
An Effective Method for Specifying Projective Texture Mapping 
in X3D 

In-Kwon Kima, Add (Brutzman, Puk), Jong-Sung Hac, Nakhoon Baeke, Kwan-Hee 
Yooa,b,* 

aDept. of Digital Information Convergence, Chungbuk National University 
bDept. of Computer Science, Chungbuk National University 

cDept. of Game and Contents, Wooksuk University 
e School of Computer Sci. and Eng., Kyungpook National University 

Elsevier use only: Received date here; revised date here; accepted date here 

Abstract 

This paper presents the specification and implementation of a new functionality called projective texture mapping (PTM) in 
the Extensible 3D (X3D) that is the ISO standard for defining 3D interactive web-contents. PTM is a method projecting an 
image, also known as the texture image, onto a scene as if by a slide projector, which is useful for enhancing image quality in 
a variety of lighting techniques. Even though there have been attempts to specify PTM in X3D, users need to iteratively 
specify images and coordinates of textures on each object in a 3D scene. As a standard functionality of X3D, we suggest 
effective PTM methods to provide perspective and parallel projective textures, and the implementation results of PTM 
rendering in an open source X3D viewer called FreeWRL are shown. 

Keywords: Projective texture mapping; X3D; scene graph 

1. Introduction 

The Extensible 3D (X3D) [1,2] is a royalty-free ISO 
standard file format for representing interactive 3D 
contents in the world-wide-web, based on the Extensible 
Markup Language (XML). This paper is concerned with 
developing a new texture mapping functionality called 
Projective Texture Mapping (PTM) in X3D. PTM is a 
specialized texture mapping method, which was first 
introduced by Everitt [3]. PTM actually allows a texture 
image to be projected onto objects as if projected by a slide 
projector. This technique is useful for various applications 
such as photo formation [4,5] as well as for enhancing 
image quality in rendering [6,7,8]. X3D represents the 3D 
virtual world with the scene graph that is a general data 
structure commonly used in the area of 3D computer 
graphics and Web environment. A scene graph is the 
ordered collection of fundamental components called node 

in a graph or tree structure. A node may have many 
children, with the effect of the parent node applied to all its 
children nodes. 

Even though X3D includes various nodes for texturing 
features, none of them has supported PTM yet. Kamburelis 
[9] suggested a PTM method by using the technique of 
shadow mapping of Everitt [6,7] with additive PTM 
information. Kim et. al [10] also tried to support PTM with 
different methods defining an independent node for PTM 
information for Appearance node. These methods are 
inconvenient and exhaustive because users have to 
repeatedly define nodes for PTM information for each of 
objects in a scene. In other words, PTM is processed in 
local for each object in the scene. 

In order to resolve the inconvenience, this paper 
suggests an effective method in order to globally process 

 
 



 Submitted to Elsevier Science 2 

PTM with respect to all objects at once in a scene. And we 
also define two types of PTM nodes: perspective and 
parallel PTM nodes, still strictly obeying the existing 
hierarchy of X3D node structures. The two types of 
proposed PTM nodes have been implemented in X3D 
viewer of FreeWRL [11] by using OpenGL shader 
languages [12]. The implementation details and those 
results are presented in Section 4. 

We will start with previous works in Section 2. The 
details of the PTM node design were presented in Section 3. 
Experimental results are followed in Section 4. Finally 
conclusions and future work are followed. 

2. Related Works 

In this section, we show a set of works directly related 
to PTM methods. Concepts and theoretical details are 
presented. 

2.1. PTM Concept 

PTM is a technique to project a texture image onto the 
surfaces of objects within the projection volume with a 
view from a certain spot called 3D scene projection point, 
as illustrated in Fig. 1. The projection volume is determined 
by projection parameters such projection point, direction, 
and aspect ratio, which was described in the process of 
PTM by Everitt [3]. 

Fig. 1. Projective Texture Mapping[10] 
 
In the classical texture mapping techniques, 2D texture 

coordinate values with the range from 0 to 1 are mapped 
onto the vertices of 3D models. In order to understand PTM 
concept, we consider the object linear method in which a 
texture is fixed in an object space. The method computes 
the texture coordinate, 𝑇𝑇𝑡𝑡 = (𝑠𝑠, 𝑡𝑡, 𝑟𝑟, 𝑞𝑞)  for a vertex,𝑉𝑉𝑡𝑡 =
(𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0,𝑤𝑤0),  by multiplying a concatenated matrix 𝑇𝑇0 
into the vertex, 𝑉𝑉𝑡𝑡, as shown in the following Equations:  

                                                        

�

𝑠𝑠
t
r
q
� = 𝑇𝑇0 �

𝑥𝑥0
𝑦𝑦0
𝑧𝑧0
𝑤𝑤0

�                                        (1) 

with  

𝑇𝑇0 =

⎣
⎢
⎢
⎢
⎢
⎡
1
2

   0   0   1
2

0   1
2

   0   1
2

0    0  1
2

   1
2

0    0   0    1⎦
⎥
⎥
⎥
⎥
⎤

𝑃𝑃𝑝𝑝𝑉𝑉𝑝𝑝𝑀𝑀                              (2) 

where 𝑃𝑃𝑝𝑝 , 𝑉𝑉𝑝𝑝 , and 𝑀𝑀  are transformation matrices for 
projection, camera view, and model, respectively. 

However, the concept does not reflect one of projective 
texture mapping which allows a texture image to be 
projected onto the scene as if by a slide projector. Since the 
texture to be projected is fixed in an eye space with 
viewpoint, the method called eye linear, is used to the 
texture coordinates on an object in PTM. First, object 
coordinates are transformed into the eye space by the 
following equation: 

�

𝑥𝑥𝑒𝑒
𝑦𝑦𝑒𝑒
𝑧𝑧𝑒𝑒
𝑤𝑤𝑒𝑒

� = �
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝐶𝐶

View
Matrix

� �𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀Matrix � �

𝑥𝑥0
𝑦𝑦0
𝑧𝑧0
𝑤𝑤0

�             (3) 

Then, a matrix called the eye linear generator is multiplied 
as follows: 

                               (4) 

The eye linear generator matrix Ts can be approximated as 
the following Equation: 

,                            (5) 

based on a projector instead of a camera in order to 
represent the projector's properties. 

2.2. Previous PTM extensions with local effects 

Kamburelis obtained PTM coordinates by extending the 
existing X3DLightNode with new fields describing the 
minimum and maximum distance of the projection and the 
up-vector of the light, as in Table 1 [9].  The obtained 
coordinates are used in the PTM of 
ProjectedTextureCoordinate node inheriting the existing 
X3DTextureCoordinateNode as in Table 2. 

Since this method has the structure dividing the nodes 
into ProjectedTextureCoordinate and ImageTexture, PTM 
necessarily requires the interaction among the nodes of 
X3DLight, ProjectedTextureCoordinate, and ImageTexture. 



 Submitted to Elsevier Science 3 

Furthermore, users have to iteratively define the two nodes 
of ProjectedTextureCoordinate and ImageTexture for each 
of objects in a virtual scene. 

Table 1. New fields in X3DLightNode. 

SFFloat [in,out] projectionNear 0  
SFFloat [in,out] projectionFar 0  
SFBool [in,out] up 0 0 0 
SFBool [in,out] defaultShadowMap NULL 

 

Table 2. ProjectedTextureCoordinate Node 

ProjectedTextureCoordinate : X3DTextureCoordinateNode 
SFNode [in,out] projector NULL  
# [SpotLight, DirectionalLight, X3DViewpointNode] 

 
Recently, Kim et al. [10] tried to resolve the limitations 

of Kamburelis’s method by defining a new node 
ProjectiveTexture as in Table 3. This method generates an 
independent projector node PerspectiveProjector as in 
Table 4, and divides the two nodes into X3DLight and 
PerspectiveProjector to obtain the PTM coordinates, while 
Kamburelis’s method exploits the node X3DLight. 

Still the inconvenient problem has been also remained 
that users have to iteratively define two other nodes of 
ProjectiveTexture and Appearance for each of objects in a 
scene. 

Table 3. ProjectedTextureCoordinate Node 

ProjectedTextureCoordinate : X3DTextureNode { 
SFNode [in,out] metadata Null 

  [X3DMetadataObject] 
SFString [in,out] projectorName "" 
SFBool [in,out] value true 
MFString [in,out] url "" 
}    

 

Table 4. PerspectiveProjector Node 

PerspectiveProjector : X3DChildNode { 
SFNode [in,out] metadata Null 

  [X3DMetadataObject] 
SFString [in,out] description "" 
SFVec3f [in,out] centerOfProjection 0 0 0 (-∞,∞) 
SFVec3f [in,out] direction 0 0 1 (-∞,∞) 
SFFloat [in,out] fieldOfView 45 
SFFloat [in,out] aspectRatio 1 
SFFloat [in,out] nearFar 1 10 
SFVec3f [in,out] upVector 0 1 0 
}    

 
 

3. A New PTM Extension with Global Effects 

Similar to the X3DLight node in the X3D node structure 
hierarchy, a PTM node needs to be defined without any 
violation of the original hierarchy in order to globally effect 
all objects in a scene at once.  First, we define a new node 
TextureProjectorNode inheriting ChildNode as like the 
LightNode obtaining the global effect by inheriting the 
ChildNode, as illustrated in Fig. 2. Next, two other new 
nodes TextureProjectorPerspective and 
TextureProjectorParallel are defined by inheriting 
TextureProjectorNode that have the effects of perspective 
and parallel projection, respectively. 

 

 

Fig. 2. New Nodes in the Hierarchy of X3D Node Structure 

Table 5, 6, and 7 describe each definition of three node 
TextureProjectorNode, TextureProjectorPerspective, and 
TextureProjectorParallel, in which the last columns 
describe the default value of each field. 
TextureProjectorNode inherits X3DChildNode of the 
original X3D hierarchy, and again other two nodes 
TextureProjectorPerspective and TextureProjectorParallel 
inherits TextureProjectorNode. 

In Table 5, the field “description” is a value identifying 
projective texture projectors arranged in 3D space. The 
projectors are located in the position of “location” with the 
viewing direction of “direction”. The field “aspectRatio” of 
the projectors cannot be given by users, but can be obtained 
from other fields. The fields of “nearDistance” and 
“nearDistance” represent the minimum and maximum 
distances that can be projected, respectively. The fields of 
“global” and “on” are defined to represents the 
characteristics of children nodes; if “global” is true and “on” 



 Submitted to Elsevier Science 4 

is false, the projector node effects only its children nodes, 
but it effects all objects within the projected volume if 
“global” is false and “on” is true. The 2D image to be 
projected is described in the field “texture”. 

 

Table 5. X3DTextureProjectorNode 

X3DTextureProjectorNode:X3DChildNode { 
SFNode [in,out] metadata Null 

  [X3DMetadataObject] 
SFString [in,out] description "" 
SFVec3f [in,out] location 0 0 0 (-∞,∞) 
SFVec3f [in,out] direction 0 0 1 (-∞,∞) 
SFFloat [in,out] aspectRatio  
SFFloat [in,out] nearDistance 1 
SFFloat [in,out] farDistance 10 
SFBool [in,out] global  
SFBool [in,out] on  
SFNode [in,out] texture  
  [X3DTexture2DNode] 
}    

 
In Table 6, two more fields are added in order to 

describe the properties of perspective projection; 
“fieldOfView” is the view angle of the projector, and 
“upVector” is the angle rotating along Z-axis. 

Table 6. : X3DTextureProjectorPerspective Node 

X3DTextureProjectorPerspective:X3DTextureProjectorNode { 
SFFloat [in,out] fieldOfView π/4 (0,π) 
SFFloat [in,out] aspectRatio  
}    

 
Table 7, only a simple field is added in order to describe 

the properties of parallel projection; “fieldOfView” is the 
X-, Y-coordinate values of the screen. 

Table 7. X3DTextureProjectorParallel Node 

X3DTextureProjectorParallel:X3DTextureProjectorNode { 
SFFloat [in,out] fieldOfView (-1,1,-1,1) (-∞,∞) 
}    

 

4. Implementation and Experiments 

We implemented the rendering of newly defined PTM 
nodes with OpenGL shader language (GLSL) in 
FreeWRL,2015 that is an open source X3D viewer. The 
system environments for implementing and testing the 
projective texture mapping of X3D is described in Table 8. 

Table 8. System Environments 

Software 

OS 
MS Windows 7 

(64 bit version) 

Compiler MS Visual Studio 2008 

3D Graphics API OpenGL Shader Language 

X3D Viewer FreeWRL (C Language) 

Hardware 

CPU 
Intel(R) Core(TM) i7-

4702MQ CPU @ 2.20GHz 

Memory 12GB 

GPU NVIDIA  GeForce GT 740M 

 
 

 

Fig. 3. Pipeline Architecture of FreeWRL 

 

Fig. 3 illustrates the pipeline architecture of FreeWRL, 
in which, each node of X3D script files are parsed to 
produce a tree hierarchical structure, and then rendered by 
shader programs. As illustrated in Appendix A, FreeWRl 
can be extended with PERL programming to parse the new 
nodes: X3DTextureProjectorPerspective and 
X3DTextureProjectorParallel. 

 
Table 9 is the implementation of OpenGL shader 

programs for rendering of the projective texture mapping in 
X3D. The uniform variable “projTexGenMatCam0” is the 
eye linear generator matrix generated in the parsing of 
nodes. The computed texture coordinate in the varying 
variable “projTexCoord” is passed to the next stage. The 



 Submitted to Elsevier Science 5 

condition “projTexCoord.q > 0.0” checks the projection 
from the reverse of viewing direction. 

Table 9.  Shader Programs for Projective Texture Mapping 

Vertex Shader 
uniform mat4 projTexGenMatCam0; 
uniform mat4 viewMat; 
varying vec4 projTexCoord; 
void vertProjCalTexCoordinate(void) { 
    mat  invViewMat = invers(viewMat); 
    vec4 posEye = gl_ModelviewMatrix *gl_Vertex; 
    vec4 posWorld = invViewMat *pos_Eye; 
    projTexCoord = projTexGenMatCam0 *posWorld; 
}; 
 
Fragment Shader 
varying vec4 projTexCoord; 
vec4 projMapColor_forCam1; 
void fragProjCalTexCoord(void) { 
    if (projTexCoord.q > 0.0) { 
        projMapColor_forCam1 

= texture2Dproj(fw_Texture_unit0, projTexCoord); 
    } 
} 
 
 

Table 10-13 shows the examples of X3D scripts using 
our PTM nodes, and their rendered results are shown in Fig. 
4-7, respectively. 

Table 10. Perspective Project of an Apple Image into a Plane 

<X3D profile="Interactive" version="3.3"> 
<Scene> 
<TextureProjectorPerspective  
 description='pt1' location='3 3 3' direction='-1 0 -1'  
     fieldOfView='15' nearDistance='1' farDistance='10'  
 upVector='0 1 0' global= 'true' on= 'true'> 
 <ImageTexture url='C:/image/apple.jpg' repeatS='false' 
repeatT='false'/> 
</TextureProjectorPerspective> 
<Shape> 
    <Appearance> 
 <Material diffuseColor='0.5 0.5 0.5'/> 
    </Appearance> 
    <IndexedFaceSet solid='false' coordIndex="3 2 1 0 -1, 4 5 2 3-1, 
5 6 1 2 -1">  
        <Coordinate point="1 0 1, -1 0 1, -1 0 -1, 1 0 -1, 1 1 -1, -1 1 -
1, -1 1 1 "/>       
    </IndexedFaceSet> 
</Shape> 
</Scene> 
</X3D> 

 

 

Fig. 4. Rendered Result of Table 10 

Table 11. Perspective Project of an Apple Image into a Box 

<X3D profile="Interactive" version="3.3"> 
<Scene> 
<TextureProjectorPerspective  
 description='pt1' location='3 3 3' direction='-1 -1 -1'  
     fieldOfView='15' nearDistance='1' farDistance='10'  
 upVector='0 1 0' global= 'true' on= 'true'> 
 <ImageTexture url='C:/image/apple.jpg' repeatS='false' 
repeatT='false'/> 
</TextureProjectorPerspective> 
<Shape> 
    <Appearance> 
 <Material diffuseColor='0.5 0.5 0.5'/> 
    </Appearance> 
    <Box/> 
</Shape> 
</Scene> 
</X3D> 

 



 Submitted to Elsevier Science 6 

 

Fig. 5. Rendered Result of Table 11 

Table 12. Perspective Project of an Apple Image into a Sphere and 
a Plane 

<X3D profile="Interactive" version="3.3"> 
<Scene> 
<TextureProjectorPerspective  
 description='pt1' location='3 3 3' direction='-1 0 -1'  
     fieldOfView='15' nearDistance='1' farDistance='10'  
 upVector='0 1 0' global= 'true' on= 'true'> 
 <ImageTexture url='C:/image/apple.jpg' repeatS='false' 
repeatT='false'/> 
</TextureProjectorPerspective> 
<Shape> 
    <Appearance> 
 <Material diffuseColor='0.5 0.5 0.5'/> 
    </Appearance> 
 
    <IndexedFaceSet solid='false' coordIndex="3 2 1 0 -1, 4 5 2 3-1, 
5 6 1 2 -1">  
        <Coordinate point="1 0 1, -1 0 1, -1 0 -1, 1 0 -1, 1 1 -1, -1 1 -
1, -1 1 1 "/>       
    </IndexedFaceSet> 
</Shape> 
<Transform translation='0,0.25,0'> 
<Shape> 
    <Appearance> 
 <Material diffuseColor='0.5 0.5 0.5'/> 
    </Appearance> 
    <Sphere radius = '0.5'/> 
</Shape> 
</Transform> 
</Scene> 
</X3D> 

 

 

Fig. 6. Rendered Result of Table 12 

Table 13. Perspective Project of an Apple Image into two Planes   

<X3D profile="Interactive" version="3.3"> 
<Scene> 
<TextureProjectorPerspective  
 description='pt1' location='3 3 3' direction='-1 0 -1'  
     fieldOfView='15' nearDistance='1' farDistance='10'  
 upVector='0 1 0' global= 'true' on= 'true'> 
 <ImageTexture url='C:/image/apple.jpg' repeatS='false' 
repeatT='false'/> 
</TextureProjectorPerspective> 
<Shape> 
    <Appearance> 
 <Material diffuseColor='0.5 0.5 0.5'/> 
    </Appearance> 
    <IndexedFaceSet solid='false' coordIndex="3 2 1 0 -1, 4 5 2 3-1, 
5 6 1 2 -1">  
        <Coordinate point="1 0 1, -1 0 1, -1 0 -1, 1 0 -1, 1 1 -1, -1 1 -
1, -1 1 1 "/>       
    </IndexedFaceSet> 
</Shape> 
<Transform translation='0,0.25,0'> 
<Shape> 
    <Appearance> 
 <Material diffuseColor='0.5 0.5 0.5'/> 
    </Appearance> 
    <Sphere radius = '0.5'/> 
</Shape> 
</Transform> 
</Scene> 
</X3D> 

 



 Submitted to Elsevier Science 7 

 

Fig. 7. Rendered Result of Table 13 

 

5. Conclusion 

In this paper, we provide two new X3D nodes, to 
support projective texture mapping (PTM), in the web 
contents. These PTM nodes can be naturally integrated into 
the exiting hierarchy of X3D, through extending the parser 
capability of X3D viewers such as of FreeWRL 2015 and 
implementing the rendering shader programs. Since these 
PTM nodes globally effect all objects in the scene at once, 
we could improve the efficiency in the previous solutions 
of [9] and [10], through separately creating two nodes per 
each appearance node of multiple objects. 

Acknowledgements 

This research was supported by Basic Science Research 
Program through the National Research Foundation of 
Korea (NRF) funded by the Ministry of Education 
(2014R1A1A2055379) and by Woosuk University 

References 

[1] Web3D Consortium Specifications of “VRML”, “X3D”, “X3D 
texture”, and “X3D 3D Texturing Component”  
http://web3d.org/x3d/specifications, June 2015. 

[2] Don Brutzman and Leonard Daly, “X3D: Extensible 3D 
Graphics for Web Authors”, Morgan Kaufmann, 2007 

[3] Cass Everitt, Projective Texture mapping, 1999 

[4] J.R. Spann and K.S. Kaufman, Photogrammetry using 3D 
Graphics and Projective Textures, IAPRS, 2000 

[5] Eunjung Kim, Kwan-Hee Yoo, Je-Hoon Lee, Yong-Dae Kim, 
and Younggap You, Composite Endoscope Images from 
Massive Inner Interestine Photos, Lecture Notes on Artificial 
Intelligence 4570, pp.1042-1051, 2007 .  

[6] C. Everitt, A. Rege, and C. Cebenoyan, Hardware Shadow 
Mapping. http://developer.nvidia.com/object/hwshadowmap_ 
paper.html, 2001 

[7] C. Everitt, Shadow Mapping. http://developer.nvidia.com/ 
object/shadow_mapping.html. 2001 

[8] Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran, 
Paul Haeberli “Fast shadows and lighting effects using 
texture mapping.” 19th annual conference on Computer 
Graphics and Interactive Techniques, pp.249-252, July 1992. 

[9] Michalis Kamburelis, “Shadow maps and projective texturing 
in X3D”, the 15th International Conference on Web 3D 
Technology, p.17-26, 2010. 

[10]  In-Kwon Kim, Ho-Wook Jang, Jong-Sung Ha, Kwan-Hee 
Yoo, Specification and Implementation of Projective 
Texturing Node in X3D, International Journal of Contents, 
Vol.12, No.2, pp.1-5, June, 2016 

[11] FreeWRL, “X3D Viewer”, http://freewrl.sourceforge.net/, 
June 2016. 

[12] X3Dom, “X3D Viewer, http://www.x3dom.org. July, 2016 

Appendix A.  The Parser written in PERL language 

A.1. TextureProjectorPerspective node 

TextureProjectorPerspective => new 
VRML::NodeType("TextureProjectorPerspective ",{ 
  metadata => [SFNode, NULL, inputOutput, 
"(SPEC_X3D30 | SPEC_X3D31 | SPEC_X3D32 | SPEC_X3D33)"], 
  description => [SFString, "", inputOutput, 
"(SPEC_VRML | SPEC_X3D30 | SPEC_X3D31 | SPEC_X3D32 | 
SPEC_X3D33)"], 
  location=> [SFVec3f, [0, 0, 1], inputOutput, 
"(SPEC_VRML | SPEC_X3D30 | SPEC_X3D31 | SPEC_X3D32 | 
SPEC_X3D33)"], 
  direction => [SFVec3f, [0, 0, 1], inputOutput, 
"(SPEC_VRML | SPEC_X3D30 | SPEC_X3D31 | SPEC_X3D32 | 
SPEC_X3D33)"], 
  upVector => [SFVec3f, [0, 1, 0], inputOutput, 
"(SPEC_VRML | SPEC_X3D30 | SPEC_X3D31 | SPEC_X3D32 | 
SPEC_X3D33)"], 
  fieldOfView => [SFFloat, 45, inputOutput, 
"(SPEC_VRML | SPEC_X3D30 | SPEC_X3D31 | SPEC_X3D32 | 
SPEC_X3D33)"], 
  aspectRatio => [SFFloat, 1, inputOutput, 
"(SPEC_VRML | SPEC_X3D30 | SPEC_X3D31 | SPEC_X3D32 | 
SPEC_X3D33)"], 
  nearDistance => [SFFloat, 1, inputOutput, 
"(SPEC_VRML | SPEC_X3D30 | SPEC_X3D31 | SPEC_X3D32 | 
SPEC_X3D33)"], 
  farDistance => [SFFloat, 10, inputOutput, 
"(SPEC_VRML | SPEC_X3D30 | SPEC_X3D31 | SPEC_X3D32 | 
SPEC_X3D33)"], 
  global => [SFBool, FALSE, inputOutput, 
"(SPEC_X3D31 | SPEC_X3D32 | SPEC_X3D33)"], 
  on => [SFBool, FALSE, inputOutput, 

http://developer.nvidia.com/object/hwshadowmap_
http://developer.nvidia.com/
http://www.x3dom.org/


 Submitted to Elsevier Science 8 

"(SPEC_VRML | SPEC_X3D30 | SPEC_X3D31 | SPEC_X3D32 | 
SPEC_X3D33)"], 
  texture=>[SFNode,NULL,inputOutput, 
"(SPEC_VRML | SPEC_X3D30 | SPEC_X3D31 | SPEC_X3D32 | 
SPEC_X3D33)"], 
  _dir =>[SFVec4f,[0,0,0,0],initializeOnly,0], 
  _loc =>[SFVec4f,[0,0,0,0],initializeOnly,0], 
  _upVec =>[SFVec4f,[0,0,0,0],initializeOnly,0], 
  __projTexture=>[SFNode,NULL,inputOutput, 0], 
 }, "X3DTextureProjectorNode"), 
 

A.2. TextureProjectorParallel node 

TextureProjectorParallel => new VRML::NodeType("TextureProjectorParallel",{ 
  metadata => [SFNode, NULL, inputOutput, "(SPEC_X3D30 
| SPEC_X3D31 | SPEC_X3D32 | SPEC_X3D33)"], 
  description => [SFString, "", inputOutput, "(SPEC_VRML | 
SPEC_X3D30 | SPEC_X3D31 | SPEC_X3D32 | SPEC_X3D33)"], 
  location=> [SFVec3f, [0, 0, 1], inputOutput, "(SPEC_VRML | 
SPEC_X3D30 | SPEC_X3D31 | SPEC_X3D32 | SPEC_X3D33)"], 
  direction => [SFVec3f, [0, 0, 1], inputOutput, "(SPEC_VRML 
| SPEC_X3D30 | SPEC_X3D31 | SPEC_X3D32 | SPEC_X3D33)"], 
  upVector => [SFVec3f, [0, 1, 0], inputOutput, 
"(SPEC_VRML | SPEC_X3D30 | SPEC_X3D31 | SPEC_X3D32 | SPEC_X3D33)"], 
  fieldOfView => [SFColorRGBA, [-1, 1, -1, 1], inputOutput, 
"(SPEC_VRML | SPEC_X3D30 | SPEC_X3D31 | SPEC_X3D32 | SPEC_X3D33)"], 
  aspectRatio => [SFFloat, 1, inputOutput, "(SPEC_VRML | 
SPEC_X3D30 | SPEC_X3D31 | SPEC_X3D32 | SPEC_X3D33)"], 
  nearDistance => [SFFloat, 1, inputOutput, "(SPEC_VRML | 
SPEC_X3D30 | SPEC_X3D31 | SPEC_X3D32 | SPEC_X3D33)"], 
  farDistance => [SFFloat, 10, inputOutput, "(SPEC_VRML | 
SPEC_X3D30 | SPEC_X3D31 | SPEC_X3D32 | SPEC_X3D33)"], 
  global => [SFBool, FALSE, inputOutput, "(SPEC_X3D31 | 
SPEC_X3D32 | SPEC_X3D33)"], 
  on => [SFBool, FALSE, inputOutput, "(SPEC_VRML | 
SPEC_X3D30 | SPEC_X3D31 | SPEC_X3D32 | SPEC_X3D33)"], 
  texture=>[SFNode,NULL,inputOutput, "(SPEC_VRML | 
SPEC_X3D30 | SPEC_X3D31 | SPEC_X3D32 | SPEC_X3D33)"], 
  _dir =>[SFVec4f,[0,0,0,0],initializeOnly,0], 
  _loc =>[SFVec4f,[0,0,0,0],initializeOnly,0], 
  _upVec =>[SFVec4f,[0,0,0,0],initializeOnly,0], 
  __projTexture=>[SFNode,NULL,inputOutput, 0], 
 }, "X3DGroupingNode"), 
 


