High-Performance Visualization of Massive CAD Data with WebGL

WebGL and glTF BOF @ SIGGRAPH 2015

Christian Stein, Maik Thöner, Max Limper, Johannes Behr
VCST Group, Fraunhofer IGD
webVis / instant3Dhub
Data Transcoding

Typical Automotive CAD Data Set:

- 20-60 Mio. triangles
- **8-12 GB** in orig. CAD format (e.g., OpenJT)
Data Transcoding

Typical Automotive CAD Data Set:
- 20-60 Mio. triangles
- **8-12 GB** in orig. CAD format (e.g., OpenJT)

Geometry After Transcoding:
- Quantized, Stripified, GPU-friendly encoding
- **150-700 MB, ~8-12 bytes / triangle**
Still: How can we conveniently process a 500MB* data set?

(* transmission: ~250MB using gzip)

- Do *everything* on a budget
 - structure parsing
 - spatial index traversal
 - GPU uploads
 - rendering

- Load largest visible parts first (→ bounding volumes)

- Visual feedback, provide usable intermediate results
Visual Feedback: Example
Flexible Rendering Pipeline Configuration

- Always try to avoid re-drawing from scratch

- Challenge: Dynamic auxiliary geometry
 (user enables / disables, downloads finish, ...)

- hare3d: Flexible configuration of pipeline stages / slots
Flexible Rendering Pipeline Configuration

- Auxiliary Color
- Main Color
- Part IDs
- Auxiliary Depth
- Main Depth
Flexible Rendering Pipeline Configuration
Work in Progress

- Memory management / replacement strategies
- Use hardware occlusion queries with iterative rendering
- Screen-space techniques (e.g., deferred shading / highlighting)
Demo Time!
Context: webVis / instant3Dhub

- Can render client-side (WebGL) → Our Focus today
- Transcoder Service + Cache
- CAD Database
- Rendering Services

Fraunhofer IGD