

This is a modified release of the Web3D Consortium’s final report for contract award #
W81XWH-06-1-0096 to TATRC.

Contents referring to draft X3D specifications have been removed, per Web3D
Consortium policy, as these have not yet been ISO ratified. Once these draft
specifications have been ratified, they will be released in their complete and final form,
and the public will be granted unrestricted, royalty free use of their contents.

5(3257�'2&80(17$7,21�3$*()RUP�$SSURYHG

20%�1R�����������

����5(3257�'$7(��''�00�<<<<� ����5(3257�7<3(�

����7,7/(�$1'�68%7,7/(

�D���&2175$&7�180%(5

����$87+25�6�

����3(5)250,1*�25*$1,=$7,21�1$0(�6��$1'�$''5(66�(6�

����6321625,1*�021,725,1*�$*(1&<�1$0(�6��$1'�$''5(66�(6�

���3(5)250,1*�25*$1,=$7,21

����5(3257�180%(5

����6321625�021,725
6�$&521<0�6�

����6833/(0(17$5<�127(6

����',675,%87,21�9,/$%,/,7<�67$7(0(17

����$%675$&7

����68%-(&7�7(506

����180%(5

������2)�

������3$*(6

��D��1$0(�2)�5(63216,%/(�3(5621�

��D���5(3257

E��$%675$&7 F��7+,6�3$*(

����/,0,7$7,21�2)

������$%675$&7

6WDQGDUG�)RUP������5HY�������

3UHVFULEHG�E\�$16,�6WG��=�����

7KH�SXEOLF�UHSRUWLQJ�EXUGHQ�IRU�WKLV�FROOHFWLRQ�RI� LQIRUPDWLRQ�LV�HVWLPDWHG�WR�DYHUDJH���KRXU�SHU�UHVSRQVH�� LQFOXGLQJ�WKH�WLPH�IRU�UHYLHZLQJ�LQVWUXFWLRQV��VHDUFKLQJ�H[LVWLQJ�GDWD�VRXUFHV�

JDWKHULQJ�DQG�PDLQWDLQLQJ�WKH�GDWD�QHHGHG��DQG�FRPSOHWLQJ�DQG�UHYLHZLQJ�WKH�FROOHFWLRQ�RI�LQIRUPDWLRQ���6HQG�FRPPHQWV�UHJDUGLQJ�WKLV�EXUGHQ�HVWLPDWH�RU�DQ\�RWKHU�DVSHFW�RI�WKLV�FROOHFWLRQ

RI� LQIRUPDWLRQ�� LQFOXGLQJ� VXJJHVWLRQV� IRU� UHGXFLQJ� WKH� EXUGHQ�� WR� 'HSDUWPHQW� RI� 'HIHQVH�� :DVKLQJWRQ� +HDGTXDUWHUV� 6HUYLFHV�� 'LUHFWRUDWH� IRU� ,QIRUPDWLRQ� 2SHUDWLRQV� DQG� 5HSRUWV

������������������-HIIHUVRQ�'DYLV�+LJKZD\��6XLWH�������$UOLQJWRQ��9$���������������5HVSRQGHQWV�VKRXOG�EH�DZDUH�WKDW�QRWZLWKVWDQGLQJ�DQ\�RWKHU�SURYLVLRQ�RI�ODZ��QR�SHUVRQ�VKDOO�EH

VXEMHFW�WR�DQ\�SHQDOW\�IRU�IDLOLQJ�WR�FRPSO\�ZLWK�D�FROOHFWLRQ�RI�LQIRUPDWLRQ�LI�LW�GRHV�QRW�GLVSOD\�D�FXUUHQWO\�YDOLG�20%�FRQWURO�QXPEHU�

3/($6(�'2�127�5(7851�<285��)250�72�7+(�$%29(�$''5(66���

����'$7(6�&29(5('��)URP���7R�

�E���*5$17�180%(5

�F���352*5$0�(/(0(17�180%(5

�G���352-(&7�180%(5

�H���7$6.�180%(5

�I���:25.�81,7�180%(5

����6321625�021,725
6�5(3257�

������180%(5�6�

����6(&85,7<�&/$66,),&$7,21�2)�

��E��7(/(3+21(�180%(5��,QFOXGH�DUHD�FRGH�

,16758&7,216�)25�&203/(7,1*�6)����

6WDQGDUG�)RUP�����%DFN��5HY�������

����5(3257�'$7(���)XOO�SXEOLFDWLRQ�GDWH��LQFOXGLQJ
GD\��PRQWK��LI�DYDLODEOH���0XVW�FLWH�DW�OHDVW�WKH�\HDU
DQG�EH�<HDU������FRPSOLDQW��H�J�������������
[[����������[[�[[������

����5(3257�7<3(���6WDWH�WKH�W\SH�RI�UHSRUW��VXFK�DV
ILQDO��WHFKQLFDO��LQWHULP��PHPRUDQGXP��PDVWHU
V
WKHVLV��SURJUHVV��TXDUWHUO\��UHVHDUFK��VSHFLDO��JURXS
VWXG\��HWF�

����'$7(6�&29(5('���,QGLFDWH�WKH�WLPH�GXULQJ
ZKLFK�WKH�ZRUN�ZDV�SHUIRUPHG�DQG�WKH�UHSRUW�ZDV
ZULWWHQ��H�J���-XQ��������-XQ������������-XQ������
0D\���1RY�������1RY������

����7,7/(���(QWHU�WLWOH�DQG�VXEWLWOH�ZLWK�YROXPH
QXPEHU�DQG�SDUW�QXPEHU��LI�DSSOLFDEOH���2Q�FODVVLILHG
GRFXPHQWV��HQWHU�WKH�WLWOH�FODVVLILFDWLRQ�LQ
SDUHQWKHVHV�

�D���&2175$&7�180%(5���(QWHU�DOO�FRQWUDFW
QXPEHUV�DV�WKH\�DSSHDU�LQ�WKH�UHSRUW��H�J�
)���������&������

�E���*5$17�180%(5���(QWHU�DOO�JUDQW�QXPEHUV�DV
WKH\�DSSHDU�LQ�WKH�UHSRUW��H�J��$)265���������

�F���352*5$0�(/(0(17�180%(5���(QWHU�DOO
SURJUDP�HOHPHQW�QXPEHUV�DV�WKH\�DSSHDU�LQ�WKH
UHSRUW��H�J�������$�

�G���352-(&7�180%(5���(QWHU�DOO�SURMHFW�QXPEHUV
DV�WKH\�DSSHDU�LQ�WKH�UHSRUW��H�J���)������'�����
,/,5�

�H���7$6.�180%(5���(QWHU�DOO�WDVN�QXPEHUV�DV�WKH\
DSSHDU�LQ�WKH�UHSRUW��H�J������5)���������7�����

�I���:25.�81,7�180%(5���(QWHU�DOO�ZRUN�XQLW
QXPEHUV�DV�WKH\�DSSHDU�LQ�WKH�UHSRUW��H�J������
$)$3/���������

����$87+25�6����(QWHU�QDPH�V��RI�SHUVRQ�V�
UHVSRQVLEOH�IRU�ZULWLQJ�WKH�UHSRUW��SHUIRUPLQJ�WKH
UHVHDUFK��RU�FUHGLWHG�ZLWK�WKH�FRQWHQW�RI�WKH�UHSRUW�
7KH�IRUP�RI�HQWU\�LV�WKH�ODVW�QDPH��ILUVW�QDPH��PLGGOH
LQLWLDO��DQG�DGGLWLRQDO�TXDOLILHUV�VHSDUDWHG�E\�FRPPDV�
H�J��6PLWK��5LFKDUG��-��-U�

����3(5)250,1*�25*$1,=$7,21�1$0(�6��$1'
$''5(66�(6����6HOI�H[SODQDWRU\�

����3(5)250,1*�25*$1,=$7,21�5(3257�180%(5��
(QWHU�DOO�XQLTXH�DOSKDQXPHULF�UHSRUW�QXPEHUV�DVVLJQHG
E\�WKH�SHUIRUPLQJ�RUJDQL]DWLRQ��H�J��%5/������
$):/�75���������9RO����37���

����6321625,1*�021,725,1*�$*(1&<�1$0(�6�
$1'�$''5(66�(6����(QWHU�WKH�QDPH�DQG�DGGUHVV�RI�WKH
RUJDQL]DWLRQ�V��ILQDQFLDOO\�UHVSRQVLEOH�IRU�DQG�PRQLWRULQJ
WKH�ZRUN�

�����6321625�021,725
6�$&521<0�6����(QWHU��LI
DYDLODEOH��H�J��%5/��$5'(&��1$'&�

�����6321625�021,725
6�5(3257�180%(5�6���
(QWHU�UHSRUW�QXPEHU�DV�DVVLJQHG�E\�WKH�VSRQVRULQJ�
PRQLWRULQJ�DJHQF\��LI�DYDLODEOH��H�J��%5/�75�����������

�����',675,%87,21�9,/$%,/,7<�67$7(0(17���8VH
DJHQF\�PDQGDWHG�DYDLODELOLW\�VWDWHPHQWV�WR�LQGLFDWH�WKH
SXEOLF�DYDLODELOLW\�RU�GLVWULEXWLRQ�OLPLWDWLRQV�RI�WKH
UHSRUW���,I�DGGLWLRQDO�OLPLWDWLRQV��UHVWULFWLRQV�RU�VSHFLDO
PDUNLQJV�DUH�LQGLFDWHG��IROORZ�DJHQF\�DXWKRUL]DWLRQ
SURFHGXUHV��H�J��5'�)5'��3523,1��,7$5��HWF���,QFOXGH
FRS\ULJKW�LQIRUPDWLRQ�

�����6833/(0(17$5<�127(6���(QWHU�LQIRUPDWLRQ�QRW
LQFOXGHG�HOVHZKHUH�VXFK�DV���SUHSDUHG�LQ�FRRSHUDWLRQ
ZLWK��WUDQVODWLRQ�RI��UHSRUW�VXSHUVHGHV��ROG�HGLWLRQ
QXPEHU��HWF�

�����$%675$&7���$�EULHI��DSSUR[LPDWHO\�����ZRUGV�
IDFWXDO�VXPPDU\�RI�WKH�PRVW�VLJQLILFDQW�LQIRUPDWLRQ�

�����68%-(&7�7(506���.H\�ZRUGV�RU�SKUDVHV
LGHQWLI\LQJ�PDMRU�FRQFHSWV�LQ�WKH�UHSRUW�

�����6(&85,7<�&/$66,),&$7,21���(QWHU�VHFXULW\
FODVVLILFDWLRQ�LQ�DFFRUGDQFH�ZLWK�VHFXULW\�FODVVLILFDWLRQ
UHJXODWLRQV��H�J��8��&��6��HWF���,I�WKLV�IRUP�FRQWDLQV
FODVVLILHG�LQIRUPDWLRQ��VWDPS�FODVVLILFDWLRQ�OHYHO�RQ�WKH
WRS�DQG�ERWWRP�RI�WKLV�SDJH�

�����/,0,7$7,21�2)�$%675$&7���7KLV�EORFN�PXVW�EH
FRPSOHWHG�WR�DVVLJQ�D�GLVWULEXWLRQ�OLPLWDWLRQ�WR�WKH
DEVWUDFW���(QWHU�88��8QFODVVLILHG�8QOLPLWHG��RU�6$5
�6DPH�DV�5HSRUW����$Q�HQWU\�LQ�WKLV�EORFN�LV�QHFHVVDU\�LI
WKH�DEVWUDFW�LV�WR�EH�OLPLWHG�

Table of Contents

 Page

Introduction…………………………………………………………….………..….. 4

Task 1: Completion of MedX3D profile and Volume Rendering Ext……… 4

Task 2: Mapping between X3D and SNOMED/FMA…………………............. 6

Task 3: Import/Export Library…………………………………………………… 12

Task 4: Browser Implementation……………………………………………….. 13

Key Research Accomplishments………………………………………….…….. 35

Reportable Outcomes……………………………………………………………… 36

Conclusion…………………………………………………………………………… 36

References……………………………………………………………………………. 39

Appendices…………………………………………………………………………… 40

Introduction

The advanced radiographic technologies of today are generating hundreds to thousands of
serial cross sectional or sagittal two dimensional (2D) images, which require significant
time to interpret using traditional methodologies. Volumetric rendering of these images
allows a more comprehensive but concise view of such large datasets, and this method of
display is more intuitive as it resembles the real life appearance of the area being imaged
[1]. Volumetric rendering is also creating new tools for diagnosis and treatment through
such techniques as data fusion, and new alternatives to invasive procedures using virtual
travel through body spaces [2]. There is currently no open standard file format for the
volumetric rendering, segmentation and registration of medical imaging data. A standard
three dimensional (3D) file format would provide improved universal access to 3D
medical images by enabling interoperability with vendor specific Picture Archiving and
Communication Systems (PACS) and 3D imaging processing and display applications.
This project has developed an ISO formatted component extension to X3D (an already
existing open, royalty free and ISO ratified standard for transmission of 3D data over
networks) [3], to enable volumetric rendering, segmentation and registration of
multimodal medical images within its specification. Additionally, an open source web
browser-based example implementation running in a Microsoft Windows environment,
an import/export library and a mapping between X3D and the two most popular anatomic
ontologies, the Systematized Nomenclature of Medicine-Clinical Terms (SNOMED) and
the Foundational Model of Anatomy (FMA) [4, 5], were also created for fostering
widespread adoption and accessibility of this standard.

Please note that any content representing draft specifications of components or profiles
for X3D is proprietary. This content is included in several of the Appendices
(specifically Appendices B, C and F), and these pages are marked appropriately at the top
and bottom. The links in these documents have been disabled. Web3D Consortium
policy requires that any draft specifications are kept confidential and for viewing only by
membership until formal ISO approval has been granted; then these approved
specifications are made freely available to the public for download upon our website at
www.web3d.org.

Task 1: Completion of MedX3D profile and Volume
Rendering Extension

Section 1. Create MedX3D Profile
The volume rendering component (VRC) extends the functionality of the X3D standard,
so an initial task was to define a profile of X3D, named MedicalInterchange profile,
which identified specific parts of X3D that would be necessary for medical image
visualization and interaction. This profile is critical to simplifying the efforts of
developers to work with X3D for medical images, since X3D encompasses significant
general functionality across many vertical markets including visual simulation, scientific

http://www.web3d.org/

visualization, computer aided design, instruction (manuals, education) and collaborative
virtual environments. Through interviews with end users and vendors within the Digital
Imaging and Communications in Medicine (DICOM) community, several use cases were
developed. They generally fell into the categories of education, surgical or procedural
planning and enhanced accessibility (see Appendix A). The features and functions
implied by these use cases were then translated into a definition of the
MedicalInterchange profile (MIP) (see Appendix B). An open, royalty free and ISO
ratified standard for 3D images enables these scenarios because it lowers the cost of
ownership, enables interoperability and directs vendors to compete on functionality and
features since there is no monopoly on content expression. The MIP obviously includes
nodes related to geometry and appearance, with limited nodes for collision detection,
navigation, text and annotation, providing a much simpler path towards implementation
than if the entire X3D specification had to be considered.

Section 2. ISO Format Ready Volume Rendering Component
The VRC to X3D was created after a thorough search of volume rendering styles in the
literature was undertaken. For example, refer to the new medical visualization text by
Preim and Bartz [6]. It was decided that the focus of the specification was to add the
most common and currently used rendering styles, including the Gooch shading model of
two-toned warm/cool coloring [7]. There was also a priority placed on simplicity, both to
benefit people making an implementation of the specification and for the user making
content using X3D. Although a limited number of rendering nodes were initially
declared, the VRC will continue to evolve and more advanced/general rendering methods
can be added later at a higher support level. The X3D specification also provides a well-
defined extension mechanism called Components that allows vendors to experiment with
additional functionality beyond the explicitly rendering styles specified. This mechanism
can be used to prototype newer, less well tested technologies, such as a more general
framework capable of expressing multi-dimensional transfer functions, for inclusion in
later revisions of the VRC.

Valuable discussions occurred between the vendor involved with writing the VRC
(Yumetech) and the vendor involved with implementing the VRC within the MedX3D
browser (SenseGraphics) in creating this draft component specification. The
ISOSurfaceVolumeData node took an especially large amount of time to determine its
description such that it would not only be relevant for medical images, but also complex
scientific visualizations. The VRC to the X3D specification can be found in Appendix C.

Section 3. Expert Review of Volume Rendering Component
Upon drafting of the VRC, two experts in the field of computer graphics, but not
members of the Consortium, were asked for their comments. The first evaluator’s
comments are in Appendix D (the Word document referred to in his report was left out as
it is redundant information). The second evaluator’s comments are also contained in
Appendix D.

The reviewers gave the VRC draft a 4 out of 5 rating in quality, understanding that
compromises had to be made to keep this initial version simple yet as comprehensive as

possible. There were no major concerns about the VRC’s approach and both reviewers
noted areas where some language was vague or misstated.

Section 4. Documentation for Interfacing to DICOM
As all advanced imaging modalities output to the DICOM standard [8], a guiding
document was created to assist developers in interfacing to the DICOM file format from
an implementation of the VRC and MIP (see Appendix E). This document provides an
overview of the DICOM standard, a definition of important DICOM terms, DICOM
storage methodology, aspects most relevant for a X3D implementation using DICOM and
toolkits to help with parsing and conversion of DICOM compliant image files.

Section 5. Annotation Component
It was realized early on in the project that to give the most functionality to developers and
end users for labeling regions of interest in volumetric shapes (or anything in a virtual
environment), an additional component to X3D would need to be developed. Therefore,
an annotation component draft was created and is included in Appendix F. This is a work
in progress and is outside the scope of the Statement of Work, but will not only benefit
the MIP, but many other vertical markets using X3D.

Task 2: Mapping between X3D and SNOMED/FMA

The overall goal of this task was to provide a method for semantic medical data to be
incorporated into an X3D scenegraph via the use of the Metadata node set. The
knowledge bases targeted were FMA and SNOMED [4,5], the most commonly used
anatomical ontologies. Work consisted of five phases or sections that covered: obtaining
FMA and SNOMED information, finding appropriate representations of that information
in X3D Metadata, creating transformation mechanisms for the information, evaluating
their similarities, and finally showing examples of the metadata in use. This
methodology is divided into five different sections detailing how each of these areas were
completed.

This work shows that it is possible to integrate both FMA and SNOMED information
individually into an X3D scenegraph with a lossless transformation. It is theoretically
possible that both FMA and SNOMED transformation could be combined together in one
single mapping tool handling both data sources, but with current resources this was
outside the scope of this contract. In addition, the separation of tools helps to illustrate
and clarify their differences regarding structure and terminology.

The results of this project may constitute Recommended Practice for the Web3D
Consortium’s Medical Working Group and inform the development of semantically-
integrated interactive 3D applications (i.e. anatomy browsers and imaging (DICOM) tool
vendors). A common scenario would be to use these conventions to semantically ‘tag’
segmented anatomical structures for storage or delivery as an X3D environment.

The general nature of the conversion is to have a MetadataSet node contain items with
multiple attributes and to use a metadata string or integer for the information. The toolset
we provide is based on the following simple premises, used as conventions:

1. MetadataSet nodes refer to their sibling Transform node, where the object’s
shape geometry may be specified. A sibling Group node may be instantiated
for parts or subdivisions of the referent object. This allows larger containing
structures or anatomical systems to be easily accessible programmatically and
additional detail accessible when needed

2. The MetadataSet node is instantiated with its source specified as the reference
field (e.g. FMA,. SNOMED); its children are typically MetadataString nodes
specifying its attributes and its relationships to other entities in the source
ontology

3. Unique identifier names of source entities (integers) are prepended with an
‘m’. This allows result data to conform to the Web3D scenegraph identifier
convention (DEF); to cross-reference corresponding entities in the scene-
graph or to programmatically access named nodes, one must remove this first
character (‘m’) and compare it with a MetadataSet node's name=”” attribute.

4. If source information is of type Integer, a MetadataInteger node is instantiated

5. If source information is of type Boolean, a MetadataString node is instantiated
with a value of true or false.

The contents of the deliverable tarball implementing these conventions are listed in
Appendix G, Section A. The tarball is available at :
http://snoid.sv.vt.edu/~anray2/x3dMetadata.tar.gz

Section 1. Obtain working copies of FMA / SNOMED

1.a FMA
We obtained information about FMA by going to their website, following their
instructions of downloading the MySQL data, installing the data into a local MySQL
database, installing Protege (an ontology viewer / editor), and installing PHPMyAdmin
for investigating the MySQL database via web pages and forms. The website for FMA
and a set of instructions to duplicate our work on localhosts can be found in Section B of
Appendix G.

An example PHPMyAdmin viewing account to the FMA MySQL can be found online at:
 http://snoid.sv.vt.edu/npolysWWW/phpMyAdmin/index.php
 user: web3d password: web3d

1.b SNOMED
Currently, there is very little information publicly accessible concerning SNOMED. The
main source of information is http://www.snomed.org but it is currently in transition.
One of the websites linked from the main site contains the XML Schema and an example
SNOMED XML file. This can be found here:

http://www.ihtsdo.org/our-standards/technical-documents/#c586.

http://snoid.sv.vt.edu/%7Eanray2/x3dMetadata.tar.gz
http://snoid.sv.vt.edu/npolysWWW/phpMyAdmin/index.php
http://www.snomed.org/
http://www.ihtsdo.org/our-standards/technical-documents/#c586

In the future more information and examples will hopefully be provided.
The main difficulty in achieving these tasks dealt with finding information about
SNOMED and the system configuration of Protégé for FMA. Once this was finished, we
moved to the next step of transforming the information from these packages into a format
that could be instantiated into a X3D scenegraph in a lossless manner.

Section 2. Determine a mapping between FMA -> X3D
FMA has information at many different levels. They are both theoretical and practical.
At a theoretical level FMA is composed of a body that has many different parts and each
part has a parent / child relationship and several different pieces of information associated
with it. A way to map this into X3D metadata would be to have a metadata set for each
part, have metadata strings and integers to contain information about that part, and to
provide the names of the other parts that it is associated with. This will allow for the
relationships and information in FMA to be represented.

The format of the information of FMA comes in two different forms. The first is raw
SQL information (selected using a ‘produce xml’ option). The second are the forms that
Protege can export. Protege itself allows for browsing of the FMA and exporting in
several different formats.

2.a FMA via SQL Queries
MySQL can deliver database query results as XML. The transformation can therefore be
done through an XSLT file. We implemented and included it in the XSLT folder in the
tarball (FMA.xslt). The program xsltproc can be used to apply the stylesheet to output
files. Examples of an FMA SQLrecord and how this can be transformed into target X3D
metadata can be found in Appendix G, Section B. Figure 1 shows a screenshot of a proof
of concept demonstration using the commercially available X3D browser from Octaga
(www.octaga.com) where placing a mouse over the liver shows the FMA output from
MySQL.

Figure 1: FMA SQL query displayed when mousing over the red liver (posterior view of body)
2.b FMA information via Protege

http://www.octaga.com/

Another form of information that we have used is to produce X3D metadata in HTML
output from Protege. Protege allows for the export of information in several different
forms; however the only complete export format that contains all of the information in
the database is the ‘HTML output’ option. All of the other options (RDF / OWL / XML
are a few) require database lookups to completely fill in all of the information. An
example Protege HTML output page can be found in Appendix G, Section B or in the
tarball provided with the report:

http://snoid.sv.vt.edu/~anray2/parser/Upper+lobe+of+lung.html

Part of the work for providing a pathway for FMA metadata to be incorporated into X3D
was to build a digital library of FMA information. A C++ program was developed to
convert these HTML files into X3D metadata. From a standards prospective, an XSLT
file is preferable to a C++ implementation, but due to the nature of the source data in this
case (HTML), C++ was the best solution for transforming to X3D metadata. Instructions
on how obtain, build and run this program and an example of the metadata produced by
this program are in Appendix G, Section B. Figure 2 shows a screenshot of a proof of
concept demonstration using the Octaga X3D browser where placing a mouse over the
lungs shows the FMA output from the C++ parser.

Figure 2: FMA direct parser query displayed when mousing over the lungs (posterior view of body)

Section 3. Determine a mapping between SNOMED -> X3D
SNOMED is much simpler to convert into X3D metadata than FMA. SNOMED already
comes described by way of XML tools, so converting it to X3D metadata is simply
transforming the ‘styling’ XML file. This is done via a XSLT. The instructions for how
to obtain and run this file are in Appendix G, Section C.

We generated documentation for the SNOMED Schema with xnsdoc:

http://snoid.sv.vt.edu/~anray2/snoMed/

http://snoid.sv.vt.edu/%7Eanray2/parser/Upper+lobe+of+lung.html
http://snoid.sv.vt.edu/%7Eanray2/snoMed/
http://snoid.sv.vt.edu/%7Eanray2/snoMed/

The complete input and output for the SNOMED knowledgebase is rather extensive so
only a small part will be used to explain the strategy for creating X3D metadata out of
SNOMED information. In general, the SNOMED data is grouped into different elements
that have several different attributes in each tag. The general strategy for converting this
into X3D metadata was to create an overarching metadata set that contained the same
structure of the existing format by using sets with the attribute name that holds the old
elements name. After this, all of the attributes are incorporated as metadata strings with
name fields being the attribute and the value field being the value of the attribute. An
example of SNOMED input and the transformed XML into X3D metadata can be found
in Appendix G, Section C.

The SNOMED XSLT file that converts the mapping is quite complex (>600 loc). For
performance and future maintenance, a C++ program would be a much better fit. Due to
the original work plan, an XSLT file was produced to meet the deliverable, but if the
SNOMED standard is changed, it may be simpler to write a C++ program instead of
modifying the XSLT file. Figure 3 shows a screenshot of a proof of concept
demonstration using the Octaga X3D browser where placing a mouse over the intestine
shows the SNOMED output.

Figure 3: SNOMED queery displayed when mousing over the intestine (posterior view of body)

Section 4. Determine a mapping between FMA / SNOMED
SNOMED has a much richer design space than FMA does. However, it has the notion of
relationships that can encompass the part / partOf relationship that FMA uses. Thus, it is
theoretically possible to map the two different ontologies. A more thorough investigation
into how the two ontologies can correspond can be found elsewhere [5]. However, this
requires foresight into designing the SNOMED data, because FMA is completely fixed
and cannot be changed, whereas SNOMED can be manipulated when particular data files
are being created. If a SNOMED file is created that contains the correct names and
identification numbers for specific part relationships in FMA, then it would be possible to

integrate both SNOMED and FMA metadata. The other option would be to include a
Grouping MetadataSet node that would contain a FMA MetadataSet node and a
SNOMED MetadataSet node. If this were done, then the existing conversion tools could
be modified slightly to accommodate this information.

Section 5. Example usage of metadata
There are many possibilities for applying this work in X3D medical applications. Some
specifics of the node structure in the delivery scenegraph will depend on the application
requirements. The tools and recommended practice we provide can be widely adapted for
these needs. For example in X3D, the interface for an anatomy browser could be created
with menus driving the visibility or highlights of shapes with a Switch node; referent
shapes can also be Inlined. Alternatively, a program could walk the scenegraph, apply
some logic, and display specific metadata information as annotations or labels.

We include an example of the FMA and SNOMED information from this report in the
following files (see Figures 1-3 for their output):

• body_ifs.x3d – An IndexedFaceSet from NIST constituting an androgynous
human skin

• med_example.x3d – A simple MedX3D scenegraph structure with shapes and
metadata conforming to our recommended practice; it includes a mix of FMA and
SNOMED information for skin, lung, liver, colon

• viewer2.x3d – Adds a simple interactive interface to some of the data from
med_example.x3d and demonstrates a simplistic anatomy / ontology viewer

Task 3: Import/Export Library
The goal of this task was to create a software library that application developers can use
to aid in the development of software which will interact with MIP content.
In addition to the ability to import and export content, the library was required to support
an API which will allow developers the ability to interact with the scenegraph.
Developers must be able to generate content programmatically which can subsequently
be exported. The API was also required to be able to interrogate the content that has been
imported.

The scope of the X3D content that this library must support is the MedicalInterchange
profile (MIP), which is clearly defined in Appendix B.

The development of the Import/Export Library utilized the Flux X3D-based open source
engine. Source code for the Flux engine, along with this Import /Export library, can be
accessed from: http://sourceforge.net/projects/flux (there will be some lag time before
updates).

http://sourceforge.net/projects/flux

The API supported by this library is very closely aligned with the Scene Application
Interface (SAI), which is the mature API for X3D. For a thorough background on the
X3D SAI, please see:
http://www.web3d.org/x3d/specifications/ISO-IEC-19775-X3DAbstractSpecification/

COM was used for the library infrastructure. Since this library does not contain a
runtime environment, there are many methods in the SAI that do not apply, therefore,
only a subset of the SAI is included in this library. Also, the requirements of this project
necessitate a few additional methods be added to the API, the most important of which is
the ability to export the scenegraph. Details of the API, including installation
instructions, tips for getting started and the API reference guide can be found in
Appendix H.

The installation also includes two test harness applications. One in Visual Basic,
and one in C++. The C++ test harness application shows how the API can be used to
import and interrogate an X3D file by displaying the node hierarchy of the contents in
a GUI tree window. The test harness then programmatically adds content to the scene,
and exports the result, thus illustrating the ability to programmatically generate X3D
content.

Task 4: Browser Implementation

Section 1. MedX3D Profile and Volume Rendering Extension
Browser Implementation
A Windows based web browser plugin and standalone application were created which
implemented both the node definitions in the MIP (Appendix B) and a subset of the VRC
(Appendix C). Specifically within the VRC, the basic rendering style, Opacity Map, and
advanced rendering styles: Boundary Enhancement, Silhouette Enhancement, Edge
Enhancement, Maximum Intensity Projection, Segmented Volume, Tone Mapping,
Cartoon Style, Isosurface Volume and Composed Volume (user designated combination
of any of the available rendering styles) were also implemented. These represented eight
additional advanced rendering styles that were implemented beyond the requirements of
the Statement of Work. The only rendering style not implemented in the VRC was the
Stipple Volume rendering style. Appendix I illustrates many of the volume rendering
styles implemented in the MedX3D browser.

The rendering engine is based on the H3D API (www.h3dapi.org), a dual commercial and
GPL (open source) licensed software product that is a development platform for multi-
sensory applications created by SenseGraphics (www.sensegraphics.com). This API uses
X3D, OpenGL, C++, Python as well as leveraging haptic technology from SensAble.
Rendering is based on GPU ray casting utilizing the GL Shading Language and 3D
textures; reflections or refractions are not simulated, leading to better performance.

http://www.web3d.org/x3d/specifications/ISO-IEC-19775-X3DAbstractSpecification/

A difficulty during the browser development actually involved problematic drivers for
ATI graphic processing units (GPUs). Although the MedX3D browser performed well
using GPUs from NVIDIA, no display output was achieved with ATI GPUs. The
problem was isolated to the ATI driver implementation of the GL Shader Language
standard. SenseGraphics, the vendor who was granted the subaward for MedX3D
browser implementation, worked extensively with representatives from ATI to fix the
problem. Further iterations of the ATI drivers were successful in enabling the MedX3D
browser to create an image, but only using limited rendering styles. Work continues to
enable all rendering styles using ATI GPUs within the MedX3D browser.

Section 2. Picking
Picking is defined as limited testing of arbitrary object collision. In earlier versions of the
standalone application, this was demonstrated by the rendered volume having a cube
outline surrounding the volume identifying the bounding box being used for collision
detection, as seen in Figure 4 below.

This was removed in the final version as it was felt that navigation would be too limited
for the user to explore the volume dataset. Picking can easily be reactivated by making
minor programmatic changes in the source code and recompiling.

Figure 4: Bounding box visible surrounding volume in earlier version of MedX3D browser

Section 3. DICOM loading
The standalone application is able to load a single DICOM file, any DICOM file set
within a folder (by clicking on only a single file of the set) or .raw files. The browser
plugin can only load X3D files.

A problem encountered with this subtask was that certain DICOM datasets would not
display in the browser. This seemed to be occurring with MRIs and CTs of the chest and
any body section inferior to this, although there were isolated cases of problems with
MRIs of the brain. The DICOM loader in the MedX3D browser uses the DCMTK
DICOM-Toolkit (http://dicom.offis.de/dcmtk.php.en) , the same as used in both OsiriX

and 3DView, two of the software products used in the comparison testing (see below)
and since these viewers had no difficulty displaying the same images, there is obviously a
problem in the DICOM loading of the MedX3D browser which needs to be addressed.

Section 4. Comparison Testing
As part of the assessment of the utility of the MedX3D browser at this point in its
development, comparisons were made between its output and that of other desktop
computer based volume rendering software products that are freely available for
download and are relatively popular. Four files were chosen for this comparison: 1) MRI
of inner ear in DICOM format, 2) MRI of head and neck in DICOM format, 3) MRI
angiogram of brain in raw format and 4) CT of the abdomen in DICOM format.
Although the MedX3D browser can be used both as a standalone application and a web
browser plugin, testing was performed in its standalone version as the other applications
to which it was compared are not browser plugins.

For Windows based PC’s, 3DView from RMR Systems Limited was chosen due to its
compatibility with a wide range of graphics cards and its use of the OpenGL API for
rendering (http://www.rmrsystems.co.uk/volume_rendering.htm); this is the same API on
upon which MedX3D is based. Only opacity map rendering was used: its variables were
adjusted in MedX3D and 3DView had its transfer function adjusted both as necessary for
the clearest picture.

The Windows based PC test machine was running Windows XP with Service Pack 2, a
monitor running 1280 X 1024 resolution at 32 bit color, a NVIDIA 7300LE graphics card
with ForceWare driver version 163.21, DirectX 9.0c and 3DView version 1.2.

For Mac based PC’s, OsiriX (http://www.osirix-viewer.com/), an open source program
developed in 2004 exclusively for the Apple OS X operating system and using the
OpenGL API for rendering, was chosen because of its widespread international
popularity, free availability and advanced feature set. OsiriX is not only a DICOM
viewer, but also acts as a PACS, integrating functionality that is usually found in two
separate products (although the trend is increasingly towards integration of these two
systems). OsiriX also has the capability of allowing developers to create plugins to
increase its functionality. Again, only opacity map rendering was used for the rendering
style for comparison purposes with the MedX3D browser.

The Mac based PC test machine was running Mac OS X Version 10.4, a monitor running
at 1920 X 1200 resolution and 32 bit color, a NVIDIA GeForce 6800 Ultra graphics card
and OsiriX version 2.6 32-bit.

For Linux based PC’s, Image J was used. ImageJ is an open source, public domain, Java-
based image processing program developed in 1997 at the National Institutes of Health. It
is extensible via plugins and recordable macros, and can be run as an online applet or a
standalone application on any computer with a Java 1.1 or later virtual machine. Image J

http://www.rmrsystems.co.uk/volume_rendering.htm
http://www.osirix-viewer.com/
http://en.wikipedia.org/wiki/Plugins

has versions for Microsoft Windows, Mac OS, Mac OS X, Linux, and the Sharp Zaurus
PDA environments.

The Linux based PC test machine was running SUSE 10.3, Sun Java 1.5.0_13, a monitor
running 1280 X 1024 resolution and 16 bit color, an ATI Radeon X1900XT graphics card
with 512MB and ImageJ version 1.38.

MRI Inner Ear—DICOM format dataset

Figure 5: MedX3D standalone application displaying front view of MRI of the head emphasizing
inner ear components

Figure 6: 3DView application displaying front view of MRI of the head emphasizing inner ear
components

Figure 7: OsiriX application displaying front view of MRI of the head emphasizing inner ear
components

Figure 8: ImageJ application displaying front view of MRI of the head emphasizing inner ear
components

Figure 9: MedX3D standalone application displaying inferior view of MRI of the head emphasizing
inner ear components

Figure 10: 3DView application displaying inferior view of MRI of the head emphasizing inner ear
components

Figure 11: OsiriX application displaying inferior view of MRI of the head emphasizing inner ear
components

Figure 12: ImageJ application displaying inferior view of MRI of the head emphasizing inner ear
components

3DView’s and OsiriX’s images in this dataset are clearer and inner ear structures are
more easily discernable than in MedX3D or ImageJ. ImageJ is demonstrating some
distortion of the dataset in the anterior posterior direction.

MRI Head and Neck—DICOM format

Figure 13: MedX3D standalone application displaying frontal view of MRI of the head and neck

Figure 14: 3DView application displaying frontal view of MRI of the head and neck

Figure 15: OsiriX application displaying frontal view of MRI of the head and neck

Figure 16: ImageJ application displaying frontal view of MRI of the head and neck

Figure 17: MedX3D standalone application displaying overhead view of MRI of the head and neck

Figure 18: 3DView application displaying overhead view of MRI of the head and neck

Figure 19: OsiriX application displaying overhead view of MRI of the head and neck

Figure 20: ImageJ application displaying overhead view of MRI of the head and neck

OsiriX has the most details and contrast and is followed closely by ImageJ. OsiriX and
ImageJ have higher intensity images than 3DView and MedX3D.

MRI Angiogram—Brain raw Format

Figure 21: MedX3D standalone application displaying frontal view of MRI angiogram of the cerebral
circulation

Figure 22: MedX3D standalone application displaying frontal view of MRI angiogram of the cerebral
circulation

Figure 23: OsiriX application displaying frontal view of MRI angiogram of the cerebral circulation

 Figure 24: ImageJ application displaying frontal view of MRI angiogram of the cerebral circulation

Figure 25: MedX3D standalone application displaying overhead view of MRI angiogram of the
cerebral circulation

Figure 26: 3DView application displaying frontal view of MRI angiogram of the cerebral circulation

Figure 27: OsiriX application displaying frontal view of MRI angiogram of the cerebral circulation

Figure 28: ImageJ application displaying frontal view of MRI angiogram of the cerebral circulation

ImageJ provides the highest detail and contrast followed by OsiriX. 3DView has higher
contrast vasculature than MedX3D, but MedX3D captures more detail in vascular
structure than 3DView.

CT Abdomen—DICOM format

Figure 29: MedX3D standalone application displaying frontal view of a CT of the abdomen

Figure 30: 3DView application displaying frontal view of a CT of the abdomen

Figure 31: OsiriX application displaying frontal view of a CT of the abdomen

Figure 32: ImageJ application displaying frontal view of a CT of the abdomen

Figure 33: MedX3D standalone application displaying overhead view of a CT of the abdomen

Figure 34: 3DView application displaying overhead view of a CT of the abdomen

Figure 35: OsiriX application displaying overhead view of a CT of the abdomen

Figure 36: ImageJ application displaying overhead view of a CT of the abdomen

ImageJ and MedX3D seems to display the dataset with some vertical distortion, whereas
OsiriX and 3DView display the data with normal proportions. 3DView is able to
accentuate the kidneys better, but MedX3D and ImageJ are able to reveal finer contrast,
such as pulmonary vessels.

OsiriX and ImageJ provided the best overall image quality in this comparison test and are
good benchmarks for freely available medical image volume rendering software. OsiriX
is a standalone application and cannot operate as a web plugin, nor is it based on a royalty
free, open standard, ISO ratified file format, in contrast to MedX3D. ImageJ is also not
based on a standard, but it can run as an applet within a web page.

As expected for products that have been in development for at least 3 years, ImageJ,
OsiriX and 3DView display better quality output than MedX3D. OsiriX, ImageJ and
3DView also boast much more image manipulation capabilities, such as segmentation
and GUI accessible isosurface creation functions, than MedX3D. MedX3D does have the
advantage of a 10 year revision history not focused on medical image rendering, but on
3D environments on the web. This gives the advantage of more applications for end
users and interoperability of data between applications.

MedX3D Concurrent Validation

Section 1. Introduction and Methods
A statistically significant concurrent validation study to compare the MedX3D browser
against the gold standard for 3D medical visualization was outside the scope of this
project. However, it was possible to make some initial comparisons between the
MedX3D browser and an example of the commercial 3D environments currently used in
hospitals.

The Radiology Department at the Royal Liverpool Hospital in the UK agreed to take part
in this exercise. A MRI scan was taken of a healthy volunteer, using the Philips Achieva
1.5T scanner located at the hospital. Note that ethical approval would have been needed
to use an existing patient’s data.

Scan Details (extract):

Acquisition Time: 141829.40
Image Time: 141829.40
Modality: MR
Manufacturer: Philips Medical Systems
Institution Name: Royal Liverpool Hospital
Study Description: BRAIN
Series Description: T2/TSE
Manufacturer's Model Name: Achieva
Scanning Sequence: SE
Sequence Variant: SK
Slice Thickness: 3.0
Magnetic Field Strength: 1.5
Spacing Between Slices: 3.29999995231628
Rows: 512
Columns: 512
Pixel Spacing: 0.44921875\0.44921875
Pixel Aspect Ratio: 1\1
Bits Allocated: 16
Bits Stored: 12
Window Center: 1023.0
Window Width: 2047.0

The voxel resolution of the scan data is 512 x 512 x 42, using an axial acquisition plane.
Thumbnails of some of the scanned images can be seen in Figure 37.

Figure 37: 2D Images from Test MR Scan (here converted to jpg format)

Most of the 3D visualization of medical scans at the hospital takes place on a Siemens'
LEONARDO post-processing workstation connected to the hospital PACS. The
LEONARDO is based on a PC platform, and supports the following 3D methods: MIP,
MPR, SSD, and VRT. We use the VRT (Volume rendering textures) method in our
comparison with MedX3D.

The MedX3D software was installed on a Dell Precision M65 laptop, containing an
NVIDIA Quadro FX 350M graphics card. It was not possible to connect the laptop to the
hospital PACS for security reasons. The MR scan data was therefore copied to a CD-
ROM for loading onto the laptop.

Section 2. Comparison Test
Three radiologists were available on the visit to assist in the test. The M65 laptop was
taken to the scanning suite and positioned next to the PC running LEONARDO. The
radiologists were asked to create a 3D visualization of the MRI data using both the
MedX3D standalone, and the LEONARDO software. Only the volume rendering method
was used allowing the radiologist to change the opacity settings. Figure 38 shows a
typical example of the 3D image produced. Note that as this was a healthy patient, there
was no pathology to identify.

Figure 38: Volume Rendering of MR Head Data in MedX3D Demo software

The radiologists were asked to comment on the following:

− Speed of use: How quickly could they achieve the desired visualization to aid
with a diagnosis.

− Quality of rendering: Did MedX3D perform at least as well as the LEONARDO?
Was diagnosis easier than using the 2D images?

− Accessibility. How useful would it be to access the 3D imagery from anywhere
inside the hospital or even at home?

It would be unfair to compare the functionality of the commercial standard 3D software
on the LEONARDO with the relatively simple MedX3D software produced during this
project.

Section 3. Results
All three radiologists were able to produce 3D visualizations that they were satisfied
with. It took longer to achieve the desired result with the MedX3D software (typically
30-60 seconds) compared with the LEONARDO (typically 20-40 seconds). It was
commented that the user interface on the commercial software was superior, and the
radiologists often used pre-set values for the look up table (opacity map) that had already
been designed to be optimum with different scanning modalities.

The quality of the rendered image achieved was thought to be similar, although it took
longer to get to the end point with MedX3D. Opinion on the advantage of 3D over 2D
was mixed, however, with one radiologist still preferring to use 2D.

The major disadvantage of the LEONARDO software was its accessibility. There are
only three such workstations at the hospital, all located in rooms near to the medical
scanners. All radiologists would welcome the same functionality on their office PCs, and
were positive about remote access, too. The demonstration of MedX3D running in a web
browser was therefore well received. However, deployment would only be possible if
security of the data could be guaranteed.

A more extensive study with more participants and covering a wider range of commercial
software will be needed to confirm concurrent validation. However, the above results are
promising for the future use of MedX3D for 3D medical viewing software.

Key Research Accomplishments

• Creation of an ISO format ready volume rendering component to the open
standard, royalty free X3D specification that has been reviewed by 3D graphic
experts both inside and outside of the Web3D Consortium

• Creation of a MedicalInterchange profile to the X3D specification that identifies
only the parts of the X3D specification necessary for an implementation of a X3D
compliant 3D medical image viewer (e.g. volume rendering, annotation,
navigation, picking, etc.) for use in medical education, surgical planning and
simulation and patient education.

• Creation of an annotation extension to the X3D specification to allow labeling of
volumes and objects in a 3D scene using a variety of user interface techniques

• Creation of an open source import/export library in C++ and Visual Basic to
encourage and simplify development of 3rd party applications to interface with
products adhering to X3D’s MedicalInterchange profile

• Creation of open source tools and resources that enable mapping of X3D content
to the two most popular anatomical ontologies, FMA and SNOMED

• Creation of a Windows based web browser plugin and standalone application
(MedX3D) that can load DICOM files and display 3D volumetric medical images
using several different rendering styles by implementing the X3D
MedicalInterchange profile and volume rendering component

• Favorable focused comparison of the MedX3D browser to freely available, well
established 3D volumetric medical image viewers on various hardware and
operating system platforms

• Favorable focused comparison to a commercially available 3D medical image
viewing software product

• Creation of an anonymized medical image library for use by Consortium
membership for testing 3D medical image display techniques

Reportable Outcomes

As a result of this contract, a paper describing the key accomplishments has been
accepted for oral presentation at the Medicine Meets Virtual Reality (MMVR)
Conference in January 2008 at Long Beach, CA [9]. Appendix J contains the manuscript
as submitted. This research has also stimulated a number of presentations, including
those at SIGGRAPH 2007 Birds of a Feather for X3D Medical Working Group,
SIGGRAPH 2007 X3D technical showcase, Silicon Valley ACM SIGGRAPH Chapter,
ATI and NVIDIA headquarters.

This project has also allowed representatives of the Web3D Consortium to take
leadership roles in championing a standard for 3D medical images in the DICOM
standards organization, where we have formal membership status. The Consortium has
representatives in Working Groups 11 and 17.

At the time of this writing, we have just been made aware of another implementation of
the volume rendering extension that is already beyond an early stage of development.
This implementation was initiated by Fraunhofer IGD (http://a4www.igd.fraunhofer.de/)
and ZGV (http://zgdv.de/) in their Instant Reality X3D browser
(http://www.instantreality.org/home/) of their own accord. They are providing valuable
feedback for changes and clarifications in the VRC. This spontaneous implementation of
the VRC provides validation of its relevance and importance.

Conclusion

The tasks completed for this contract have created potential benefits for medical care
along a continuum of end users involved in this market space. At one end of the
continuum are the physicians, and the most basic benefit for them is a potential open
standard file format for 3D medical images to be transmitted over networks and between
applications. Interoperability is a key chokepoint in medical information management
systems, so much so that an industry collaboration known as Integrating the Healthcare
Enterprise (http://www.himss.org/ASP/topics_ihe.asp) was formed in 1998 with the
primary mission of encouraging and promoting standards in healthcare informatics. As
the use of 3D medical images becomes more commonplace, with the possibility of 3D
eventually replacing 2D images and plain Xrays, a standard file format is paramount to
ensure patient safety, clinical efficiency and improvement of patient care. Currently
many PACS systems cannot exchange 3D images, and these images take significant
resources to process and then manually prepare prior to radiologist interpretation. Not
being able to easily exchange these completely processed 3D images between systems
creates immediate difficulties for communications between physicians regarding patients’
diagnoses and treatments, especially as these images are being relied upon more and
more as the primary reference source for medical action. A recent reader poll reported in
the February 2007 issue of HealthImaging & IT magazine revealed that 67% of
respondents answered no to the question: “Are you able to easily share patient
information with other healthcare facilities in your region?”

http://a4www.igd.fraunhofer.de/
http://www.instantreality.org/home/

Physicians also have potential benefit from this work in the area of simulation. The
expense in time, money and safety that is part of surgical training is well known
[10,11,12], and the advantages of training in virtual environments have been proven, even
in low fidelity environments or environments that only train basic psychomotor skills
used in surgery such as video games [13]. Simulation would also benefit surgical
planning for complex cases and recertification or continuing education scenarios.
By adding volume rendering abilities to the X3D specification, a web based simulator on
patient specific data for surgical or procedural training is almost complete, as X3D
describes a scenegraph and includes support for a complete visual and aural virtual
environment. Admittedly, there are now web based, open source surgical simulators with
visual, aural and haptic capabilities becoming available, but they are not based on an
open ISO standard data format or scenegraph, and most originate in academic centers.
X3D has been adopted by government, academia and industry, is ISO ratified and has
been in development for over 10 years, with a focus on integration with web services and
infrastructure. Additionally, the API upon which the implementation of the VRC was
built also includes haptics capabilities, although these have not been standardized as of
yet.

Moving along the continuum, general healthcare providers and ancillary service
providers would be assisted by this technology as it would bring 3D medical images to
more desktops at a less expensive (or free) price for educational purposes. Again, there
are already solutions that provide visualization of 3D medical images (as seen in the
comparison tests noted above), but few if any provide support for annotations in 2D or
3D, the infrastructure for custom animations and an open standard file and scenegraph
format for the 3D images. Annotations and animations are especially important for
communicating complex anatomical relationships and procedures.

This technology would also have significant advantages to the lay person. A web based
plugin would bring more access of their own 3D images to the patient, and provide a
venue for a physician to improve communication when discussing surgical procedures as
dictated by laws for informed consent. Given that many studies show poor retention rates
in presurgical education despite concerted efforts [14,15] and that the lack of adequate
informed consent is one of the top 10 most common reasons for hospital malpractice
claims [16], any adjuncts to physician patient rapport will be extremely useful.

As more and more of our lives become intertwined with the internet, and more business is
conducted in virtual space (e.g. Second Life -- http://secondlife.com/), significant
collaboration between physician and patient or physician and physician may also take
place in like environments. The ability to collaboratively interact with a 3D model in real
time is a powerful tool for communication and knowledge transfer. Early versions of
X3D had been a part of pioneering multi-user virtual worlds 10 years ago, so it has been
built to support this type of activity from an early on. A standard 3D medical image
format based on X3D could leverage the X3D specification’s infrastructure and
accelerate developments in collaboration of 3D medical images virtual worlds.

Besides these trends in collaboration, medical care is about to enter a significant trend
where care is more individualized, and imaging studies must necessarily become more
microscopic. X3D can easily scale to visualize complex molecular shapes that are
paramount in importance for drug discovery and diagnosis. Although there is a standard
file format that has been around since the 70’s to describe protein structures (PDB --
http://www.wwpdb.org/), there is no corresponding format to additionally encapsulate
molecular forces related to bonding, which is important in determining quaternary
molecular structure and drug activity. The X3D specification already has the
functionality to support this. By establishing itself as a legitimate standard for 3D
medical images, X3D becomes a logical choice for standardization of molecular structure
and bonding behavior.

Finally, development within the X3D framework for volume rendering leverages the
horizontal reach of the X3D specification, providing gains to other vertical market spaces
that are not necessarily related to medicine. The oil and gas industry is interested in
volume rendering capabilities for visualizing expansive datasets of subterranean spaces in
search of fossil fuels. Volume rendering is also important for climatologists to analyze
weather prediction and global warming. Scientific visualization depends on volume
rendering for computational fluid dynamics. X3D is being used in all of these scenarios
already, and standardization of volume rendering functionality will help to improve these
visualizations and promote further interoperability of data.

Future work should focus on:

• Improving features and functionality of the MedX3D browser to approach the
quality of other freely available volume viewers.

• The MIP and VRC should be revised based on feedback and new rendering
techniques. A haptic extension to X3D should be developed to create the final
piece for surgical and procedural simulation within an ISO ratified, X3D
framework.

• A public image repository should be developed to provide a library of virtual
cadavers showing normal anatomy, pathology and normal anatomic variants.

• Conformance testing suites should be developed to provide a mechanism for
control of adherence to the X3D standard.

• DICOM participation should be increased
• A second browser implementation utilizing the MIP and VRC should be created

(if one has not appeared by then) to allow for entrance of the MIP and VRC into
ISO as a formal application for standardization.

http://www.wwpdb.org/

References

[1] Megibow, A.J. (2002). Three-D offers workflow gains, new diagnostic options.

Diagnostic Imaging. November 2002, 83-93.
[2] F.P. Vidal, F. Bello, K.W. Brodlie, D.A. Gould, N.W. John, R. Phillips, N.J. Avis,

"Principles and Applications of Computer Graphics in Medicine", Computer Graphics
Forum, Vol. 25 Issue 1, 2006, pp113-137.

[3] Brutzman, D. and Daly, L. (2007). X3D Extensible 3D Graphics for Web Authors.
The Morgan Kaufmann Series in Computer Graphics. ISBN 978-0-12-088500-8

[4] Rosse C., Mejino J.V.L. (2003). A reference ontology for biomedical informatics: the
Foundational Model of Anatomy. J Biomed Inform. 36:478-500.

[5] Bodenreider, O. and Zhang, S. (2006). Comparing the Representation of Anatomy in
the FMA and SNOMED CT. AMIA Annu Symp Proc. 2006; 46–50.

[6] Preim, B and Bartz, D. (2007) Visualization in Medicine. San Francisco: Morgan
Kaufman.

[7] Gooch, A., Gooch, B., Shirley, P., and Cohen, E. (1998) A non-photorealistic lighting
model for automatic technical illustration. In Proceedings of the 25th Annual
Conference on Computer Graphics and interactive Techniques SIGGRAPH '98. ACM
Press, New York, NY, 447-452.

[8] The DICOM Home Page, http:// medical.nema.org/ Last visited November 2007.
[9] John, N.W., Aratow, M., Couch, J., Evestedt, D., Hudson, A.D., Polys, N., Puk, R.F.,

Ray, A., Victor, K. and Wang, Q. MedX3D: Standards Enabled Desktop Medical
3D (2008) Stud Health Technol Inform. To Appear

[10] Babineau, T.J., Becker, J., Gibbons, G., Sentovich, S., Hess, D., Robertson, S., and
Stone, M. The “Cost” of Operative Training for Surgical Residents Arch Surg 2004
Apr; 139(4):366-69.

[11] Farnworth, L.R., Lemay, D.E., Wooldridge, T., Mabrey, J.D., Blaschak, M.J.,
DeCoster, T.A., Washcer, D.C. and Schenk, R.C. A Comparison of Operative Times
in Arthroscopic ACL Reconstruction Between Orthopaedic Faculty and Residents:
The Financial Impact of Orthopaedic Surgical Training in the Operating Room Iowa
Orthop J. 2001; 21: 31–35.

[12] Gillespie K.N., Campbell C.R. Cost and productivity effects of residency programs
in medicine, psychiatry, and surgery. AHSR FHSR Annu Meet Abstr Book. 1995;
12: 26.

[13] Rosser J.C. Jr, Lynch P.J., Cuddihy L., Gentile Rosser J.C. Jr, Lynch P.J., Cuddihy
L, Gentile D.A., Klonsky J., Merrell R. Arch Surg. 2007 Feb;142(2):181-6.

[14] Madan A.K., Tichansky D.S. Patients postoperatively forget aspects of preoperative
patient education. Obes Surg. 2005 Aug;15(7):1066-9.

[15] Herz D.A., Looman J.E., Lewis S.K. Informed consent: is it a myth? Neurosurgery.
1992 Mar;30(3):453-8.

[16]Glabman M. Top ten hospital malpractice claims [and how to minimize them].
Trustee. 2004;57(2):12-16.

Appendix A

Use Cases Influencing MedX3D Profile Development

Accessibility outside the radiology suite
Until recently, 3D reconstructions of CT, MRI, PET or ultrasound studies were confined
to specialized workstations in the radiology department. Thin client server technology
has offloaded processing power to centralized servers and allowed home computers to
interact with workstation quality volumetric images at workstation quality speeds (if
robust bandwidth is available). Additionally, the relentless increase in performance of
Graphics Processing Units (GPUs) has enabled volume rendering capabilities and
interactive frame rates at an order of magnitude less in price compared to workstations.
Still, either solution does require considerable capital investment in hardware and
software. An open standard for 3D medical images based on X3D, a standard focused on
home computer performance, would bring these images to a wider distribution of
physicians, as these products would be free or at a significantly lower cost. Because
volumetric images are in more of an intuitive format than cross or sagittal sections, these
physicians would also have better comprehension of the image study.

Anatomy Education
Anatomical coursework is difficult in part due to inadequate resources for learning.
Cadavers, although arguably the best way to learn anatomy, are always in short supply.
Dissection teams composed of several members and limited access are factors that
contribute to less time for an individual to explore anatomical relationships and tissue
characteristics independently. Textbooks are constrained to 2D presentations, and
although software is available with interactive 3D displays, many times the data is
illustrative rather than real. Although illustrative visualization is important in education,
the ability to visualize volumetric representations of real data, and therefore the ability to
visualize pathology as well as normal anatomical variants, is an important part of
building an anatomical knowledge base. An open standard would make inexpensive or
freely available tools available to students of anatomy to explore real data sets to
understand these subtleties without having to have access to an expensive computer or
high end server.

Informed Consent
Physicians are required by law to inform patients of the mechanics, risks, benefits and
alternatives of invasive procedures and to document this exchange in the form of a signed
inform consent form. Frequently physicians find themselves taking significant time to
explain more complex procedures and their patients leaving the office without fully
understanding the actual procedure. An open, royalty free standard would make
inexpensive or free tools available to both physician and patient for understanding and
visualizing such procedures. X3D also allows sophisticated simulations so that
animations of the actual procedure on the patient’s data can be displayed for further
clarity.

Custom Prostheses
Matching generic prostheses to a specific patient can be difficult prior to surgery due to
projection errors on plain Xrays, unforeseen anatomical limitations or unpredicted
complications during surgery. Total joint surgeries require a size inventory of prosthetic
products be available as size predictions have nominal accuracy. Specialized prostheses
require custom fabrication and therefore would need volume rendered patient specific
datasets to compute exact dimensions. An open standard would enable the use of custom
prostheses on a wider scale as interoperability problems with different imaging
modalities would be limited, allowing confidence in the patient dataset.

Surgical Planning
Complex surgical cases require planning that includes visualization of the approach,
tissue exposure and execution of the defined procedure. If thin client server or advanced
visualization software is not available to the surgeon, they may be relegated to traditional
cross sectional scan views or snapshots of volume rendered images. Using the
capabilities of X3D, surgeons can analyze patient volumetric data from their office or
home computer to plan their operation, make measurements and label objects. This
technology would be relevant to all areas of surgery, especially vascular, orthopedics,
head and neck, plastics and cardiothoracic subspecialties. This functionality would also
be valuable for dental implant planning and 3D cephalometric analyses for orthodontic
and orthognathic surgical planning.

Surgical Education
The surgical modeling and simulation community has until recently been fragmented
with numerous surgical simulators, physiologic models and devices available but no
significant level of interoperability. No methodology existed to compare features and
functionality or to begin to assess surgical skill for the benefits of training and
certification. With TATRC encouraging open source releases of simulation engines,
patient specific content must also be expressed in a standardized file format to help
realize the interoperability vision. Advances in networked haptics and web based
surgical simulators make an open standard for 3D medical images based on X3D a
natural fit.

Radiation Therapy
Cancer is becoming more prevalent as the population ages. Radiation therapy is an
important modality for therapeutic intervention in many forms of cancer. Treatment with
this modality is labor intensive and requires significant planning to predict beam reach
and path, gantry position and path and beam intersection with pathologic tissue. Multiple
applications need to be accessed to complete this planning but some of the questions
aren’t even answered (prediction of collision of gantry with patient, bed, floor). This can
lead to slower turnaround times with an always overbooked radiation therapy device.
Using X3D as a standard for 3D medical images, it can provide an integrated solution and
complete preplanning package using patient and machine specific data to predict
collisions and analyze beam penetration customized for the individual.

Appendix E

Methodology for Interfacing DICOM files with X3D

This description will not be limited to a particular programming language. Instead, it will
provide guidance to programmers on how they can use this type of data in their own
X3D-based applications.

DICOM Overview

Digital Imaging and Communications in Medicine (DICOM) is a standard for handling, storing,
printing, and transmitting information in medical imaging. It includes a file format definition and a
network communications protocol. The communication protocol is an application protocol that uses
TCP/IP to communicate between systems. DICOM files can be exchanged between two entities that are
capable of receiving image and patient data in DICOM format. The National Electrical Manufacturers
Association (NEMA) holds the copyright to this standard [1]. It was developed by the DICOM
Standards Committee, whose members [2] are also partly members of NEMA [3].

DICOM enables the integration of scanners, servers, workstations, printers, and network hardware
from multiple manufacturers into a Picture Archiving and Communication System (PACS). The
different devices come with DICOM conformance statements which clearly state the DICOM classes
they support. DICOM has been widely adopted by hospitals and is making inroads in smaller
applications like dentists' and doctors' offices. See reference [1] for a good introduction to DICOM.

DICOM Terms

 IOD - Information Object Definitions
 Information objects define the core contents of medical imaging such as images, reports, and
patients, whose function is to carry information; entities in an E-R model whose descriptive attributes
have been listed and defined.

 Service Class - A set of functions performed to communicate between layers within a device

 SOP classes - Service-object pair

 SOP instance - A patient specific instance of imagery and patient information

 Message - Communication version of the SOP class that provides the specified service and the data
set made up of the properly encoded information object instance.

 See reference [2] for a good technical description of DICOM.

 DICOM Storage Methodology

 The DICOM standard stores information in a tag value encoded pair. The tag is a unique ID
composed of 2 integers that describes the name of an attribute. The attribute describes some feature of
the image. Most DICOM libraries provide a mechanism for easily accessing the tag's value in a
DICOM file.

DICOM Aspects Most Relevant to X3D Implementations

 There are two features of DICOM that are most relevant to X3D implementations incorporating
DICOM images. These parts deal with storage of images on a local file system and access to these
images from a web service.

 3.10 - Media Storage and File Format for Data Interchange
 Part 10 - offline file format. See reference (3) for file level details.

 3.18 - Web Access to DICOM Persistent Objects (WADO)
 Part 18 – Web access. See reference (4) for transmission details.

Toolkits Implementing DICOM

 The most likely route for an X3D implementation to use DICOM is to use a toolkit to read the files.
The following toolkits for C and Java might be useful.

 C/C++:
 DCMTK - DICOM Toolkit http://dicom.offis.de/dcmtk.php.en
 David Clunie's Library: http://www.dclunie.com/dicom3tools.html

 Java:
 dcm4che - DICOM implementation in Java: http://sourceforge.net/projects/dcm4che/
 JDDK(Java DICOM Development Kit)
 ImageJ: http://rsb.info.nih.gov/ij/

Ultimate resource for all things DICOM: http://www.idoimaging.com/index.shtml

 References

1 - http://en.wikipedia.org/wiki/Digital_Imaging_and_Communications_in_Medicine
2 - http://www.rsna.org/Technology/DICOM/intro/elemental.cfm
3- http://medical.nema.org/dicom/2007/07_10pu.pdf
4 - http://medical.nema.org/dicom/2007/07_18pu.pdf

http://rsb.info.nih.gov/ij/

Appendix G

Mapping Between X3D and SNOMED/FMA

Section A: contents of the tarball

http://snoid.sv.vt.edu/~anray2/x3dMetadata.tar.gz

x3dMetadata

finalReport.doc
fmaHtmlParser

 header.xml
README.txt
script1
Serosa+of+right+hemiliver.html
Upper+lobe+of+lung.html
parse.cpp
script0
script2
Serosa_of_right_hemiliver.xml
Upper_lobe_of_lung.xml

html_out.tar.bz2
index.html
README.txt
xslt

 fmaOut.xml
FMA.xml
FMA.xslt
README.txt
sct_xml_cps_sample.xml
snoModified.xml
snoOut.xml
SNO.xslt

Section B: FMA Setup

This section deals with where to go to obtain the resources necessary to transform FMA information
into X3D Metadata. It goes over how to obtain the database, how to import the database into a MySQL
database, how to install Protege (ontology program that talks with the database), how to get usable data
out of Protege, and how to transform this data into X3D Metadata.

To obtain the FMA database, you must agree to the license found here:
http://sig.biostr.washington.edu/projects/fma/license_faq.html

Once this is done you have a somewhat involved process for getting the FMA to work. The first part is
obtaining the database, next is loading the database into MySQL. Next is downloading Protege,
installing the Protege extensions, and configuring Protege to talk to MySQL. Lastly, you have to
export the FMA project from Protege into the html output form.

FMA database:
To obtain dump file: “Please use the username "opensource" and the password "fma2007" when
downloading the FMA dump file. We apologize for the inconvenient download procedure, but we are

http://snoid.sv.vt.edu/%7Eanray2/x3dMetadata.tar.gz
http://sig.biostr.washington.edu/projects/fma/license_faq.html

currently investigating better methods.”
http://fma.biostr.washington.edu/latest_version

This is simply a file which holds the FMA in a format that MySQL can handle. Once you have
downloaded the file you can install it into MySQL using the instructions on this website:

http://sig.biostr.washington.edu/projects/fm/FMA_Release/FMA_instructions.html

An example FMA SQLrecord:

<FMA>
 <frame>26212</frame>
 <frame_type>6</frame_type>
 <slot>2002</slot>
 <facet>0</facet>
 <is_template>0</is_template>
 <value_index>0</value_index>
 <value_type>3</value_type>
 <short_value>Liver</short_value>
</FMA>

An example of how this can be transformed into target X3D metadata is as follows:

<X3D profile="Immersive" version="3.1" xmlns:xsd="http://www.w3.org/2001/XMLSchema-instance"
xsd:noNamespaceSchemaLocation="http://www.web3d.org/specifications/x3d-3.1.xsd">
<head>
 <meta content="X3D metadata description of a FMA mysql xml document." name="description"/>
 <meta content="Written by a xslt template created by Andrew Ray." name="creator"/>
 <meta content="Program created on 9/23/2007." name="created"/>
 <meta content="Copyright (c) of generating author" name="rights"/>
 <meta content="FMA, SNOMED." name="subject"/>
</head><Scene>
<MetadataSet DEF="m123456" name="FMA-XML" reference="FMA">
 <MetadataInteger name="frame" value="26212"/>
 <MetadataInteger name="frame_type" value="6"/>
 <MetadataInteger name="slot" value="2002"/>
 <MetadataInteger name="facet" value="0"/>
 <MetadataInteger name="is_template" value="0"/>
 <MetadataInteger name="value_index" value="0"/>
 <MetadataInteger name="value_type" value="3"/>
 <MetadataString name="short_value" value="Liver"/>
</MetadataSet>
</Scene>
</X3D>

Once the database is installed and working and you want to produce X3D metadata in HTML output,
then you need to install a program called Protege that knows the format for the database (it isn't setup
the way you think it is). This program can then output the FMA in a saner format for processing.

Protege Instructions:

http://sig.biostr.washington.edu/projects/fm/FMA_Release/setup-protege.html

If these instructions do not work please go to this URL and follow the instructions that the FMA
developers provide:

http://depts.washington.edu/ventures/UW_Technology/Express_Licenses/FMA.php

http://fma.biostr.washington.edu/latest_version
http://sig.biostr.washington.edu/projects/fm/FMA_Release/FMA_instructions.html
http://sig.biostr.washington.edu/projects/fm/FMA_Release/setup-protege.html
http://depts.washington.edu/ventures/UW_Technology/Express_Licenses/FMA.php

As a last resort, here is the FMA homepage, find out how to obtain it from there:

http://sig.biostr.washington.edu/projects/fm/FAQs.html

Generating HTML from Protege:
Once all of this working, the steps to producing X3D metadata are rather simple. The first is start
Protege, load the FMA project file, click file, click ‘export to format’, then click ‘HTML’. Specify the
directory for the html to be generated and then wait. This process can literally take several days. This
process will generate approximately 1.1gb of data.

A bzip'd tarball that contains the HTML generated from Protege if you wish to save yourself the work
of generating it can be found in the release tarball or at the following website. This is a 12 MB
download that expands to 1.1 GB.

http://snoid.sv.vt.edu/~anray2/html_out.tar.bz2

Transforming HTML into X3D Metadata:
The requirements for this program are a linux system that can compile C++ code, and can run sed on
script files. The parser can found in the release tarball in the directory fmaHtmlParser or be
downloaded at:

http://snoid.sv.vt.edu/~anray2/parser.tar.gz .

Building the parser can be done via typing “make parse” inside of the parser directory. There are two
example html files in this directory, and two xml files that show the output of the parser.

The program runs by giving it a single html file to convert. This program will then convert the html
file into an xml file named by a sanitized version of the html title (sanitized to only contain the FMA
name delimited by _'s not spaces).

Example:

./parse Liver.html
Produces:

Liver.xml

An example of the metadata produced by this program:

<X3D profile="Immersive" version="3.1" xmlns:xsd="http://www.w3.org/2001/XMLSchema-instance"
xsd:noNamespaceSchemaLocation="http://www.web3d.org/specifications/x3d-3.1.xsd">
<Scene>
<Transform DEF="Body">
<Group>
<MetadataSet DEF="m7334" name=" Upper_lobe_of_lung" reference="FMA">

<MetadataString name="has inherent 3-D shape" value="true"/>
 <MetadataSet name="regional part" reference="FMA">
 <MetadataString name="SetName" reference="FMA" value="Bronchopulmonary_segment"/>
 <MetadataString name="SetName" reference="FMA" value="Bronchopulmonary_segment"/>
 <MetadataString name="SetName" reference="FMA" value="Bronchopulmonary_segment"/>
 </MetadataSet>

<MetadataString name="regional part of" value="blank"/>
<MetadataSet name="constitutional part" reference="FMA">
 <MetadataString name="SetName" reference="FMA" value="Parenchyma_of_lobe_of_lung"/>
 <MetadataString name="SetName" reference="FMA" value="Lobar_bronchial_tree"/>
 <MetadataString name="SetName" reference="FMA" value="Pleura_of_lobe_of_lung"/>
 <MetadataString name="SetName" reference="FMA" value="Neural_network_of_lobe_of_lung"/>

http://sig.biostr.washington.edu/projects/fm/FAQs.html
http://snoid.sv.vt.edu/%7Eanray2/html_out.tar.bz2
http://snoid.sv.vt.edu/%7Eanray2/parser.tar.gz

 <MetadataString name="SetName" reference="FMA" value="Vasculature_of_lobe_of_lung"/>
</MetadataSet>
<MetadataString name="dimension" value="3-dimension"/>
<MetadataString name="has dimension" value="true"/>
<MetadataString name="has boundary" value="true"/>
<MetadataInteger name="FMAID" value="7334"/>
<MetadataString name="Preferred name" value="Upper_lobe_of_lung"/>
<MetadataSet name="Synonym" reference="FMA">
 <MetadataString name="SetName" reference="FMA" value="Lobus_superior"/>
 <MetadataString name="SetName" reference="FMA" value="Superior_lobe_of_lung"/>
</MetadataSet>
<MetadataSet name="part" reference="FMA">

<MetadataString name="SetName" reference="FMA" value="Parenchyma_of_lobe_of_lung"/>
<MetadataString name="SetName" reference="FMA" value="Lobar_bronchial_tree"/>
<MetadataString name="SetName" reference="FMA" value="Pleura_of_lobe_of_lung"/>
<MetadataString name="SetName" reference="FMA" value="Bronchopulmonary_segment"/>
<MetadataString name="SetName" reference="FMA" value="Bronchopulmonary_segment"/>
<MetadataString name="SetName" reference="FMA" value="Bronchopulmonary_segment"/>

</MetadataSet>
<MetadataString name="part of" value="Lobular_organ"/>
<MetadataString name="Non-English equivalent" value="Lobus_superior_pulmonis"/>
<MetadataString name="constitutional part of" value="blank"/>
</MetadataSet>

</Group>
</Transform>
</Scene>
</X3D>

Section C: Converting SNOMED to X3Dmetadata

The first step that has to be done is to install a XSLT processor. The one used when creating this
program can be found here: http://xmlsoft.org/XSLT/xsltproc2.html. Once the processor is installed
and working then the next step is to download the SNOMED to X3D metadata XSLT file. The file can
be found at http://snoid.sv.vt.edu/~anray2/xslt/SNO.xslt. The next step is to strip the following lines
out of your XML file:

<snomedCt xmlns="urn:snomed-org/sct" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:snomed-org/sctSchema\SnomedCt.xsd">
</snomedCt>

This is due to the limitations of xsltproc, it cannot parse this tag. The next necessary addition is to have
the xml file begin with <test> and end with </test>. Once this is done then you can transform
SNOMED xml files to X3D metadata files by typing:

 xsltproc SNO.xslt yourxmlfilehere.xml

An example of SNOMED input:

<concepts>
 <concept conceptId="369445005" conceptStatus="0" fullySpecifiedName="Chronic proctocolitis (disorder)"
 ctv3id="XUU7a" snomedId="D5-45285" isPrimitive="1">
 <descriptions>
 <description descriptionId=" 774149015 term="Chronic proctocolitis"
 descriptionType="3" initialCapitalStatus="0" languageCode="en"
 descriptionStatus="0">

http://xmlsoft.org/XSLT/xsltproc2.html
http://snoid.sv.vt.edu/%7Eanray2/xslt/SNO.xslt

 <history releaseVersion="20020131" changeType="0" reason="null"/>
 </description>
 </descriptions>

 <relationshipSet>
 <relationship relationshipId="2398318025" relationshipType="24611200006"
 conceptId2="3853150009" characteristicType="1" refinability="1"/>
 <relationshipGroup>
 <relationship relationshipId="1082140022"
 relationshipType="116676008" conceptId2="23583003"

characteristicType="0" refinability="2"/>
 <relationship relationshipId="1082141021" relationshipType="363698007"
 conceptId2="34402009" characteristicType="0" refinability="2"/>
 </relationshipGroup>
 </relationshipSet>
</concept>

</concepts>

Although there are several integer examples in this example, all of them are represented as strings in
our transformation because if the value is not valid, it may be set to “null.” An example of the
transformed XML into X3D metadata is:

<MetadataSet DEF="m123456" name="SNOMED-XML" reference="SNOMED">
<MetadataSet name="concepts">
 <MetadataSet name="Concept " reference="SNOMED">
 <MetadataString name="conceptId" value="369445005"/>
 <MetadataString name="conceptStatus" value="0"/>
 <MetadataString name="fullySpecfiedName" value="Chronic proctocolitis (disorder)"/>
 <MetadataString name="ctv3id" value="XUU7a"/>
 <MetadataString name="snomedId" value="D5-45285"/>
 <MetadataString name="isPrimitive" value="1"/>
 <MetadataSet name="Description" reference="SNOMED">

 <MetadataString name="descriptionId" value="774149015"/>
 <MetadataString name="term" value="Chronic proctocolitis (disorder)"/>
 <MetadataString name="descriptionType" value="3"/>
 <MetadataString name="initialCapitalStatus" value="0"/>
 <MetadataString name="languageCode" value="en"/>
 <MetadataString name="descriptionStatus" value="0"/>
 </MetadataSet>
 <MetadataSet name="History" reference="SNOMED">
 <MetadataString name="releaseVersion" value="20020131"/>
 <MetadataString name="changeType" value="0"/>
 <MetadataString name="reason" value="null"/>
 </MetadataSet>
 <MetadataSet name="relationshipSet">
 <MetadataSet name="relationship" reference="SNOMED">

 <MetadataString name="relationshipId" value="2398318025"/>
 <MetadataString name="relationshipType" value="246100006"/>
 <MetadataString name="conceptId2" value="385315009"/>
 <MetadataString name="characteristicType" value="1"/>
 <MetadataString name="refinability" value="1"/>
 </MetadataSet>
 <MetadataSet name="relationship" reference="SNOMED">
 <MetadataString name="relationshipId" value="2398319022"/>
 <MetadataString name="relationshipType" value="246100006"/>
 <MetadataString name="conceptId2" value="61751001"/>
 <MetadataString name="characteristicType" value="1"/>
 <MetadataString name="refinability" value="1"/>
 </MetadataSet>
 <MetadataSet name="relationshipGroup">

 <MetadataSet name="relationship" reference="SNOMED">
 <MetadataString name="relationshipId" value="1082140022"/>
 <MetadataString name="relationshipType" value="116676008"/>
 <MetadataString name="conceptId2" value="23583003"/>
 <MetadataString name="characteristicType" value="0"/>
 <MetadataString name="refinability" value="2"/>
 </MetadataSet>
 <MetadataSet name="relationship" reference="SNOMED">
 <MetadataString name="relationshipId" value="1082141021"/>
 <MetadataString name="relationshipType" value="363698007"/>
 <MetadataString name="conceptId2" value="34402009"/>
 <MetadataString name="characteristicType" value="0"/>
 <MetadataString name="refinability" value="2"/>
 </MetadataSet>

 <!--End relationshipGroup tag -->
 </MetadataSet>

 <!--End relationshipSet tag -->
 </MetadataSet>
 <!--End concept tag -->
 </MetadataSet>
<!--End concepts tag -->
</MetadataSet>
<!--Final closing tag -->
</MetadataSet>

Appendix H

Import/Export Library

1) Installation and Redistribution
Before the SDK can be used, it must be installed. To install the Flux Import Export SDK,
run the SetupFluxIOSDK.exe program. It will install the SDK. In addition to placing
several files on your harddrive, it also registers the FluxIO.dll, which registers the COM
interfaces.

The SDK installer will place the following folders in the installation folder:

The “include” folder contains a couple of headers files that your application will
need to include.
The “bin” folder contains the dlls.
The “cpp_testcase” folder contains a test harness written in C++.
The “vb_testcase” folder contains a test harness written in Visual Basic.

If your application uses this library, you will need to redistribute the library with your
installation. To do so, please redistribute the dlls that are found in the “bin” folder of the
SDK installation. Your installer must also register the FluxIO.dll file. One way to do so
is to use the win32 command: regsvr32 FluxIO.dll

The installation of the Flux Import Export SDK will not interfere with the installation of
Flux Player, Flux Studio, or any other X3D product. No files types are associated.

2) Getting Started with the SDK
This section is a brief tutorial on how to quickly get up and running with the SDK using
C++. It assumes little knowledge of the X3D SAI. It does assume some minimal
knowledge of COM. Readers who are familiar with the SAI and COM might find this
section boring.

We suggest that you open up the sample testHarness application, and MSVC V6 project.
This shows all the code that is discussed. Note, the code listed here is somewhat
simplified.

1) With any COM application, you must first initialize the COM system, with a call to:
 HRESULT hr = CoInitialize(0);
Make sure you have a matching call to CoUninitialize(); when you are finished using
COM.

Also, you must include the include files for the SDK (you will need to check the paths)
:

#include "..\FluxIO\FluxIO.h"
#include "..\FluxIO\FluxIO_i.c"

2) The first step in getting at the interfaces supplied in this API is to instantiate an
X3Dbrowser object. To do so, use the standard COM call to instantiate a COM object:

X3DBrowser *pIX3DBrowser = NULL;
hr = CoCreateInstance(CLSID_CoX3DBrowser, NULL, CLSCTX_INPROC_SERVER,
 IID_X3DBrowser, (void**) &pIX3DBrowser);
As is the case with all calls to COM methods, the application should check the return
code before proceeding.

3) Once you have an empty Browser Object, you should probably fill it with content.
The quickest way to do this is to read the content from a file. This is a two step process;
first read the url, which returns a pointer to a Scene, and call replaceWorlds with our new
Scene Node:
X3DScene *pIX3DScene = NULL;
hr = pIX3DBrowser->createX3DFromURL(_bstr_t(PathIn), &pIX3DScene);

if(SUCCEEDED(hr)){
 pIX3DScene->AddRef();
 hr = pIX3DBrowser->replaceWorld(pIX3DScene);

4) Now that we have a Scene, lets try to get a pointer to a Node using the Node’s DEF
name:

X3DNode *pIX3DNode = NULL;
hr = pIX3DScene ->getNode(_bstr_t(TargetNodeName), &pIX3DNode);

5) If we found a Node, we can now get a field on that Node. Using the SAI, you can not
directly manipulate a Node. Instead, you access the Fields on the Node. They contain
the attributes of the Node. You can then read and write the values of those fields using
the SAI.
Let’s try to get a field via its name. There are also methods that let you traverse through
the fields associated with a particular node. The following line gets us a pointer to the
Field:

X3DField* pIX3DField;
hr = pIX3DNode->getField(_bstr_t(TargetFieldName), &pIX3DField);

Note: we have received the base Field class that is independent of the type of value
contained in the field. Before we can do anything significant with that field, we must
safely get an interface to the specific type of Field. It is the specific interface that lets us
read and write the field values.

6) We need to cast it to the correct type of field. This sample code is specifically looking
for a SFFloat field.

X3DFieldType fieldtype;
pIX3DField->getType(&fieldtype);

if(fieldtype == X3DSFFloatType) {
 X3DSFFloat* pIHeightField = (X3DSFFloat*) pIX3DField;

7) If we have a field, first lets take a peek at the previous value of the field:

float val0 = 0.0;
pIHeightField->getValue(&val0);

8) Next, lets set it to a new value:

val0 = NewFloatValue;
pIHeightField->setValue(val0);

9) We could continue on, adding and removing Nodes, and modifying field values. But,
at this point, we will just export the modified content to a file.

hr = pIX3DBrowser->export(_bstr_t(PathOut));

10) At any time, we might want to look in the Console window to see any warnings or
errors.
Since we don’t have a console Window, the API provides access to the text in the
Console. This feature was added to the API to give application developers some
feedback when files do not load.
You can Pop the string off of the top of the console message list:

CString NewConsoleText;
BSTR bsLine;
while(SUCCEEDED(pIX3DBrowser->popConsoleLine(&bsLine))) {
 char ConsoleLine[410];
 wcstombs(ConsoleLine, bsLine, 400);
 NewConsoleText += ConsoleLine + LineBreak;
}

Those simple steps should get you started using the Flux Import Export SDK. For a
detailed description of all of the methods in the SDK, please see the SDK reference doc.

3) API Reference guide:

Since the specification listed above provides an abstract definition of the interface, this
document will explicitly declare the COM interfaces. This section describes those
interfaces using C++.

Again, this API is a subset of the X3D SAI, with many methods removed due to the lack
of runtime support in the Library. In addition, several methods have been added to
satisfy several requirements of this project. They are listed here:

X3Dbrowser::export
X3Dbrowser:: popConsoleLine
X3Dbrowser:: setDocTypeHeader
X3Dbrowser:: getDocTypeHeader

The following document has been taken from the specification listed above, and the
declaration of the explicit interfaces have been added.

6.3 Browser services

6.3.1 Introduction

The following services can be requested from a browser.
Although not specified, all services are capable of throwing an
SAI_CONNECTION_ERROR whenever a request is made if the
session between the application and the browser has failed.
Note: The data representation of the parameters or return
values are not specified. It could be equally valid to represent
all parameters as strings as it is for binary representations.

6.3.2 getName

HRESULT getName(/* [retval][out] */ BSTR *name);
Return Values: S_OK, E_FAIL
Parameters:
BSTR* name; The return unicode value containing the name.

The getName service returns the name of the browser. This
name is implementation dependent. If this service is not
supported a NULL value shall be returned.

6.3.3 getVersion

HRESULT getVersion(/* [retval][out] */ BSTR *name);
Return Values: S_OK, E_FAIL
Parameters:
BSTR* name; The return unicode value containing the version string of the browser.

The getVersion service returns the current version of the
browser application. The version number of the browser is
implementation dependent. If this service is not supported
then a NULL value shall be returned.

6.3.10 getExecutionContext

HRESULT getExecutionContext (/* [retval][out] */ X3DExecutionContext **ppContext);
Return Values: S_OK, E_FAIL
Parameters:
(/* [retval][out] */ X3DExecutionContext **ppContext. The pointer to the requested interface.

The getExecutionContext service returns the current
execution context. If used in an internal interaction, this
service returns the execution context in which the containing
node exists (see 4.4.3 Containing Node). When used in an
external interaction, this service returns the current top-level
scene.
The execution context is the base form of a scene, but only
provides access to the local nodes, PROTOs and routes as
defined by the X3D name scoping rules as defined in 4.4.7
Run-time name scope in Part 1 of ISO/IEC 19775 (see
2.[I19775-1]). Depending on the place in the scene graph,
the returned type may be an instance of SAIScene allowing
the user to use the greater capabilities.

6.3.12 replaceWorld

HRESULT replaceWorld (/* [in] */ X3DScene *value);
Return Values: S_OK, E_FAIL
Parameters:
/* [in] */ X3DScene *value. A pointer to the X3Dscene that you with to insert into the Browser.
Typically, such an X3Dscene can be obtained by a call to createX3DFromURL or
CreateX3DfromString.

The replaceWorld service replaces the current world with the
world specified by the SAIScene parameter. If another
replaceWorld or loadURL (see 6.3.14 loadURL) request is
made during the processing of the current request, the
current request is terminated and the new one started. In
this case, no extra shutdown event shall be generated. The
initialize event shall be generated at the point where the
world is ready to be run. The scene is not required to contain
any valid content. Setting a value of NULL shall clear the
currently set scene and leave a blank browser with no
renderable content and no current scene.
The SAI_Browser_Shutdown event is generated immediately
upon receiving this service request.
The SAI_Browser_Initialized event is generated when the
new nodes have been set and all browser specific initialization
has taken place but before the first time driven event
cascade has been started (event cascades may have
previously resulted due to the initialization process through
internal scripts).

6.3.14 loadURL

http://www.web3d.org/x3d/specifications/ISO-IEC-19775-X3DAbstractSpecification/Part02/concepts.html#ContainingNode
http://www.web3d.org/x3d/specifications/ISO-IEC-19775-X3DAbstractSpecification/Part02/references.html#[I19775_1]
http://www.web3d.org/x3d/specifications/ISO-IEC-19775-X3DAbstractSpecification/Part02/#loadURL

HRESULT loadURL (
 /* [in] */ int nUrls,
 /* [size_is][in] */ BSTR *url,
 /* [in] */ int nParams,
 /* [size_is][in] */ BSTR *params);

Return Values: S_OK, E_FAIL
Parameters:
/* [in] */ int nUrls. Number of URLs in the url array.
/* [size_is][in] */ BSTR *url, An array of pointers to Unicode strings containing the location of
the content to load.
/* [in] */ int nParams. Number of parameters in the params array.
/* [size_is][in] */ BSTR *params. Array of command line parameters to be passed into the
Browser.
Note: This is an asyncronisis call to load a scene. It is strongly advised that you use the
syncronis createX3DFromURL method.

The loadURL service inserts the content identified by the
URL(s) in the current world under control of the contents of
the SAIPropertyList instance.
The SAI_Browser_Shutdown event is generated immediately
upon receiving this service request if the parameter list is
such that the browser is about to be shutdown (EXAMPLE
replaces an HTML Frame where the browser was embedded).
The SAI_Browser_Initialized event is generated when the
new nodes have been set and all browser specific initialization
has taken place but before the first time driven event
cascade has been started (event cascades may have
previously resulted due to the initialization process through
internal scripts).
The property list definition shall include at least one property
that defines loading the URL supplied as a new world in the
supplied SAIBrowserRef. If the property list is empty, the
action is to replace the world of the current browser with the
new world if the successful URL is a X3D file.
If another replaceWorld (see 6.3.12 replaceWorld) or
loadURL request is made during the processing of the current
request, the current request is terminated and the new one
started. In this case, no extra shutdown event shall be
generated. The SAI_Browser_Initialized event shall be
generated at the point where the world is ready to be run if
replaceWorld was called.

6.3.15 setDescription

HRESULT setDescription (
 /* [in] */ BSTR description);

http://www.web3d.org/x3d/specifications/ISO-IEC-19775-X3DAbstractSpecification/Part02/#replaceWorld

Return Values: S_OK, E_FAIL
Parameters:
/* [in] */ BSTR description. The descriptioon of the Scene.

If the browser supports a description title, it shall be set to
the new description. Typically, this will be the title in a
window title bar. In cases where there may be multiple
browsers on a single window, the result is implementation
dependent.

6.3.16 createX3DfromString

HRESULT createX3DFromString (
 /* [in] */ BSTR x3dSource,
 /* [retval][out] */ X3DScene **scenereturn);
Return Values: S_OK, E_FAIL
Parameters:
/* [in] */ BSTR x3dSource. A unicode string that contains the raw X3D content.
/* [retval][out] */ X3DScene **scenereturn), A pointer to a pointer. Apon a sucsesful
return, it will point to the new X3DScene that is generated from the string provided.

The createX3DFromString service creates nodes from a
string. The string shall contain valid X3D syntax; otherwise
an error is generated. If any relative URLs are encountered in
this string, the base is assumed to be the current browser
location. The string is not required to contain the X3D file
header. If it is present, it shall be treated as an indicator to
the version of X3D contained. If absent, the default version
assumed shall be that specified in 7.2.4.2 Header statement
in part 1 of ISO/IEC 19775 (see 2.[I19775_1]). A browser is
not required to support any versions prior to ISO/IEC 19775.
If the string contains legal X3D statements but does not
contain any node instances, a valid SAIScene value shall still
be returned containing no root nodes, but with the
appropriate declaration identifiers. For example the string
may contain EXTERNPROTO declarations but no instances of
any node. If the SAIString provides the content in an
encoding format that the browser implementation does not
support, the browser shall generate an SAI_NOT_SUPPORTED
error.

6.3.18 createX3DFromURL

HRESULT createX3DFromURL (
 /* [in] */ BSTR url,
 /* [retval][out] */ X3DScene **scenereturn);
Return Values: S_OK, E_FAIL
Parameters:

http://www.web3d.org/x3d/specifications/ISO-IEC-19775-X3DAbstractSpecification/Part02/references.html#[I19775_1]

/* [in] */ BSTR url. A unicode url with the location of the X3D content.
/* [retval][out] */ X3DScene **scenereturn), A pointer to a pointer. Apon a sucsesful
return, it will point to the new X3DScene that is generated from the url provided.

The createX3DFromURL service creates nodes from the
contents of the file represented by the URL. The URL may be
a relative URL which is considered to be using the browser
location as the base document. The scene described by that
URL shall be identified by the returned SAIScene value.
the events defined in 4.5.3 Browser to External Application.

6.3.20 addBrowserListener

HRESULT addBrowserListener (
 /* [in] */ IDispatch *pListener);
Return Values: S_OK, E_FAIL
Parameters:
/* [in] */ IDispatch *pListener);

The addBrowserListener service requests that the listener
will receive Browser callbacks from the Browser.

6.3.21 removeBrowserListener

HRESULT removeBrowserListener (
 /* [in] */ IDispatch *pListener);
Return Values: S_OK, E_FAIL
Parameters:
/* [in] */ IDispatch *pListener);

The removeBrowserListener service requests that the
specified listner should be removed from the list of Browser
Listeners.

6.3.24 print

HRESULT print (
 /* [in] */ BSTR str);
Return Values: S_OK, E_FAIL
Parameters:
/* [in] */ BSTR str. The string that will be appended to the console text. The console
string buffer can be read via the Browser’s method popConsoleLine.

The print service prints a message to the browser's console.
The language-specific bindings may provide overloaded
variations on this service that do not take an SAIString value,
but take other data types. Other variants may include the

http://www.web3d.org/x3d/specifications/ISO-IEC-19775-X3DAbstractSpecification/Part02/concepts.html#BrowserToExternalApp

ability to automatically add linefeed/newline characters
without the need to explicitly declare them in the SAIString
value. A binding shall provide at least the base SAIString
variant.
User code may call this service at any time, without
restriction, unless the browser reference has been disposed
of.

6.3.25 dispose

HRESULT print (void);
Return Values: S_OK, E_FAIL
Parameters: none

The dispose service indicates that the client is about to exit
this session and the browser is free to dispose of any
resources that this client may have consumed. An
SAI_Browser_Shutdown event is sent only to this client and
may be generated internally by the language implementation
on the client machine (that is, it is not required that the
browser itself generate this event, just that the event is
generated). If any events have been held because
BeginUpdate has been called, disposing of the browser shall
also call EndUpdate to release those events to the browser.

6.3.26 export

HRESULT export (/* [in] */ BSTR outputFileName);
Return Values: S_OK, E_FAIL
Parameters:
/* [in] */ BSTR outputFileName

The export service will export the current contens of the main scene
to the file location specified by the outputFileName parameter.

6.3.27 setDocTypeHeader

HRESULT setDocTypeHeader (/* [in] */ BSTR outputFileName);
Return Values: S_OK, E_FAIL
Parameters:
/* [in] */ BSTR value

The setDocTypeHeader will set the XML document header to the string
specified. This is the header sting that will be used when the scene is
exported. It is typically the sceond line in the X3D content file. It
oftem looks like this:
<!DOCTYPE X3D PUBLIC "ISO//Web3D//DTD X3D 3.0//EN"
"http://www.web3d.org/specifications/x3d-3.0.dtd">

6.3.28 getDocTypeHeader

HRESULT getDocTypeHeader(/* [retval][out] */ BSTR *value);
Return Values: S_OK, E_FAIL
Parameters:
/* [retval][out] */ BSTR *value

The getDocTypeHeader will get the XML document header. This is the
header sting that will be used when the scene is exported. It is
typically the sceond line in the X3D content file. It oftem looks like
this:
<!DOCTYPE X3D PUBLIC "ISO//Web3D//DTD X3D 3.0//EN"
"http://www.web3d.org/specifications/x3d-3.0.dtd">

6.3.29 popConsoleLine

HRESULT popConsoleLine /* [retval][out] */ BSTR *value);
Return Values: S_OK, E_FAIL
Parameters:
/* [retval][out] */ BSTR *value

The popConsoleLine service will pop the top line off of the buffer of
text strings that have been written tote console. This information is
important if the content should fail to load.

6.4 Execution context services

6.4.1 getSpecificationVersion

HRESULT getSpecificationVersion(
 /* [retval][out] */ BSTR *value);
Return Values: S_OK, E_FAIL
Parameters:
/* [retval][out] */ BSTR *value. The uncode value that will contain the Specification
Version.

The getSpecificationVersion returns the version string that
describes to which specification version this scene adheres.
This version represents the appropriate version number as
defined in part 1 of ISO/IEC 14772 (see 2.[I14772-1]), part 1
of ISO/IEC 19775 (see 2.[I19775-1]), or has value 1.0 for
versions of VRML that precede the specification in part 1 of
ISO/IEC 14772-1 that are supported by the implementation.

6.4.2 getEncoding

HRESULT getEncoding (
 /* [retval][out] */ X3DEncodingType *encodingType);
Return Values: S_OK, E_FAIL
Parameters:
/* [retval][out] */ X3DEncodingType *encodingType. The returned value of the Encoding
type.

The getEncoding service returns the encoding type that was
used for to produce the portion of the scene represented by
the specified execution context. The encoding is one of a
fixed set, but may include additional types that are browser
implementation specific. The minimum required set of values
(but not necessarily supported by the browser
implementation) shall be:

1. Scripted: For scenes that are created completely
through the SAI and did not originate through a file
somewhere.

2. ASCII: For VRML 1.0 specification files.

http://www.web3d.org/x3d/specifications/ISO-IEC-19775-X3DAbstractSpecification/Part02/references.html#[I14772_1]
http://www.web3d.org/x3d/specifications/ISO-IEC-19775-X3DAbstractSpecification/Part02/references.html#[I19775_1]

3. VRML: For VRML and the X3D Classic VRML encoding
(see 2.[I19776-2]).

4. XML: For X3D XML-encoded files (see 2.[I19776-1]).
5. Binary: for X3D Binary-encoded files (reserved for

future specification)
6. BIFS: For MPEG-4 BIFS-encoded format. (see

2.[I14496-1])

6.4.6 getNode

HRESULT getNode (
 /* [in] */ BSTR name,
 /* [retval][out] */ X3DNode **value);
Return Values: S_OK, E_FAIL
Parameters:
/* [in] */ BSTR name. A unicode string that has the DEF name fo the target Node.
/* [retval][out] */ X3DNode **value. The returned pointer to the Node that was found,
based on the DEF name.

The getNode service searches for a node based on specified
criteria and returns an identifier for the node.
The SAIString is to identify the name of the node that has
been marked with one of the naming statements DEF,
IMPORT or EXPORT in the currently loaded X3D scene or
previously added with an namedNodeHandling request (see
6.4.9 namedNodeHandling).
The SAIAction shall indicate which of the naming types shall
be used to find the node. For example, providing an action of
ImportNode shall not return a name that may be valid, but
describes a node named with the DEF statement. Table 6.8
defines the actions specified in this part of ISO/IEC 19775.

Table 6.8 — getNode SAIAction values

Service Action Type

DEFNode getNode

IMPORTNode

http://www.web3d.org/x3d/specifications/ISO-IEC-19775-X3DAbstractSpecification/Part02/references.html#[I19776_2]
http://www.web3d.org/x3d/specifications/ISO-IEC-19775-X3DAbstractSpecification/Part02/references.html#[I19776_1]
http://www.web3d.org/x3d/specifications/ISO-IEC-19775-X3DAbstractSpecification/Part02/references.html#[I14496_1]
http://www.web3d.org/x3d/specifications/ISO-IEC-19775-X3DAbstractSpecification/Part02/#NamedNodeHandling
http://www.web3d.org/x3d/specifications/ISO-IEC-19775-X3DAbstractSpecification/Part02/#t-getNodeSAIActionValues

EXPORTNode

Access shall only be available to names in this scene. DEFs in
Inlined files shall not be accessible in accordance with 4.4.3
DEF/USE Semantics and 4.4.6, Import/Export semantics in
part 1 of ISO/IEC 19775 (see 2.[I19775-1]).
If the SAIAction is IMPORTNode and the name is valid but the
node definition is not yet available from the source Inline
node, SAI_NODE_NOT_AVAILABLE shall be generated.

6.4.7 createNode

HRESULT createNode (
 /* [in] */ BSTR type,
 /* [retval][out] */ X3DNode **value);
Return Values: S_OK, E_FAIL
Parameters:
/* [in] */ BSTR type. A unicode string that has Type of Node to eb created.
/* [retval][out] */ X3DNode **value. The returned pointer to the Node that was created.

The createNode service creates a new default instance of the
node given by the SAIString value containing the name of an
X3D node type. The availability of the node is defined by the
containing scene's profile and component declarations. The
name shall only refer to a built-in node and shall not be used
to create instances of PROTOs or EXTERNPROTOs. If the node
is not available in the current profile and component spaces,
the browser shall generated the SAI_INVALID_NAME error.

6.4.10 getProtoDeclaration

HRESULT getProtoDeclarations (
 /* [retval][out] */ X3DProtoDeclarationArray **protodeclarations);
Return Values: S_OK, E_FAIL
Parameters:
/* [retval][out] */ X3DProtoDeclarationArray **protodeclarations. The returned array of
Proto Declarartions in this context.

The getProtoDeclaration service returns the named PROTO
declaration representation from this scene. This shall only be
used to request PROTO declarations. A request for an
EXTERNPROTO declaration shall generate
SAI_INVALID_NAME.

http://www.web3d.org/x3d/specifications/ISO-IEC-19775-X3DAbstractSpecification/Part02/references.html#[I19775_1]

6.4.14 getRootNodes

HRESULT getRootNodes (
 /* [retval][out] */ X3DNodeArray **rootnodes) = 0;
Return Values: S_OK, E_FAIL
Parameters:
/* [retval][out] */ X3DNodeArray **rootnodes. The returned array of root Nodes that
comprise this context.

The getRootNodes service returns a listing of the current root
nodes of the execution context. If the context was generated
from a file, the root nodes are in the order they were
declared in the file. Any added nodes are then appended to
the list in the time order they were received at the browser.
If the context was generated programmatically, the nodes
are in the order they were received by the browser.

6.4.17 dispose

HRESULT print (void);
Return Values: S_OK, E_FAIL
Parameters: none

The dispose service specifies that the client has no further
interest in the resource represented by this execution
context. The browser may now take whatever action is
necessary to reclaim any resources consumed by
this execution context, now or at any time in the future. If
this execution context has already been disposed, further
requests have no effect.

6.5 Scene services

6.5.1 Introduction

A scene is an extension of the execution context services with
additional services provided. The Scene services
implementation shall include all of the services from section
6.4, above, and include the following additional services.

6.5.2 getMetadata

HRESULT getMetaData (
 /* [in] */ BSTR key,
 /* [retval][out] */ BSTR *value);
Return Values: S_OK, E_FAIL
Parameters:
/* [in] */ BSTR key. The kunicode key string used to find the MetaData item.
/* [retval][out] */ BSTR *value. The returned value of the specified metatdata.

The getMetadata service returns an item of metadata from
the scene that was specified using the META statement
defined in 7.2.5.5 META statement of Part 1 of ISO/IEC
19775 (see 2.[I19775-1]). Metadata specified in the META
statement is represented as an SAIString key/value pair.
Each key corresponds to exactly zero or one value.
Optionally, the browser may provide a subservice to discover
the valid keys for this scene as part of this service.
Metadata defined by metadata nodes as defined in Part 1 of
ISO/IEC 19775 can be manipulated using 6.6 Node services.

6.5.3 setMetadata

HRESULT setMetaData (
 /* [in] */ BSTR key,
 /* [in] */ BSTR value);
Return Values: S_OK, E_FAIL
Parameters:
/* [in] */ BSTR key. The unicode key string used to define the metaData item.
/* [in] */ BSTR value. The value to be set, in unicode format.

The setMetadata service inserts an item of metadata in the
scene in the form of a META statement as defined in 7.2.5.5
META statement of Part 1 of ISO/IEC 19775 (see 2.[I19775-
1]). Metadata is represented as a SAIString key/value pair.
Each key corresponds to exactly zero or one value. Setting an
item with a key that already exists replaces the existing
value. If the value is NULL for the given key, the META
statement associated with that key is removed from the
scene.
Metadata defined by metadata nodes as defined in Part 1 of
ISO/IEC 19775 can be manipulated using 6.6 Node services.

6.6 Node services

6.6.1 Introduction

http://www.web3d.org/x3d/specifications/ISO-IEC-19775-X3DAbstractSpecification/Part02/references.html#[I19775_1]
http://www.web3d.org/x3d/specifications/ISO-IEC-19775-X3DAbstractSpecification/Part02/#NodeServices
http://www.web3d.org/x3d/specifications/ISO-IEC-19775-X3DAbstractSpecification/Part02/references.html#[I19775_1]
http://www.web3d.org/x3d/specifications/ISO-IEC-19775-X3DAbstractSpecification/Part02/references.html#[I19775_1]
http://www.web3d.org/x3d/specifications/ISO-IEC-19775-X3DAbstractSpecification/Part02/#NodeServices

The following services can be requested of an individual
node. Each service requires an identifier for that node. After a
request of an individual node to dispose of their resources,
any further request made to a node service shall generate a
disposed error.
Although not specified, all services are capable of throwing an
SAI_CONNECTION_ERROR whenever a request is made if the
session between the application and the browser has failed.

6.6.2 getTypeName

HRESULT getTypeName (
 /* [retval][out] */ BSTR *typenm);
Return Values: S_OK, E_FAIL
Parameters:
/* [retval][out] */ BSTR *typenm. The returned type name of the node, in Unicode.

The getTypeName service returns the name of the type of the
referenced node. The type name is the name as specified in
ISO/IEC 19775-1 where the node type is defined (see Node
index in part 1 of ISO/IEC 19775 (2.[I19775-1]) for easy
access to a node definition). If the node represents a PROTO
node instance, the type name returned is the name of the
PROTO declaration.

6.6.4 getField

HRESULT getField (
 /* [in] */ BSTR name,
 /* [retval][out] */ X3DField **result);
Return Values: S_OK, E_FAIL
Parameters:
 /* [in] */ BSTR name. The name of the field to be returned.
 /* [retval][out] */ X3DField **result. The returned pointer to the desired field.

The getField service returns a field identifier so that
operations can be performed on the node properties. If the
field requested is an inputOutput field, either the field name
or the set_ and _changed modifiers may be used to access
the appropriate form of the node as required. Access to fields
is implementation dependent.

6.6.5 getFieldDefinitions

http://www.web3d.org/x3d/specifications/ISO-IEC-19775-X3DAbstractSpecification/Part02/references.html#[I19775_1]

HRESULT getFieldDefinitions (
 /* [retval][out] */ X3DFieldDefinitionArray **fieldDefinitions);
Return Values: S_OK, E_FAIL
Parameters:
/* [retval][out] */ X3DFieldDefinitionArray **fieldDefinitions. The returned array of Field
Definition objects.

The getFieldDefinitions service returns a list of all the field
definitions of the referenced node. The definitions provide a
limited form of the SAIField that has all the same services
except the ability to read or write the value of the field for a
specific node instance. This request returns the SAIField
values as generic responses for every instance of this node
rather than for a specific instance.

6.6.6 dispose

HRESULT dispose (void);
Return Values: S_OK, E_FAIL
Parameters: none

The dispose node service indicates that the client has no
further interest in the resource represented by this node. The
browser may take whatever action is necessary to reclaim
any resources consumed by this node, now or at any time in
the future. If this node has already been disposed, further
requests have no effect.
Disposing of a node does not remove the node from the
scene graph (if it was inserted in the first place) but rather
removes any local information per client to it. The underlying
X3D node representation is only disposed if no other
applications or scene graph structures contain references to
this node and the responsibility and timing for this action is
browser implementation specific.

6.6.7 getNumFields

HRESULT getNumFields (
 /* [retval][out] */ int *result);
Return Values: S_OK, E_FAIL
Parameters:
/* [retval][out] */ int *result. The number of fields attached to the Node definition.

The getNumFields service returns the number of Fields
contained by the node.

6.6.8 getFieldInfo

HRESULT getNumFields (
 /* [in] */ int fieldIndex,
 /* [out] */ X3DFieldAccess *accessType,
 /* [out] */ X3DFieldType *fieldType,
 /* [out] */ BSTR *fieldName);
Return Values: S_OK, E_FAIL
Parameters:
/* [in] */ int fieldIndex. Index of the field, used to identify the field on the Node.
/* [out] */ X3DFieldAccess *accessType. The AccessType of the field.
/* [out] */ X3DFieldType *fieldType. The Type of the Field.
/* [out] */ BSTR *fieldName. The name of the field, in Unicode.

The getFieldInfo method allows you to get the information
about the field, given its index. Using this method, and the
getNumFields method, you can traverse the fields of any
Node, and get at all the field values.

6.7 Field services

6.7.1 Introduction

The following are services that can be requested of individual
fields of a node. If the node from which a field was retrieved
has been disposed, field services are still permitted to
operate providing that the field reference has been obtained
before disposing of the node. If a call is made to a field
service after requesting disposal of the field, a disposed error
shall be generated.
Although not specified, all services are capable of throwing an
SAI_CONNECTION_ERROR whenever a request is made if the
session between the application and the browser has failed.

6.7.2 getAccessType

HRESULT getAccessType (

 /* [retval][out] */ X3DFieldAccess *accesstype);
Return Values: S_OK, E_FAIL
Parameters:
 /* [retval][out] */ X3DFieldAccess *accesstype. The returned accessType of the
field.

The getAccessType service returns the access type for the
specified field of the referenced node.

6.7.3 getType

HRESULT getType (
 /* [retval][out] */ X3DFieldType *fieldtype);
Return Values: S_OK, E_FAIL
Parameters:
/* [retval][out] */ X3DFieldType *fieldtype. The returned Field Type.

The getType field service returns the type for the specified
field of the referenced node.

6.7.4 getName

HRESULT getName (
 /* [retval][out] */ BSTR *name);
Return Values: S_OK, E_FAIL
Parameters:
/* [retval][out] */ BSTR *name. The returned Field Name.

If supported by the implementation, the getName field service
returns the name of the field as it was requested from the
node. If the service requested the set_children field of a
grouping node, this shall return "set_children", but if a
different request was for children on the same node,
"children" shall be returned.

6.7.5 getValue

See Field Specific versions of these interfaces below.

The getValue field service returns the value represented by
the specified field as it exists in the world. This represents
the current value of the field at the time of the request. If the
request is made of a field that has a setValue request
buffered through BeginUpdate, the value returned shall be
the old value prior to the setValue request. The value of the

field may be a node if the field represents an MFNode or
SFNode.
All field types shall support the option to return a single value
from multi-valued arrays.

6.7.6 setValue

See Field Specific versions of these interfaces below.

The setValue field service sets the value of the specified
field. Set requests shall obey the requirements as specified
for buffered events services.
The value of the field may be an SAINode value if the field
represents an MFNode or SFNode. It is permitted to send a
null to a node or field in order to clear the value from that
field. For example sending a null to the appearance
inputOutput field of a Shape node as specified in 12 Shape
component in part 1 of ISO/IEC 19775 (see 2.[I19775-1]),
shall result in the appearance field being cleared and set to
the default value of NULL.
If the SAINode value is registered as an IMPORTed node in
this file, it shall generate the SAI_IMPORTED_NODE error.
All field setting services implementations shall include the
ability to set individual values. Fields that describe multi-
value arrays shall also include the ability to append and
remove items from the existing field.

6.7.7 registerFieldInterest

HRESULT addFieldEventListener (
 /* [in] */ IDispatch *listener);
Return Values: S_OK, E_FAIL
Parameters:
/* [in] */ IDispatch *listener. The listener that gets called when the field value is set.

HRESULT removeFieldEventListener (
 /* [in] */ IDispatch *listener);
Return Values: S_OK, E_FAIL
Parameters:
/* [in] */ IDispatch *listener. Removed this listener for the ListenerList.

The registerFieldInterest service nominates the requester
as the receiver of all SAIFieldEvents. The act of making this
service request itself does not imply any events shall be
generated.

http://www.web3d.org/x3d/specifications/ISO-IEC-19775-X3DAbstractSpecification/Part02/references.html#[I19775_1]

 The parameter of type SAIRequester can be inferred from
the source of the input and may not need to be part of the
parameters.
The parameter of type SAIAction specifies whether this is a
request to add interest in events or to remove interest in the
events.
Which capabilities are permitted to be listened to are
implementation dependent. For example, some
implementations may permit listening to inputOnly values
and outputOnly values while others will only permit listening
to outputOnly values.
For SFNode and MFNode field types, the following additional
behaviour is specified:

Nodes are bound by the capabilities of the
containing scene. No node shall be of greater
capabilities than the scene's declared profile and
additional components.
SAI_INSUFFICIENT_CAPABILITIES shall be
generated if the action is to add a node to the
scene and that node requires greater capabilities
than the scene permits.

If the action is to add a node, and the node or any of its
children is currently part of another scene, an
SAI_NODE_IN_USE error shall be generated.
If the action is to remove a node and the node is not a known
value of this field, the request shall be silently ignored.

6.7.8 dispose

HRESULT dispose (void);
Return Values: S_OK, E_FAIL
Parameters: none

The dispose field service indicates that the client has no
further interest in the resource represented by this field. The
browser may take whatever action is necessary to reclaim
any resources consumed by this field, now or at any time in
the future. If this field has already been disposed, further
requests have no effect.

6.8.0 Specific Field Types:

Specific Field Types:
The following interfaces inherit from the X3Dfield class.
There is one field class for each type of Field.

The Single Value fields are defined, followed my the multiple
value fields.

All fields inherit the X3Dfield interface defined above.
All multiple value fields also inherit the X3DMField interface
declared at the top of the multiple value fields.

X3DSFBool
 HRESULT getValue(
 /* [retval][out] */ BOOL *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [retval][out] */ BOOL *value);

 HRESULT setValue(
 /* [in] */ BOOL value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ BOOL value);

X3DSFColor
 HRESULT getValue(
 /* [size_is][out][in] */ float *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [size_is][out][in] */ float *value);

 HRESULT setValue(
 /* [size_is][in] */ float *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [size_is][in] */ float *value);

 HRESULT get_r(
 /* [retval][out] */ float *pVal);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [retval][out] */ float *pVal);

 HRESULT put_r(
 /* [in] */ float newVal);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ float newVal);

 HRESULT get_g(
 /* [retval][out] */ float *pVal);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [retval][out] */ float *pVal);

 HRESULT put_g(
 /* [in] */ float newVal);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ float newVal);

 HRESULT get_b(
 /* [retval][out] */ float *pVal);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [retval][out] */ float *pVal);

 HRESULT put_b(
 /* [in] */ float newVal);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ float newVal);

X3DSFFloat
 HRESULT getValue(
 /* [retval][out] */ float *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [retval][out] */ float *value);

 HRESULT setValue(
 /* [in] */ float value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ float value);

X3DSFInt32
 HRESULT getValue(
 /* [retval][out] */ long *value);
 Return Values: S_OK, E_FAIL

 Parameters:
/* [retval][out] */ long *value);

 HRESULT setValue(
 /* [in] */ long value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ long value);

X3DSFNode
 HRESULT getValue(
 /* [retval][out] */ X3DNode **value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [retval][out] */ X3DNode **value);

 HRESULT setValue(
 /* [in] */ X3DNode *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ X3DNode *value);

X3DSFRotation
 HRESULT getValue(
 /* [size_is][out][in] */ float *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [size_is][out][in] */ float *value);

 HRESULT setValue(
 /* [size_is][in] */ float *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [size_is][in] */ float *value);

 HRESULT get_x(
 /* [retval][out] */ float *pVal);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [retval][out] */ float *pVal);

 HRESULT put_x(
 /* [in] */ float newVal);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ float newVal);

 HRESULT get_y(
 /* [retval][out] */ float *pVal);
 Return Values: S_OK, E_FAIL
 Parameters:

/* [retval][out] */ float *pVal);

 HRESULT put_y(
 /* [in] */ float newVal);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ float newVal);

 HRESULT get_z(
 /* [retval][out] */ float *pVal);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [retval][out] */ float *pVal);

 HRESULT put_z(
 /* [in] */ float newVal);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ float newVal);

 HRESULT get_angle(
 /* [retval][out] */ float *pVal);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [retval][out] */ float *pVal);

 HRESULT put_angle(
 /* [in] */ float newVal);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ float newVal);

X3DSFString
 HRESULT getValue(
 /* [out][in] */ BSTR *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [out][in] */ BSTR *value);

 HRESULT setValue(
 /* [in] */ BSTR value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ BSTR value);

X3DSFVec2f
 HRESULT getValue(

 /* [size_is][out][in] */ float *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [size_is][out][in] */ float *value);

 HRESULT setValue(
 /* [size_is][in] */ float *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [size_is][in] */ float *value);

 HRESULT get_x(
 /* [retval][out] */ float *pVal);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [retval][out] */ float *pVal);

 HRESULT put_x(
 /* [in] */ float newVal);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ float newVal);

 HRESULT get_y(
 /* [retval][out] */ float *pVal);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [retval][out] */ float *pVal);

 HRESULT put_y(
 /* [in] */ float newVal);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ float newVal);

X3DSFVec3f
 HRESULT getValue(
 /* [size_is][out][in] */ float *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [size_is][out][in] */ float *value);

 HRESULT setValue(
 /* [size_is][in] */ float *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [size_is][in] */ float *value);

 HRESULT get_x(

 /* [retval][out] */ float *pVal);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [retval][out] */ float *pVal);

 HRESULT put_x(
 /* [in] */ float newVal);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ float newVal);

 HRESULT get_y(
 /* [retval][out] */ float *pVal);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [retval][out] */ float *pVal);

 HRESULT put_y(
 /* [in] */ float newVal);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ float newVal);

 HRESULT get_z(
 /* [retval][out] */ float *pVal);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [retval][out] */ float *pVal);

 HRESULT put_z(
 /* [in] */ float newVal);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ float newVal);

X3DSFVec4f
 HRESULT getValue(
 /* [size_is][out][in] */ float *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [size_is][out][in] */ float *value);

 HRESULT setValue(
 /* [size_is][in] */ float *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [size_is][in] */ float *value);

 HRESULT get_x(
 /* [retval][out] */ float *pVal);
 Return Values: S_OK, E_FAIL

 Parameters:
/* [retval][out] */ float *pVal);

 HRESULT put_x(
 /* [in] */ float newVal);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ float newVal);

 HRESULT get_y(
 /* [retval][out] */ float *pVal);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [retval][out] */ float *pVal);

 HRESULT put_y(
 /* [in] */ float newVal);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ float newVal);

 HRESULT get_z(
 /* [retval][out] */ float *pVal);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [retval][out] */ float *pVal);

 HRESULT put_z(
 /* [in] */ float newVal);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ float newVal);

 HRESULT get_w(
 /* [retval][out] */ float *pVal);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [retval][out] */ float *pVal);

 HRESULT put_w(
 /* [in] */ float newVal);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ float newVal);

Multiple Value Fields:

X3DMField
 HRESULT get_Count(

 /* [retval][out] */ long *pVal);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [retval][out] */ long *pVal);

 HRESULT get_length(
 /* [retval][out] */ long *pVal);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [retval][out] */ long *pVal);

 HRESULT put_length(
 /* [in] */ long newVal);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ long newVal);

 HRESULT Item(
 /* [in] */ VARIANT index,
 /* [retval][out] */ VARIANT *pItem);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ VARIANT index,
/* [retval][out] */ VARIANT *pItem);

X3DMFColor
 HRESULT getValue(
 /* [in] */ int cnt,
 /* [size_is][out][in] */ float *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ int cnt,
/* [size_is][out][in] */ float *value);

 HRESULT setValue(
 /* [in] */ int cnt,
 /* [size_is][out][in] */ float *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ int cnt,
/* [size_is][out][in] */ float *value);

 HRESULT set1Value(
 /* [in] */ int index,
 /* [in] */ X3DSFColor *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ int index,
/* [in] */ X3DSFColor *value);

 HRESULT get1Value(
 /* [in] */ int index,
 /* [retval][out] */ X3DSFColor **value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ int index,
/* [retval][out] */ X3DSFColor **value);

X3DMFNode
 HRESULT getValue(
 /* [retval][out] */ X3DNodeArray **value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [retval][out] */ X3DNodeArray **value);

 HRESULT setValue(
 /* [in] */ X3DNodeArray *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ X3DNodeArray *value);

 HRESULT get1Value(
 /* [in] */ int index,
 /* [out] */ X3DNode **value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ int index,
/* [out] */ X3DNode **value);

 HRESULT get1ValueV(
 /* [in] */ int index,
 /* [retval][out] */ VARIANT *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ int index,
/* [retval][out] */ VARIANT *value);

 HRESULT set1Value(
 /* [in] */ int index,
 /* [in] */ X3DNode *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ int index,
/* [in] */ X3DNode *value);

X3DSFTime
 HRESULT getValue(

 /* [retval][out] */ double *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [retval][out] */ double *value);

 HRESULT setValue(
 /* [in] */ double *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ double *value);

X3DMFFloat
 HRESULT getValue(
 /* [in] */ int cnt,
 /* [size_is][out][in] */ float *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ int cnt,
/* [size_is][out][in] */ float *value);

 HRESULT setValue(
 /* [in] */ int cnt,
 /* [size_is][out][in] */ float *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ int cnt,
/* [size_is][out][in] */ float *value);

 HRESULT set1Value(
 /* [in] */ int index,
 /* [in] */ float value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ int index,
/* [in] */ float value);

 HRESULT get1Value(
 /* [in] */ int index,
 /* [retval][out] */ float *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ int index,
/* [retval][out] */ float *value);

X3DMFInt32
 HRESULT getValue(
 /* [in] */ int cnt,
 /* [size_is][out][in] */ long *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ int cnt,
/* [size_is][out][in] */ long *value);

 HRESULT setValue(
 /* [in] */ int cnt,
 /* [size_is][out][in] */ long *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ int cnt,
/* [size_is][out][in] */ long *value);

 HRESULT set1Value(
 /* [in] */ int index,
 /* [in] */ long value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ int index,
/* [in] */ long value);

 HRESULT get1Value(
 /* [in] */ int index,
 /* [retval][out] */ long *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ int index,
/* [retval][out] */ long *value);

X3DMFRotation
 HRESULT getValue(
 /* [in] */ int cnt,
 /* [size_is][out][in] */ long *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ int cnt,
/* [size_is][out][in] */ long *value);

 HRESULT setValue(
 /* [in] */ int cnt,
 /* [size_is][out][in] */ float *value);
 Return Values: S_OK, E_FAIL

 Parameters:
/* [in] */ int cnt,
/* [size_is][out][in] */ float *value);

 HRESULT set1Value(
 /* [in] */ int index,
 /* [in] */ X3DSFRotation *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ int index,
/* [in] */ X3DSFRotation *value);

 HRESULT get1Value(
 /* [in] */ int index,
 /* [retval][out] */ X3DSFRotation **value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ int index,
/* [retval][out] */ X3DSFRotation **value);

X3DMFString
 HRESULT getValue(
 /* [in] */ int cnt,
 /* [size_is][out][in] */ BSTR *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ int cnt,
/* [size_is][out][in] */ BSTR *value);

 HRESULT setValue(
 /* [in] */ int cnt,
 /* [size_is][out][in] */ BSTR *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ int cnt,
/* [size_is][out][in] */ BSTR *value);

 HRESULT set1Value(
 /* [in] */ int index,
 /* [in] */ BSTR value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ int index,
/* [in] */ BSTR value);

 HRESULT get1Value(
 /* [in] */ int index,
 /* [retval][out] */ BSTR *value);

 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ int index,
/* [retval][out] */ BSTR *value);

X3DMFVec2f
 HRESULT getValue(
 /* [in] */ int cnt,
 /* [size_is][out][in] */ float *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ int cnt,
/* [size_is][out][in] */ float *value);

 HRESULT setValue(
 /* [in] */ int cnt,
 /* [size_is][out][in] */ float *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ int cnt,
/* [size_is][out][in] */ float *value);

 HRESULT set1Value(
 /* [in] */ int index,
 /* [in] */ X3DSFVec2f *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ int index,
/* [in] */ X3DSFVec2f *value);

 HRESULT get1Value(
 /* [in] */ int index,
 /* [retval][out] */ X3DSFVec2f **value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ int index,
/* [retval][out] */ X3DSFVec2f **value);

X3DMFVec3f
 HRESULT getValue(
 /* [in] */ int cnt,
 /* [size_is][out][in] */ float *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ int cnt,
/* [size_is][out][in] */ float *value);

 HRESULT setValue(
 /* [in] */ int cnt,
 /* [size_is][out][in] */ float *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ int cnt,
/* [size_is][out][in] */ float *value);

 HRESULT set1Value(
 /* [in] */ int index,
 /* [in] */ X3DSFVec3f *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ int index,
/* [in] */ X3DSFVec3f *value);

 HRESULT get1Value(
 /* [in] */ int index,
 /* [retval][out] */ X3DSFVec3f **value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ int index,
/* [retval][out] */ X3DSFVec3f **value);

X3DMFVec4f
 HRESULT getValue(
 /* [in] */ int cnt,
 /* [size_is][out][in] */ float *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ int cnt,
/* [size_is][out][in] */ float *value);

 HRESULT setValue(
 /* [in] */ int cnt,
 /* [size_is][out][in] */ float *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ int cnt,
/* [size_is][out][in] */ float *value);

 HRESULT set1Value(
 /* [in] */ int index,
 /* [in] */ X3DSFVec4f *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ int index,
/* [in] */ X3DSFVec4f *value);

 HRESULT get1Value(
 /* [in] */ int index,
 /* [retval][out] */ X3DSFVec4f **value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ int index,
/* [retval][out] */ X3DSFVec4f **value);

X3DSFDouble
 HRESULT getValue(
 /* [out][in] */ double *value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [out][in] */ double *value);

 HRESULT setValue(
 /* [in] */ double value);
 Return Values: S_OK, E_FAIL
 Parameters:
/* [in] */ double value);

6.8 Route services

6.8.1 getSourceNode

HRESULT getSourceNode (
 /* [retval][out] */ X3DNode **pSourceNode);
Return Values: S_OK, E_FAIL
Parameters:
/* [retval][out] */ X3DNode **pSourceNode. Returns a pointer to the Source node of this
ROUTE.

The getSourceNode service returns the source node of the
specified route.

6.8.2 getSourceField

HRESULT getSourceField (
 /* [retval][out] */ BSTR *sourcefield);
Return Values: S_OK, E_FAIL
Parameters:
/* [retval][out] */ BSTR *sourcefield. The return value of the source field name, in
unicode.

The getSourceField service returns the name of the source
field of the specified route.

6.8.3 getDestinationNode

HRESULT getDestinationNode (
 /* [retval][out] */ X3DNode **pDestinationNode);
Return Values: S_OK, E_FAIL
Parameters:
/* [retval][out] */ X3DNode **pDestinationNode. Returns a pointer to the Destination node
of this ROUTE.

The getDestinationNode service returns the destination node
of the specified route.

6.8.4 getDestinationField

HRESULT get DestinationField (
 /* [retval][out] */ BSTR * destinationfield);
Return Values: S_OK, E_FAIL
Parameters:
/* [retval][out] */ BSTR * destinationfield. The return value of the source field name, in
unicode.

The getDestinationField service returns the name of the
destination field of the specified route.

6.8.5 dispose

HRESULT dispose (void);
Return Values: S_OK, E_FAIL
Parameters: none

The dispose route service indicates that the client has no
further interest in the resource represented by this route. The
browser may take whatever action is necessary to reclaim
any resources consumed by this route, now or at any time in
the future. If this route has already been disposed, further
requests have no effect.
Disposing of a route does not remove the route from the
scene graph (if it was inserted in the first place) but rather
removes any local information per client to it. The underlying
X3D node representation is only disposed of if no other
applications or scene graph structures contain references to

this route and the responsibility and timing for this action is
browser implementation specific.

Appendix I

Illustrations of Volume Rendering Styles in
MedX3D Browser

OpacityMapVolumeStyle

PhongVolumeStyle
 Phong-Blinn shading

◦ Ambient, diffuse, specular

Non-photorealistic Styles
 CartoonVolumeStyle

◦ Two colours, discrete sections

 ToneMappedVolumeStyle

◦ Cool and warm color

Cartoon ToneMapped

Enhancement styles
 EdgeEnhancementVolumeStyle
 BoundaryEnhancementVolumeStyle
 SilhouetteEnhancementVolumeStyle

Boundary Silhouette

MIPVolumeStyle
 Maximum Intensity Projection

◦ Maximum intensity along each ray

ComposedVolumeStyle

 Compose several styles into one

 Opacity-Phong Opacity-Phong-Edge enhancement

SegmentedVolumeData

 Different parts of a dataset are rendered with
different rendering styles.

Blood vessels: Phong
Head: Opacity Map-Boundary
Enhancement Cerebral ventricular system: Tone Map

Head: Opacity Map

MedX3D: Standards Enabled Desktop
Medical 3D

N.W. John, M. Aratow, J. Couch, D. Evestedt, A.D. Hudson, N. Polys, R.F. Puk,
A. Ray, K. Victor, Q. Wang

The Web3D Consortium

Abstract. This paper reports on the work of the Web3D Consortium’s Medical
Working Group to specify and implement MedX3D – an extension to the X3D
standard that will support advanced medical visualization functionality and
medical data exchange. This initiative covers volume rendering, ontology support,
and data import/export, for standalone applications and web-based plug-ins. It is
our hypothesis that such a 3D medical standard will provide better access to data,
and enable improvements in medical care.

Keywords. X3D, medical visualization, volume rendering, Web applications

1. Background/Problem

The capability to deliver three dimensional (3D) visualizations of patient medical
scan data is well established. Today, medical scanner manufacturers and independent
companies routinely provide workstations that support 3D and such workstations are
becoming faster and the software more sophisticated. However, accessibility to this 3D
technology needs to increase before the medical profession will see significant
efficiency gains and benefits to patients [1]. The use of Web technologies provides an
attractive solution for providing good accessibility and interoperability, and there have
been several web-based uses of medical visualization applications reported in the last
decade [2]. The ISO standard for using 3D graphics over the internet is X3D [3] and
the Web3D Consortium has formed a Medical Working Group with a remit to develop
an extension to X3D, called MedX3D, which will support the required functionality
and interoperability needed for any medical visualization application. Such a 3D
medical standard will enable improvements in medical care, including: enhanced
informed consent; surgical planning and performance; medical education; and
accessibility.

This paper reports on the results of recently completed projects funded by the US
Army’s Telemedicine and Advanced Technology Research Center (TATRC) to specify
and implement the first version of MedX3D.

Figure 1: VRE example: Cerebral ventricular system. Tone Mapped Head. Using Opacity

2. Tools and Methods

This work has been an international collaborative initiative drawing on expertise from
industry, academia and hospitals. The main contributors have been Intelligraphics, Inc.
(USA), Media Machines, Inc. (USA), NIST (USA), SenseGraphics AB (Sweden),
VirtuWorlds (USA), Yumetech, Inc. (USA), and Bangor University (UK). Four key
tasks have been completed:

1. Specification of both the X3D Volume Rendering Extension (VRE) and the
MedX3D profile.

2. Provision of support for anatomical ontologies.
3. An import/export library for MedX3D.
4. A MedX3D web browser plug-in that can read any DICOM data set and provide

3D visualization through the VRE.

These tasks are described in more detail below.

2.1. Specification of the X3D Volume Rendering Extension and MedX3D

The possibility of volume rendering in a web browser was first demonstrated by
Hendin [4] using the VRML 97 standard. Performance has improved dramatically since
then largely due to the developments in PC graphics card technology. Volume
rendering support is now a core requirement for 3D medical visualization and so an
early task in enabling MedX3D was to provide a specification for the X3D Volume
Rendering Extension (VRE) in a format ready for ISO ratification. There are many

different techniques for rendering volumetric data including: plane slicing; the use of
real time shaders; and ray tracing. The VRE does not define the technique used to
render the data, however, only the type of visual output needed. Rendering nodes are
used to define the outputs, and a full implementation of the VRE specification will
require support for: boundary, edge and silhouette enhancement; opacity maps;
isosurfaces; cartoon-style non-photorealistic rendering; stipple patterns; and
compositing multiple styles together into a single rendering pass. Figure 1 shows our
implementation of the VRE in action using the tone mapped volume style - an
implementation of the Gooch shading model of two-toned warm/cool colouring [5].
Volumetric data representation in the VRE makes use of the X3D 3D texturing
component [6].

MedX3D builds on the current X3D specification and the VRE to define a medical
interchange profile. A series of user cases were compiled, and combined with a
literature search to determine what the profile should contain. It has been optimized to
support medical visualization and markup within an X3D compliant browser or
application. The use-cases were developed with DICOM and are designed to bridge the
success DICOM has had with equipment manufacturers with the success Web3D has
had in getting 3D graphics onto the web.

2.2. Ontology Support

Two ontologies have been used during this work: the FMA (Foundational Model
of Anatomy) [7], and SNOMED CT® (Systematized Nomenclature of Medicine-
Clinical Terms). They provide comprehensive computer-based knowledge sources in
the biomedical sciences and clinical healthcare. Table 1 summarizes the components of
both sources and a detailed comparison can be found in [8].

FMA SNOMED CT®

75,000 classes, 120,000 terms 357,000 concepts with unique meanings
and formal logic-based definitions
organized into hierarchies

2.1 million relationship instances from
168 relationship types link the FMA’s
classes into a coherent symbolic model

Core general terminology for the
electronic health record (EHR)

Part of the Anatomy Information System
developed at the University of
Washington

Joint development between the UK NHS
and the College of American Pathologists

Table 1: Overview of FMA and SNOMED ontologies

To support an ontology in X3D, we need a method for semantic medical data to be
incorporated into the scenegraph via the use of the Metadata nodeset. This involved
finding an appropriate representations of ontology information in X3D Metadata,
creating transformation mechanisms for the information, evaluating their similarities,
and showing examples of the metadata in use (Figure 2). The integration of these
ontologies with X3D scenes (such as anatomical models) provides the foundation for

interactive 3D objects to be represented with all their attributes and relationships during
run time. Through the lossless transformation mechanisms we have demonstrated that
concepts and relationships, and systems and parts can all be cross-referenced within an
X3D application or through an external application. Figure 2 is a snapshot of a simple
application running in an X3D browser that demonstrates this functionality. The
taxonomy data displayed is updated (using the FMA and SNOMED) each time a
different organ is selected.

Figure 2. As the user selects each organ (mouse click) in this simple 3D Anatomical model displayed within
an X3D browser, relevant taxonomy from the FMA and SNOMED is displayed

2.3. Import/Export Library

The goal of import/export library is to enable other software to interact with
MedX3D content. As well as providing the ability to import and export content, the
library supports an API that gives developers access to the scene graph. Thus content
can be generated programmatically and subsequently exported. The API also allows
imported content (that is compliant with the MedX3D profile) to be interrogated.

The development utilized the Flux X3D-based open-source engine [9]. The
import/export API is closely aligned with the Scene Access Interface (SAI) [10], which
allows an application programmer to inspect or build X3D content. Microsoft’s COM
was used for the library infrastructure. The API supports two different languages, C++
and Visual Basic. The API is fully documented.

The installation also includes two test harness applications. One in Visual Basic,
and one in C++. The C++ test harness application shows how the API can be used to
import, and interrogate an X3D file, by displaying the node hierarchy of the contents in
a GUI tree window. The test harness then programmatically adds content to the scene,
and exports the result, thus illustrating the ability to programmatically generate X3D
content.

2.4. MedX3D Plug-in

A web browser plug-in has been implemented to support the new MedX3D profile
including the VRE. It supports reading DICOM data sets and the wide variety of
volume styles available in the VRE can be used to visualize the data (only the
StippleVolumeStyle is not yet implemented). The VRE specification was written to be
implementation independent so as not to be locked into a specific volume rendering
technique. The plug-in supports two different volume rendering techniques: GPU-
based ray casting; and slices using 3D-textures. The development utilized the X3D-
based open-source development platform H3D API [11] and was implemented using
OpenGL and GLSL shaders. The plug-in supports multiple browsers and makes it
possible to visualize and explore volume data using Internet Explorer, Mozilla Firefox
(Figure 3) or Opera.

Figure 3. The MedX3D plug-in running inside Mozilla Firefox. A CT data set is being volume rendered in
real time by automatically taking advantage of the GPU.

3. Results

A completely specified volume rendering extension and profile for X3D has now
been prepared for final ISO ratification - this is the core of MedX3D. Figure 3 shows
the MedX3D plug-in being used within Mozilla Firefox to explore a 3D opacity map
volume rendering of a CT data set. Ontology data can be accessed when available and
seamlessly integrated into the 3D scene. A sophisticated medical visualization
application can quickly be built by using the MedX3D profile. The main advantage of
MedX3D is that it enables convenient access to DICOM image data from within a Web
browser whilst providing the same quality and key visualization and markup features
available from a dedicated 3D medical visualization workstation. We are currently
carrying out evaluation studies to compare the ease of use and rendering quality of the
standards-based MedX3D approach with currently available commercial and public
domain software.

4. Conclusions/Discussion

By utilizing an ISO ratified, open and royalty free standard, the necessary
prerequisites for a standard, archive file format for 3D medical images have been
achieved. In addition, we have shown that it is possible to integrate both FMA and
SNOMED information individually into an X3D scenegraph with a lossless
transformation. It is theoretically possible for both FMA and SNOMED
transformations to be combined together in one single mapping tool handling both data
sources.

The results of this project may constitute Recommended Practice for the Web3D
Consortium’s Medical Working Group and inform the development of semantically-
integrated interactive 3D applications (i.e. anatomy browsers and imaging (DICOM)
tool vendors). A common scenario would be to use these conventions to semantically
‘tag’ segmented anatomical structures for storage or delivery as an X3D environment.

Discussions are also ongoing with the DICOM WG-17 (3D) who are responsible
for extending the DICOM Standard with respect to 3D and other multi-dimensional
data sets. We are investigating whether MedX3D can become the enabling technology
for this purpose.

References

[1] Megibow, A.J. (2002). Three-D offers workflow gains, new diagnostic options. Diagnostic Imaging.
November 2002, 83-93

[2] John, N.W. (2007). The Impact of Web3D Technologies on Medical Education and Training.
Computers & Education. Vol 49. Issue 1, August 2007, 19-31

[3] Brutzman, D. and Daly, L. (2007). X3D Extensible 3D Graphics for Web Authors. The Morgan
Kaufmann Series in Computer Graphics. ISBN 978-0-12-088500-8

[4] Hendin, O., John, N.W., Shochet, O. (1998). Medical Volume Rendering on the WWW using JAVA
and VRML. Stud Health Technol Inform 50, 34-40

[5] Gooch, A., Gooch, B., Shirley, P., and Cohen, E. (1998) A non-photorealistic lighting model for
automatic technical illustration. In Proceedings of the 25th Annual Conference on Computer Graphics
and interactive Techniques SIGGRAPH '98. ACM Press, New York, NY, 447-452.

[6] X3D 3D Texturing Component http://www.web3d.org/x3d/specifications/ISO-IEC-19775-
X3DAbstractSpecification_Revision1_to_Part1/Part01/components/texture3D.html Last visited
October 2007

[7] Rosse C., Mejino J.V.L. (2003). A reference ontology for biomedical informatics: the Foundational
Model of Anatomy. J Biomed Inform. 36:478-500.

[8] Bodenreider, O. and Zhang, S. (2006). Comparing the Representation of Anatomy in the FMA and
SNOMED CT. AMIA Annu Symp Proc. 2006; 46–50

[9] http://sourceforge.net/projects/flux Last visited October 2007
[10] http://www.web3d.org/x3d/specifications/ISO-IEC-19775-X3DAbstractSpecification/ Last visited

October 2007
[11] H3D Web Site, http://www.h3d.org/ Last visited October 2007

Acknowledgements

We wish to thank The Web3D Consortium for providing the infrastructure and
expertise to make this work possible, and TATRC for providing the funding.

	Disclaimer
	sf298_Final_Phase2
	toc
	Task 1: Completion of MedX3D profile and Volume Rendering Ext……… 4

	Introduction_Web_copy
	There are many possibilities for applying this work in X3D medical applications. Some specifics of the node structure in the delivery scenegraph will depend on the application requirements. The tools and recommended practice we provide can be widely adapted for these needs. For example in X3D, the interface for an anatomy browser could be created with menus driving the visibility or highlights of shapes with a Switch node; referent shapes can also be Inlined. Alternatively, a program could walk the scenegraph, apply some logic, and display specific metadata information as annotations or labels.

	References
	Appendix A
	Appendix E
	Appendix G
	Appendix H
	6.3 Browser services
	6.3.1 Introduction
	6.3.2 getName
	6.3.3 getVersion
	6.3.10 getExecutionContext
	6.3.12 replaceWorld
	6.3.14 loadURL
	6.3.15 setDescription
	6.3.16 createX3DfromString
	6.3.18 createX3DFromURL
	6.3.20 addBrowserListener
	6.3.21 removeBrowserListener
	6.3.24 print
	6.3.25 dispose
	6.3.26 export
	6.3.27 setDocTypeHeader
	6.3.28 getDocTypeHeader
	6.3.29 popConsoleLine

	6.4 Execution context services
	6.4.1 getSpecificationVersion
	6.4.2 getEncoding
	6.4.6 getNode
	6.4.7 createNode
	6.4.10 getProtoDeclaration
	6.4.14 getRootNodes
	6.4.17 dispose

	6.5 Scene services
	6.5.1 Introduction
	6.5.2 getMetadata
	6.5.3 setMetadata

	6.6 Node services
	6.6.1 Introduction
	6.6.2 getTypeName
	6.6.4 getField
	6.6.5 getFieldDefinitions
	6.6.6 dispose
	6.6.7 getNumFields
	6.6.8 getFieldInfo

	6.7 Field services
	6.7.1 Introduction
	6.7.2 getAccessType
	6.7.3 getType
	6.7.4 getName
	6.7.5 getValue
	6.7.6 setValue
	6.7.7 registerFieldInterest
	6.7.8 dispose
	6.8.0 Specific Field Types:

	6.8 Route services
	6.8.1 getSourceNode
	6.8.2 getSourceField
	6.8.3 getDestinationNode
	6.8.4 getDestinationField
	6.8.5 dispose

	Appendix I
	Appendix J

	1_REPORT_DATE_DDMMYYYY: 20-11-2007
	2_REPORT_TYPE: Final
	3_DATES_COVERED_From__To: 20 Nov 2006 - 20 Oct 2007
	4_TITLE_AND_SUBTITLE: Development of an Amendment to X3D to Create a Standard Specification of Medical Image Volume Rendering, Segmentation, and Registration
	5a_CONTRACT_NUMBER: W81XWH-06-1-0096
	5b_GRANT_NUMBER:
	5c_PROGRAM_ELEMENT_NUMBER:
	5d_PROJECT_NUMBER:
	5e_TASK_NUMBER:
	5f_WORK_UNIT_NUMBER:
	6_AUTHORS: Michael Aratow, Nigel W. John, Justin Couch, Daniel Evestedt, Alan Hudson, Nicholas Polys, Richard Puk, A. Ray, Keith Victor, Qiming Wang, Afzal Godil
	7_PERFORMING_ORGANIZATION: Web3D Consortium
325 Sharon Park Drive, Suite 623
Menlo Park, CA 94025
	8_PERFORMING_ORGANIZATION:
	9_SPONSORINGMONITORING_AG: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

	10_SPONSORMONITORS_ACRONY:
	1_1_SPONSORMONITORS_REPOR:
	12_DISTRIBUTIONAVAILABILI: Approved for public release; distribution unlimited
	13_SUPPLEMENTARY_NOTES:
	14ABSTRACT: There is currently no open standard file format for the volumetric rendering, segmentation and registration of medical imaging data. X3D is the current royalty free, ISO ratified standard for 3D data communication over networks. A volume rendering extension was added to X3D to allow 3D medical image volumes to be displayed and take advantage of the extensible functionality of this standard. Successful implementation of this extension with multiple rendering styles within a Windows based web browser plugin architecture proved its feasibility. An import/export library and mapping of the leading anatomic ontologies, SNOMED and FMA, to X3D metadata tags were also created to encourage and simplify development of 3rd party applications associated to this X3D extension. Comparisons were made with selected freely available volume rendering solutions running on multiple platforms with a development history of over 3 years. The demonstration implementation of MedX3D had a basic user interface in comparison but offered more available rendering modes. In many cases the quality of the rendering was close to that of the more mature software. A limited concurrent validity survey with one commercial software product showed MedX3D compared favorably in image display, inferior in user interface and superior in accessibility.
	15_SUBJECT_TERMS: X3D, standard, 3D, volumetric, segmentation, registration, medical, visualization, SNOMED, FMA, Flux, 3DView, OsiriX, ImageJ, LEONARDO
	a_REPORT: U
	bABSTRACT: U
	c_THIS_PAGE: U
	17_limitation_of_abstract: UU
	number_of_pages:
	19a_NAME_OF_RESPONSIBLE_P: USAMRMC
	19b_TELEPHONE_NUMBER_Incl:

