## instant **Reality** Framework for AR and VR application





Johannes Behr Fraunhofer IGD – A4 Johannes.Behr@igd.fraunhofer.de

IGD

Fraunhofer Institut Graphische Datenverarbeitung



# instant **Reality**



Introduction and Motivation

- System-feature and Architecture
- Application example
- Current status and future developments

## Introduction and Motivation





# Fraunhofer Foundation

57 Institutes doing application oriented research and development





Fraunhofer Foundation

Mission: "Application oriented research for industry and advantage of our society "

Figures 2008

- 80 research units
- 57 Institutes
- 15 200 Employees
- 1.4 Billion € Budget
  - 2/3 research projects for industry
  - 1/3 public funding

Institute for Computer Graphics, Darmstadt

120 Employees

20 Employees in VR/AR Group



## Fraunhofer IGD 15 Years VR/AR development





1<sup>st</sup> Generation

1992 start of VR-Activities

2<sup>nd</sup> Generation

- 1995 1<sup>st</sup> Fraunhofer VR System (coop VW/BMW)
- 1997 First 5 sided CAVE in Germany
- 1998 Founding VR-Spinoff: VR-COM
- 3<sup>rd</sup> Generation

2000 OpenSG (LGPL Scene Graph)
2003 HEyeWall 1.0 (18 Million Pixel, 48 PCs)
2005 InstantReality VR/AR Middleware
2008 HEyeWall 2.0 (35 Million Pixel, 48 PCs)



#### or dentristing double

# System-feature und architecture







Performance PE/PP Pellet with I and particle size 3

# Requirements for the 3<sup>rd</sup> gen system

Problem: Wide variety of topics and feature-requests



Distributed Systems Multi-Core/GPU Indoor-AR Outdoor-AR Multi-Sensor net. Large-Model vis. Dialog-systems Edutainment Prototyping









# Requirements for the 3<sup>rd</sup> gen system

Scalability is key-requirement

Interaction und Navigation:

from: Single local sensor

to: Dynamic and distributed Sensor-Fusion networks

### Rendering und Visualisation

from: Mobile systems

to: Distributed Multi-Screen/CPU/GPU-systems

### Complexity of the application-logic and behaviour

- from: Walkthrough or examine of static data
- to: Complex and non-linear edutainment-application



# Requirements for the 3<sup>rd</sup> gen system

Efficient and flexible application development



## Costly application development cycle in 1<sup>st</sup> and 2<sup>nd</sup> gen systems

- Fix Application Modules (e.g. Design-Review,
- Assembly/Disassembly)
- New Modules had to be developed in C/C++
- No clear distinction between application and system development

Efficient and flexible application development is key-requirement Application prototyping is imported for Industry and R&D Clear cut between system and application development-layer To maximize the functionality in the system layer

To minimize the complexity in the application layer

## **System-feature and architecture** X3D as basis for the application description layer



There is no standard for VR/AR Application dev

Our Solution: Utilize standard from close domain X3D ISO Standard (describes an abstract functional behavior and time-based interactive 3D environment)

- Designed to be extensible
- (Multi-parent) Szenen-Graph
- Behaviour-Graph
- Scripting und Prototyping
- Device independent
- XML/ascii/binary Data-Encodings
- > 200 node-types in 40 components ( e.g. NURBS, Volume-Rendering, Physics (RBD), glsl/cg/cgfx-Shader)





# System-feature and architecture

X3D as basis for the application description layer





## **System-feature and architecture** X3D runtime for AR/AR Application

# IGD

# Desktop runtime

WIMP environment with mouse & keyboard Single screen per application Application interfaces only with browser

## Immersive VR environment

- No WIMP interface
- Wide range of IO devices and interaction methods Multi Screen/Pipe and Cluster setups Distributed applications

## System-feature and architecture Interaction and Navigation

High-Level: Virtual Object Sensors

- Device and Device-class independent
- Extents X3D PS-Concept
- Supports Multi-Touch/User/Hand

High-Level: Navigator and NavigationEval

Low-Level: Data-stream Sensors

- Network transparent
- Dynamic reconfiguration
- Support > 30 VR devices
- Vision Subsystem (e.g. Marker- and Natural-Feature-Tracker)







# System-feature and architecture instantVision: Vision based tracking



Subsystem for Vision-based tracker

Instant**Vision**: composing, testing and tuning of visual tracking pipeline

Support for marker, poster and different natural-feature tracker (e.g. line-tracker, KLT )



# System-feature and architecture

InstantVision: Robust and Markerless Tracking

![](_page_14_Figure_2.jpeg)

![](_page_14_Figure_3.jpeg)

![](_page_14_Picture_4.jpeg)

# System-feature and architecture

InstantVision: Feature reconstruction from 2.5D TOF data

![](_page_15_Picture_2.jpeg)

![](_page_15_Picture_3.jpeg)

## System-feature and architecture Distributed rendering using PC-Cluster

Base-feature of OpenSG

Transparent for Application developer

Support for Sort-First and Sort-Last

Dynamic load distribution

Fully automatic method

Scales almost linear with any number of CPU/GPU boxes

2x to 5x performance increase with typical CAD data

![](_page_16_Picture_9.jpeg)

![](_page_16_Figure_10.jpeg)

![](_page_16_Picture_11.jpeg)

## System-feature and architecture Generic X3D extensions

**Procedural Shapes** 

Generative Modelling Language (GML)

Semantic Modelling

Terrain-Rendering

High-level Avatar Controller

Object-to-Object collision detection

Mesh based simulator

(e.g. MassSpring, CantileverBeam, ...) Force-Field Evaluator

Steering System

Programmable Particle System

![](_page_17_Picture_12.jpeg)

![](_page_17_Picture_13.jpeg)

# Application example

![](_page_18_Picture_1.jpeg)

![](_page_18_Picture_2.jpeg)

# Design Review

![](_page_19_Picture_1.jpeg)

![](_page_19_Picture_2.jpeg)

| Visibility Collision                | Clipping Positioning |        |                         |
|-------------------------------------|----------------------|--------|-------------------------|
| -longitudinal cut —<br>r show plane | lateral cut          | horiz  | zontal cut —<br>w plane |
| mode                                | -mode                |        | de ———                  |
| r clip                              | r clip               | - clip | D'                      |

![](_page_19_Picture_4.jpeg)

| Visibility | Collision and Measuring Clipping Positioning |
|------------|----------------------------------------------|
| show/hid   | le                                           |
| • walls    | transparency:                                |
| interior   | transparency:                                |

# Design Reviews

![](_page_20_Picture_1.jpeg)

![](_page_20_Picture_2.jpeg)

# Assembly and Disassembly DLR

![](_page_21_Picture_1.jpeg)

![](_page_21_Picture_2.jpeg)

![](_page_21_Picture_3.jpeg)

![](_page_21_Picture_4.jpeg)

# Architecture Walkthrough

![](_page_22_Picture_1.jpeg)

Messe Frankfurt

![](_page_22_Picture_3.jpeg)

## TouchLab EADS / NMY

![](_page_23_Picture_1.jpeg)

![](_page_23_Picture_2.jpeg)

## HEyeWall (35x MegaPixel wall) Fraunhofer ZV

![](_page_24_Picture_1.jpeg)

![](_page_24_Picture_2.jpeg)

## Virtual Car Assistant Volkswagen AG

![](_page_25_Picture_1.jpeg)

![](_page_25_Picture_2.jpeg)

## Virtual Human BMBF

![](_page_26_Picture_1.jpeg)

![](_page_26_Picture_2.jpeg)

![](_page_26_Picture_3.jpeg)

![](_page_26_Picture_4.jpeg)

## Answer EU Project

![](_page_27_Picture_1.jpeg)

![](_page_27_Figure_2.jpeg)

![](_page_27_Picture_3.jpeg)

## Alignment of CAD/Real-Prototypes Howaldtswerke - Deutsche Werft GmbH

![](_page_28_Picture_1.jpeg)

![](_page_28_Picture_2.jpeg)

# Cultural Information System

![](_page_29_Picture_1.jpeg)

![](_page_29_Picture_2.jpeg)

## Human Posture Recognition Persona: EU

![](_page_30_Picture_1.jpeg)

![](_page_30_Figure_2.jpeg)

![](_page_30_Picture_3.jpeg)

![](_page_30_Picture_4.jpeg)

## Geo Information System Coburg IFP

![](_page_31_Picture_1.jpeg)

![](_page_31_Picture_2.jpeg)

## Medical Training-simulator VIVERA, BMBF

![](_page_32_Picture_1.jpeg)

![](_page_32_Picture_2.jpeg)

# SAP AG

![](_page_33_Picture_1.jpeg)

# Currant status and future developments

![](_page_34_Picture_1.jpeg)

![](_page_34_Picture_2.jpeg)

# instantReality Framework

Development and Runtime-environment

![](_page_35_Figure_2.jpeg)

![](_page_35_Figure_3.jpeg)

# instantReality Framework

Development and Runtime-environment

![](_page_36_Figure_2.jpeg)

![](_page_36_Figure_3.jpeg)

## instant **Reality Player** Network services

![](_page_37_Picture_1.jpeg)

![](_page_37_Figure_2.jpeg)

## instant Reality Player Standards und Systeme

### Standard Conformance

- X3D (ISO/IEC 19775:2004)
- GLSL (Khronos Group)
- CG (NVIDIA Corporation)
- OpenGL 2.0 (Khronos Group)
- ECMAScript (ISO/IEC 16262:2002)
- JAVA (Sun Corporation)
- SOAP (W3D SOAP V1.2)
- ZEROCONF (IETF Zeroconf Working Group)

Plattformunabhängigkeit

OpenSG/GL CodeBase: Win32, Unix/Linux, OSX

OpenGL/ES CodeBase: Windows CE, iPhone

![](_page_38_Picture_14.jpeg)

### Page 40

## instant**Reality Player** Public released

Free Version for non-commercial use

- Beta0; 15 April 2007; First Test Release
- Beta1; 15. June 2007; All OS-Release
- Beta2; 15. July 2007; Web3D SDK Release
- Beta3; 27. December 2007; X-Mas Release
- Beta4; 15. April 2008; Cluster Release
- Beta5; 7. August 2008; IO-SDK Release
- Beta6; 15. March 2009: IEEEVR Release
- Beta7; 23. December 2009; X-Max Release

First 2.0 15. January 2010

![](_page_39_Picture_12.jpeg)

![](_page_39_Picture_13.jpeg)

# instantReality.org Webpage

Portal for internal and external user

## **Front Pages**

- News
- Project Exhibition
- Info & History
- Release-plan

## **Developer Pages**

- Node/Component Documentation
- Tutorials
- IO-System Documentation
- EAI-System Documentation
- Forum (~200 User)

![](_page_40_Picture_14.jpeg)

download public**beta** 

![](_page_40_Picture_17.jpeg)

Federal Ministry

of Education

and Research

Fraunhofer institut Graphische

Datenverarbeitung

instantreality - advanced mixed reality techn

The instantreality-framework is a high-perform system, which combines various components t consistent interface for AR/VR developers. Tho developed at the Fraunhofer IGD and ZGDV in industry.

The framework provides a comprehensive set Virtual Reality (VR) and advanced Augmented The goal was to provide a very simple applicat including the latest research results in the field 3D user interaction and total-immersive display design includes various industry standards, like application development and deployment.

#### News

SIGGRAPH 2008 class notes and slides up

Finally we updated the SIGGRAPH 2008 notes InstantReality related class. The material can t wimps.org.

SIGGRAPH 2008 and WEB3D | 2008-08-07

Please visit us at WEB3D and SIGGRAPH. We WEB3D from August 9th to 10th. At SIGGRAPH Web3D booth (#139). See the latest develop for iPhone, etc) and interesting demos.

### Beta5 released | 2008-08-07

Beta5 has just been released for SIGGRAPH 20 64-bit Linux support and some bugfixes. For de the changelog. Download Beta5

#### InstantMini on iPhone | 2008-08-07

At SIGGRAPH 2008 we are introducing Instan browser for the iPhone. Please visit us at WEB. action.

Fix: Beta License Expired | 2008-07-01 Unfortunately the license of Beta 4 expired tod

![](_page_40_Picture_33.jpeg)

# instantReality User

Project partner from IGD/A4

- IGD-Intern (CAMTECH, A1, A2, A3, A5, A7)
- Fraunhofer-Intern (IAO, IFF)
- > 20 Industrial Projects
- > 10 BMBF Projects
- > 20 EU Projects

![](_page_41_Picture_7.jpeg)

![](_page_41_Picture_8.jpeg)

# instantReality User

# IGD

### Research and Development

- > 5 Fraunhofer Groups
- > 5 Universities in Europa
- MIT (Dep. of Aeronautics and Astronautics)
- Virginia Tech

Industry

- Daimler
- SAP
- HDW
- DLR

••••

![](_page_42_Picture_14.jpeg)

# instantReality for teaching

![](_page_43_Picture_1.jpeg)

### VR/AR Lectures

- TU Darmstadt
- TU Claustahl
- University College London
- TU Chemnitz
- Uni bielefeld

Tutorials and Classes

- Web3D 08: VR/AR Tutorial
- Siggraph 08: Don't be a WIMP
- IEEE VR 09: VR/AR Tutorial

![](_page_43_Picture_12.jpeg)

SIGGRAPH 2008 Class

Wednesday 3:30 am - 10:15 pm Room 502 A Level: Beginning

Johannes Behr Fraunhofer Institut für Graph Datenverarbeitung Dirk Reiners University of Louislana at Lafayette

### Abstract

Virtual and augmented reality have been around for a long time, but for most people they are movie fantasies. Very few people outside a few research labs have worked with or experienced these systems. On the other hand, interactive 3D graphics is ubiquitous, mostly in the form of games. More and more people are working in animation and games, creating models and programs for interactive 3D applications on standard monitors.

The goal of this class is to demonstrate that the leap to actual immersive or augmented environments is not as big as you might think. It explains how high-powered 3D graphics cards, mainstream applications of stereoscopic displays in 3D TV and movies, and webcams that achieve TV-quality images have significantly lowered the barriers to entry. And how, in combination with those hardware advances, freely available software based on open standards like X3D provides all the tools you need to access the elusive world of virtual and augmented reality applications. Following a summary of the basic principles of stereo displays, tracking systems and post-WIMP interaction metaphors, the main part of the course is a practical introduction to creating and running your own interactive and immersive applications.

#### Prerequisites

Basic knowledge of computer graphics. Understanding of what polygons, lights, and cameras are. Helpful but not required: graphics programming or 3D animation experience. This class is intended for attendees who are interested in interactive 3D graphics and might want to move beyond the WIMP (Window, Icon, Menu, Pointer) environment.

#### Instructors Information

#### Johannes Behr

Johannes Behr leads the VR group at the Fraunhofer Institut für Graphische Datenverarbeitung in Darmstadt, Germany. His areas of interest focus on virtual reality, computer graphics and 3D interaction techniques. Most of the results of his recent work are available as part of the InstantReality Framework. He has an MS from the University of Wolverhampton and received his PhD from the Technische Universität Darmstadt.

#### Dirk Reiners

Dirk Reiners is a faculty member in computer science at the University of Louisiana at Lafayette. His

## instant Reality Standardisation IGD part of the WEB3D-Consortium since 2007

![](_page_44_Picture_1.jpeg)

### Member of "Workinggroups"

- General (Extensions & ISO)
- HAnim (Humanoid Animation)
- Medical (Volume Rendering)
- One Member in BOD

Web3D Symposiums

- Sponsored by ACM
- 2008: Los Angeles, CA
  - Prof. Fellner: Paper-Chair
- 2009: Darmstadt
   www.web3d2009.org
  - Prof. Fellner: General Chair
  - Johannes Behr: Paper Chair

![](_page_44_Picture_14.jpeg)

### Web3D 2009 SYMPOSIUM

14th International Conference on 3D Web Technology June 16-17, 2009 at Fraunhofer Institute for Computer Graphics, Darmstadt, Germa

![](_page_44_Picture_17.jpeg)

A new wave of interactive 3D applications rises from the World Wide Web. New technologies are emerging and existing technologies are evolving to enable the third dimension in web browsers. This also leads to the appearance of a new generation of consumers and producers of 3D conten in the new Read-Write Web environment.

14th in the series, the Web3D 2009 International Symposium will address this wide range of topics covering 3D hypermedia on the web. The annual Web3D Symposium is a major event, which unites researchers, developers, experimenters, and content creators in a dynamic learning environment. Attendees share and explore methods of using, enhancing, and creating new 3D web and multimedia technologies, such as X3D, VRML, COLLADA, Croquet, MPEG4, Java3D, and Canvas3D. The symposium will also address new trends such as interactive 3D graphics applications on mobile devices.

Web3D 2009 will take place at Fraunhofer Institute for Computer Graphics (IGD) in Darmstadt (Germany) close to Frankfurt / Main. The conference is sceduled one week after EUROVIS 2009 (Eurographics/IEEE Symposium on Visualization, June 10 - 12 2009) in Berlin, Germany. With only a weekend in-between this is a chance for oversees visitors to attend both

# instantReality Future developments

![](_page_45_Picture_1.jpeg)

### Visualisation

- Dynamic Optimisation (BIH)
- Huge Model (out-of-core)
- Server-side retrieval (GEO/GIS)
   Distributed Multi-User Systems
   Character Animation
   Parametric Systems

![](_page_45_Picture_6.jpeg)

# Fraunhofer IGD instantReality and OpenSG resources

![](_page_46_Picture_1.jpeg)

![](_page_46_Picture_2.jpeg)

### www.instantreality.org

Beta6 release 30+ Device Handler Distributed Rendering/IO IO-SDK Windows/Mac/Linux

### www.opensg.org

LGPL source Rendering