs

Binary X3D tiles

Apply Custom URL

Watershed and Plantings

Topography and changes are essential for accurate flood models and hazard mitigation plans.

We have flown:

- Stroubles Creek (Stream Lab)
- Catawba Sustainability Center
- Dozens of other sites in Virginia, including agricultural experiment stations
- <u>Videos : https://www.youtube.com/watch?v=Y5ViPrmJ848</u>

Immersive, Multi-user 3D Blacksburg

Remote site visits

Remote site visits

3D Blacksburg Collaborative Planning

a 😂

Web3D: Extensible 3D (X3D)

TIN, Imagery, Tree locations

Haitao Wang, Xiaoyu Chen, Nicholas Polys and Peter Sforza (2017). "A Web3D Forest Geo-Visualization and User Interface Evaluation". In Proceedings of the 22nd International Conference on 3D Web Technology (Web3D '17). ACM, New York, NY, USA.

PointClouds and X3D Rendering

PointProperties in X3D 4.0

http://metagrid2.sv.vt.edu/~npolys/Fusality_Fall2017/home.html

S metagrid2.sv.vt.edu/-yansh93/c × + ← → C O Not secure | metagrid2.sv.vt.edu/~vansh93/catawba50.htm Custom Shader in X3DOM Busality Fall 2017 × 🚱 metagrid2.sv.vt.edu/~npolys/Fu: × + n × ← → C O Not secure | metagrid2.sv.vt.edu/~npohy/Fusality Fall2017/Catawba/colOutTest 50 apoted. 0 X3DOM output created with InstantReality aopt tool. nt Property Parameters uation B: 0 enuation C: 0 0 🧕 N. F 🧠 😼 🛤 🗟 🔁 🧠 💷

Training & Safety

Sogand Hasanzadeh

PhD Dissertation

Latent Effects of Safety Interventions

Sogand Hasanzadeh

Advanced Research Computing: arc.v

Hasanzadeh, 2019

Latent Effects of Safety Interventions

Sogand Hasanzadeh

Hasanzadeh, 2019

Latent Effects of Safety Interventions

Advanced Research

Hasanzadeh, 2019

Simulation

Helicopter landing dynamics at sea

Virginia Tech @VTEngineering team uses #X3D to visualize and test multiple control algorithms for ship and aircraft maneuvers,

working to improve safety and increase insight. Cornel Sultan, Keren Chen, Nicholas Polys Virginia Tech

- VRS-RAPID is a collaborative, interactive, and 3D virtual-reality web-application for real-time simulation of nuclear systems
- Users connect to VRS-RAPID to collaborate on modeling and simulation of e.g., nuclear reactors
- Valuable tool for nuclear industry operators and regulators, educators and students, and continuing and professional training

- Producing X3D enables the delivery of results to other platforms, such as immersive Virtual Reality
- For example, VRS output data can be loaded in the 26.7 million stereo pixel HyperCube in the VT Visionarium Lab
- Head tracking and embodied interaction at the human scale creates a highly immersive experience supporting spatial understaning
- Using projection VR, users can see each other and themselves in the space

HTML5 + X3D Using SRC 3D Compression

- 1) 440K points = 23MB.ply , 21MB.x3d
- 2) Compressed.X3D = 3.4 MB
- 3) Interaction through Web and WebVR
 - 50-60 fps on laptop

4) Gltf Inlining also demonstrated

Take-Aways

- X3D and open standards leadership helps Virginia Tech fulfill its mission everyday
- X3D supports interoperable data, unlocking value across the enterprise, application stovepipes, and hardware platforms
- X3D is durable, providing a data strategy longer than silicon valley life-cycles

npolys@vt.edu

