BOF DIGITAL PRINTING AND SCANNING

marc-f.petit@edf.fr

August 2018
CREATING AN AS-BUILT MOCKUP

- Only the last series of EDF’s nuclear reactors have been designed in 3D
 - 5 (EPR – under construction – and N4) out of 59

- Important services can be offered thanks to an as-built 3D mockup
 - Training
 - Operations preparation (equipments identification, operation area marking …)
 - Operations planning (compatibility of simultaneous operations …)

- An as-built mockup must be created
 - At least one per design
 - Similarities make reuse possible
 - Containing different types of information
 - 3D (point clouds, meshes)
 - 2D Plans
 - Spherical photos
 - Semantics (walls, slabs, doors, ladders …)
THE NEED FOR TRANSFORMATION

- **Reference mockup**
 - Created for a set of uses
 - Precision
 - Information
 - Consistent
 - Independent of application technologies

- **Applicative mockup**
 - Optimised for a specific software
 - Format
 - Only the relevant information
 - Some additional information may be included
 - Built upon existing data
 - Added manually
THE TRANSFORMATION TOOLCHAIN

- The first of a line
 - One per target software
 - Parts are shared (depending on uses)

- A specific formalism
 - Document all the required information
 - Make simultaneous editing easy (wiki)
 - Consistency enforced thanks to a metamodel
SEMANTIC ENRICHMENT

- Scanning at a low level
 - Surface acquisition (geometry, appearance material)

- Reconstructing semantics requires specific knowledge
 - Domain specialist to help with the reconstruction
 - Design information (CAD, P&ID …) to be consolidated with the mock-up
 - Prior knowledge in order to limit the domain of Inverse procedural modeling

- Semantic knowledge is not always required
 - The mock-up is built for a specific set of use cases, requirements depend upon those.

- Generic yet extensible formats are a good first interchange format
 - X3D, COLLADA
 - Semantic formats (IFC, CityGML …) should be used for interchange when data is more complete.
USING A STANDARD TEXTUAL FORMAT

- **Tools availability**
 - An open international standard improves tools availability

- **Easy writing/parsing makes lots of uses possible**
 - Writing ad-hoc tools
 - Understanding of the content of available files

- **In the VRML/X3D world:**
 - VRML encoding easy to read and write, hard to parse
 - XML encoding easy to write and parse
 - Use code generation!

- **Not as efficient for publication**
 - Other encodings exist.
REAL-LIFE USES IN OUR CURRENT TOOLCHAIN

- **VRML used as an exchange format from modeling tools**
 - Solidworks, Realworks
 - Good support for the base aspects

- **VRML used as a logging format**
 - Generated by transformation tools

- **Evolutions include X3D experiments**
 - Depending on the tools involved
 - Exchange format (FME, Blender)
 - Publication format (X3DOM)
CONCLUSION

- For as-built, semantics are not available from the beginning
 - More specific formats are useless for the first steps.
 - Extensibility is good for progressive enrichment.

- VRML is good, X3D is better
 - Easy to write, read, parse
 - XML encoding makes the support easy

- X3D support depends upon the tool
 - Despite the common data model, some tools still only support VRML

- An X3D to X3D tool would help
 - AOPT mostly working on a technical level
 - Reorganize the scene graph
 - Consolidate with other data
 - Prepare the scene for specific uses