
Binary Compression Rates for ASCII Formats

Martin Isenburg
∗

University of North Carolina
at Chapel Hill

isenburg@cs.unc.edu

Jack Snoeyink
University of North Carolina

at Chapel Hill

snoeyink@cs.unc.edu

ABSTRACT
Geometry compression for VRML has been an important
item on the wish-list of the Web3D Consortium since 1996.
It was widely understood that a binary format would be
required to allow compressed geometry, which explains why
there is still no geometry compression in VRML. We demon-
strate here a compression technique that does not require a
binary format and that is able to achieve bit-rates that are
within 1 to 2 percent of those of a binary benchmark coder.

Furthermore, our technique will allow complete confor-
mance between the current ASCII standard and the future
binary standard of VRML (or X3D). Translating between
the two will not require to invoke complex compression or
decompression schemes. Compressed nodes have an ASCII
as well as a binary representation and conversion from one
to the other is a simple symbolic mapping. The same de-
compression algorithm can be used to inflate a compressed
node, no matter whether it was stored in ASCII or in binary.

We do not argue against a binary format for VRML. A
binary format will reduce parse time and might store a scene
even more compactly. We argue to support geometry com-
pression now . . . without waiting for a binary specification.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling—surface, solid, and object representations

Keywords
Mesh compression, arithmetic coding, base64, textual for-
mats, ASCII, binary, VRML, X3D, BIFS, MPEG-4, XMT.

1. INTRODUCTION
The most popular way of distributing 3D content on the

Web is in form of a textual representation of the scene such
as VRML and its variants. The advantage of such a descrip-
tion is that it is very author friendly in the sense of being
meaningful to the human reader. A scene represented in
a textual format can be viewed, understood, and modified
with any text editor. Most importantly, anyone can do this,
even without knowledge about the specific software package
that generated the 3D content.

∗http://www.cs.unc.edu/˜isenburg/ac

One disadvantage of an ASCII format is that scene files
can become too large for efficient Web transmission when
the scene contains many and/or detailed polygon meshes.
Although the scene files are usually compressed with gzip
compression, such general purpose coders do not come close
to the compression rates that can be achieved with a dedi-
cated geometry coder.

For image, audio, and video data an on-going standard-
ization process has produced binary compression formats
such as JPEG, GIF, and MPEG that are widely accepted.
Software to read, create, save, and modify these formats is
plentiful and easy to use. Several attempts to develop a
similar standard for compressed polygonal data have so far
been without success.

Geometry compression for VRML has been an important
item on the wish-list of the Web3D Consortium since 1996.
It was widely understood that a binary format would be re-
quired to allow compressed geometry. This lead to the for-
mation of the Compressed Binary Format workgroup, which
(a) created a binary format for all existing VRML nodes and
(b) proposed new compressed versions of five data-heavy
nodes that would only exist in binary. Despite excellent
compression results [12, 11], in the end the proposal was
rejected. Some felt it was the sentiment against an unread-
able binary format from the author-side and the reluctance
to support two VRML formats from the browser company-
side that influenced the decision.

We have recently proposed a mesh compression technique
that does not require a binary file format. In [5] we show
how to code textured polygon meshes as a sequence of ASCII
symbols that compresses well with standard gzip compres-
sion. The main benefit of such an approach is that it elim-
inates the binary requirement. In order to add compressed
geometry to VRML (or now X3D) one no longer has to wait
for a binary standard. Another benefit is that it makes it
possible to have complete conformance between the current
ASCII standard and a future binary standard of VRML—
including the compressed nodes.

However, there was still a significant gap between the com-
pression rates of the ASCII coder proposed in [5] and that of
binary state-of-the-art geometry coders [13, 8]. The reason
for this is that binary coders use entropy coding to squeeze
the produced symbol stream into as few bits as possible.
Arithmetic coding, for example, outperforms gzip coding be-
cause it gives optimal compression in respect to the (context-
based) information entropy of a symbol sequence [9].

The ASCII coder proposed in [5] was specifically designed
to have an extremely light-weight decoding algorithm so
that it could be used with Shout3D’s [10] pure java API—a
plugin-less Web3D player that downloads all required classes
on demand. Although using this scheme would allow com-

plete conformance between ASCII and binary VRML, it
would mean to compromise the binary compression rates.

In an attempt to overcome this, we have combined the
advantages of arithmetic and of non-binary coding: Our
arithmetic coder stores the sequence of bits it produces as
a stream of “safe” ASCII characters instead of a stream of
binary bytes. This is by no means a new idea. Schemes such
as uuencode or base64 are standard techniques for mapping
binary files to ASCII so that they can be handled by the
purely text-based transfer protocols used by SMTP email
and usenet groups. However, the conversion to ASCII in-
creases the size of their files by 33 to 35 percent.

This in different for us because our files do not need to
be ASCII at transmission time. Both, the protocol used for
transmitting VRML content and also the browsers used for
viewing it can handle binary data formats such as JPEG,
GIF, MPEG, and most importantly for us—gzipped ASCII
files. The key insight for achieving binary compression rates
in ASCII formats is the following: the redundancy that is
added when mapping the sequence of bits produced by an
arithmetic coder into “safe” ASCII characters is almost com-
pletely removed by subsequent gzip compression.

We have implemented a context-based arithmetic coder
that writes and reads its bits to and from the base64 set of
ASCII characters. Using this coder with our compression
schemes for mesh connectivity [1], geometry [2], property
mappings [4], and property values [6] results in ASCII files
that are more compact than the gzipped ASCII files of the
scheme we proposed last year [5]. If these files are then
compressed with gzip we achieve bit-rates that are within 1
or 2 percent of those of a binary benchmark coder [8].

The paper is organized as follows: The next section dis-
cusses text-based and binary formats and how they relate
to compression. Section 3 investigates how the bit sequence
of an arithmetic coder can be efficiently stored as ASCII.
Section 4 introduces the benchmark coder we used in our
experiments and explains why context-based arithmetic cod-
ing is crucial to its success. Section 5 discusses the exper-
imental results of our proof-of-concept implementation and
concludes with a short summary of our results.

2. FILE FORMATS AND COMPRESSION
In theory the following three things are completely inde-

pendent from each other.

1. an ASCII format for a VRML scene

2. a binary format for a VRML scene

3. a compressed format for some nodes of a VRML scene

In practice the feasibility of the third was thought to depend
on the availability of the second, because it would not be
integratable into the first. We have shown in [5] that this is
not true and try here to strengthen this claim.

A binary format is a different representation for the en-
tire VRML node set. There should exist a bijective mapping
between the current ASCII format and the future binary for-
mat. This mapping would be applied to an entire scene and
should neither affect the visual nor the functional quality
of the scene. The only differences between the two would
be file size, parse time, (un-)readability in an text-editor,
and maybe some byte-format related issues with transmis-
sion (e.g. big5, utf-8, ...). The binary format might be more

compact than the ASCII format, but that does not necessar-
ily mean that the resulting binary files will always be smaller
than the corresponding gzipped ASCII files.

A compressed format is a more compact representation
for the data contained in a VRML node. The author of the
scene selectively applies a compression process to some data-
heavy nodes in the scene while trading off between its visual
impact and the achieved reduction in file size. Compression
can affect the contents of a node both, visually (e.g. loss of
precision) and also functionally (e.g. reordering of arrays).

The trade-off between visual quality and file size can not
only be balanced by compression but also by simplification.
These are conceptually two different things. There is com-
pression, which—speaking in terms of polygonal geometry—
does not change the polygon, position, and texture coordi-
nate count of a geometry node, but may affect its visual
quality by quantization of position and texture coordinates.
And there is simplification, which changes a geometry node
by iteratively reducing its polygon, position, and texture co-
ordinate count in a way that tries to preserve its appearance
until, for example, the target polygon budget was reached.
The simplified result may subsequently be compressed. Here
we are only concerned with compression.

In the rejected proposal of the Compressed Binary Format
workgroup compressed nodes were only supposed to exist in
the binary format. We believe that this is a disadvantage.
Imagine some scene in binary format that contains com-
pressed nodes. In order to quickly change, for example, the
lights in the scene, you use the imaginary “bin2asc” con-
verter and then open the generated ASCII version of this
scene in your favorite text editor. After making the desired
changes, you save the modified scene and call the imaginary
“asc2bin” converter to get back to the binary representation.
But what happened to the compressed nodes?

The compressed nodes could have been inflated into their
uncompressed counterparts by the “bin2asc” converter. But
when going back to binary, how would the “asc2bin” con-
verter know (a) which nodes used to be compressed and (b)
with which compression parameters (e.g. number of bits)
they had originally been compressed. Furthermore, depend-
ing on the used compression and decompression algorithms,
the conversion of compressed nodes could be significantly
more complex than that of uncompressed nodes. In addi-
tion, the ASCII version of a scene containing compressed
nodes would be always much larger than the binary version.

However this dilemma was solved, compressed nodes would
always be second-class citizens that are not allowed to live
in both (e.g. ASCII and binary) worlds. The mechanism
proposed in this paper will assure them a life in both.

3. STORING BITS AS ASCII
Sequences of bits that are output of an arithmetic coder

are best represented in a binary format. The bits of such a
sequence have no correlation that could be exploited to com-
press them further. The most compact way to store them,
is to pack groups of eight bits into one byte. In order to
efficiently represent this bit sequence with ASCII characters
there are four goals to consider.

1. The ASCII should be safe and portable, able to be
used in all editors and applications that handle text.

2. The conversion between a bit sequence and its ASCII
representation should be computationally simple.

Figure 1: The size increase in percent of files that contain random bits coded as ASCII basen and compressed with “gzip
-9” over files that contain the same bits in plain binary is plotted as a function of n for 10, 25, and 100 KB. Lines indicate
averages of 8 separate test, each marked by “o” signs. The enlarged portion shows that base63 gives the best performance.

3. The representation of the bits in ASCII should be as
compact as possible; in particular, it should not be too
much larger than their representation in binary.

4. The resulting ASCII should compress well using stan-
dard gzip compression; in particular, the size of the
gzipped ASCII file should be near that of the binary.

A natural choice for satisfying the first goal are those
ASCII formats that have long been used for transferring
binary files in text-based transmission systems. There are
uuencode, which has its origin in usenet groups, base64,
which is the preferred mime-type for binary email attach-
ments, and hexbin, which is mostly used by applications on
Mac computers. All three formats encode binary data ba-
sically by mapping groups of six bits to a set of 64 “safe”
ASCII characters. In general such mappings can use from
as little as 2 all the way up to the entire set of 96 print-
able ASCII characters. In the following we will refer to a
mapping that uses n characters as a basen mapping.

Any base that is a power two satisfies the second goal
because then n = 2k and there exists a bijective mapping
between the value of a group of k bits and the ASCII char-
acters of the base. Going back and forth between the two
could then be implemented with simple look-up tables.

For the third goal we calculate the expansion factor. If we
map the sequence of bits into a selection of n different ASCII
characters, we get an expansion factor of 8/ log2(n). The
expansion factor decreases as n becomes larger. For base32,
the expansion factor is 60%; for base64, the expansion factor
is 33%; if we used all 96 printable ASCII characters and
encode in base96, then the expansion factor is 21.5%.

For the fourth goal, we generated random bit sequences
whose binary representation have sizes of 10, 25, and 100
Kilobytes and encoded them using all ASCII bases rang-
ing from base2 to base96. Subsequently we compressed the
resulting ASCII files using “gzip –9”. Figure 1 plots the
relative increase in size of the gzipped ASCII file over the
corresponding binary file as a function of the number of dif-
ferent ASCII characters in the base. The resulting curves
give us a clear winner: the actual minimum is at base63 with
base64 coming in second place.

Overall we found that base64 is the best choice. It is al-
ready an accepted standard, it is trivial to implement, its
expansion factor is only 33% with 21.5% being the best pos-
sible, and, most importantly, after gzip compression the in-
crease in file size over binary is only about 1%.

4. BENCHMARK MESH COMPRESSION
For several years now, the coder by Touma and Gots-

man [13] has been the most widely accepted benchmark in
mesh compression. Their connectivity coder tends to give
the best bit-rates for compressing triangular connectivity.
Also their geometry coder delivers competitive compression
rates. While the simplicity of their scheme is one reason for
its popularity, the achieved bit-rates are so good that it con-
tinues to be the main benchmark in geometry compression.

However, we decided not to implement this benchmark
coder for our experiments. On one hand it was designed
to compress purely triangular meshes and our test meshes
contain many non-triangular polygons. On the other hand
it was not designed with support for textures in mind and
our test meshes have one layer of texture coordinates.

In order to compress polygon meshes, the Touma and
Gotsman coder [13] performs an initial triangulation step.
But polygon meshes can be compressed more efficiently di-
rectly in their polygonal representation [3]. Recently we
have extended both the connectivity coder and the geome-
try coder of Touma and Gotsman to the polygonal case [1,
2]. This combination delivers the lowest reported compres-
sion rates for polygon meshes and can be seen as a natural
generalization of the Touma and Gotsman benchmark coder
from triangle meshes to polygon meshes.

Furthermore we have proposed a predictive technique for
the compression of texture coordinate mappings that gives
the best compression rates currently known [4]. Together
with a scheme for predictive compression of texture coor-
dinate values [6] we have all the components for a state-of-
the-art compression engine. We have made this compression
software available to serve other researchers as a benchmark
coder for compressing textured polygon meshes [8].

In Table 1 we list the performance of our polygonal bench-
mark coder on the eight textured polygon models shown in

mesh number of mesh binary compression rates total
name positions texcoords polygons components name conn geom texmap texval [bpv] [KB]
lion 16302 16652 16738 120 lion 1.28 13.72 0.10 6.29 21.53 42.84
wolf 7068 7234 7454 35 wolf 1.10 13.40 0.06 6.59 21.30 18.38
raptor 7454 6984 7808 79 raptor 1.21 13.75 2.93 6.33 23.83 21.68
fish 4685 4685 4901 7 fish 1.11 14.03 0.00 7.05 22.18 12.69
snake 11137 11610 11268 6 snake 0.24 8.49 0.06 3.92 12.88 17.51
horse 9199 9988 9518 5 horse 0.65 11.86 0.17 4.90 17.99 20.21
cat 9627 10350 10340 39 cat 1.23 12.32 0.18 5.00 19.11 22.46
dog 6650 6522 9278 19 dog 1.74 16.21 1.84 6.81 26.46 21.48

average 1.07 12.97 0.66 5.86 20.66

Table 1: The table lists the number of positions, texture coordinates, polygons, and components for each polygon mesh
shown in Figure 2. The binary benchmark compression rates for the connectivity [bpv], the geometry [bpv], the texture
coordinate mapping [bpv], and the texture coordinate values [bpt] are reported side by side in bits per vertex (bpv) or bits
per texture coordinate (bpt). The level of quantization was 12 bits for positions and 10 bits for texture coordinates.

Figure 2. Compression rates are reported separately in bits
per vertex (bpv) for the connectivity, for the geometry, and
for the texture coordinate mapping1 and in bits per texture
coordinate (bpt) for the texture coordinate values.

In order to achieve these low bit-rates our coder makes
heavy use of context-based arithmetic coding [14]. Given
sufficiently long input, the compression rate of such a coder
converges to the entropy of the input. The entropy for a
sequence of n symbols is −∑

n

(
pi log2(pi)

)
, where the ith

symbol occurs with probability pi. Roughly speaking, the
less spread out the distribution of the symbol stream, the
lower is its entropy. A context-based approach splits one
symbol stream into two or more symbol streams in the hope
that each of them has a lower dispersion.

In the following we only try to give an intuition why the
use of context-based arithmetic coding is imperative for our
coder’s success. For the details on encoding and decoding
we refer the reader to the original references [1, 2, 4, 6].
Connectivity: We represent the connectivity of a poly-

gon mesh basically as a sequence of vertex degrees and face
degrees [1]. Because low-degree vertices are more likely to be
surrounded by high-degree faces and vice versa, we switch
contexts based on neighboring face degrees when encoding a
vertex degree and based on neighboring vertex degrees when
encoding a face degree.
Geometry: After recording the floating-point bounding-

box of a polygon mesh we quantize its positions using a
user-defined number of precision bits. Then we represent
the positions through a sequence of vectors, each correct-
ing the prediction of a position with the parallelogram rule.
Because the parallelogram predictions within a polygon are
more successful then those across polygons, we switch con-
texts based on whether the prediction was within or across
when encoding a corrective vector [2].
Texture Coordinate Mapping: Classifying vertices

and corners of a mesh as smooth and not smooth is sufficient
to encode a manifold texture coordinate mapping [4]. Since
there is a strong correlation between neighboring corners
and vertices we switch between eight different contexts when
encoding whether a vertex or a corner is smooth or not.
Texture Coordinate Values: Similar to positions, the

texture coordinates are first quantized and then predicted

1The reason that the texture coordinate mapping of the
“raptor” and the “dog” model does not compress as well as
that of other models is that these two mappings are heav-
ily non-manifold. This means that texture coordinates are
re-used for different parts of the model.

with the parallelogram rule. In the presence of discontinu-
ities in the texture mapping we fall back to a simpler predic-
tor [6]. When compressing the corrective vectors we again
switch contexts depending on the used prediction.

5. SUMMARY OF RESULTS
We have implemented a proof-of-concept prototype of the

benchmark coder for polygon mesh compression [8] that uses
an arithmetic coder which writes to and reads from base64
ASCII. The implementation was integrated into the plugin-
less, pure java Web3D player from Shout3D [10]. Their API
allows to extend the VRML-style node set by automatically
downloading all java classes required for custom nodes on de-
mand. By extending the standard IndexedFaceSet node to a
new CompressedIndexedFaceSet node, we are able to present
a fully functional prototype that integrates the compression
scheme proposed here into a VRML scene.

The new compressed node contains the base64 coded bits
of the arithmetic coder, the floating-point bounding box for
positions and texture coordinates, and the number of pre-
cision bits used for quantization. It automatically decodes
itself on the fly after it was loaded by the browser. An in-
teractive online demo of this prototype can be found at this
web address: http://www.cs.unc.edu/˜ isenburg/ac

In order to simplify performance comparisons we use the
same set of simple VRML scenes as in [5], each of which con-
tains one of the polygon models shown in Figure 2. The size
of the (gzipped) ASCII file for each of these scenes is listed in
Table 2. Side by side we report the file size of a scene using
the plain IndexedFaceSet node, the old CodedIndexedFace-
Set node from [5], and the new CompressedIndexedFaceSet
node that uses the compression scheme proposed here.

The average compression gain of our scheme over plain
VRML is 1 : 25 for regular ASCII files and 1 : 11 for gzipped
ASCII files. Finally, we compare the file size that our coder
achieves in binary to those it achieves in gzipped ASCII
and report the difference. Since the total binary file size
reported in Table 1 reflects only what is required to encode
the polygon mesh we added 100 bytes to the binary rate to
account for the scene setup that is included in the gzipped
ASCII rate. On average the gzipped ASCII rates are only 1
to 2 percent above the binary rates.

The main point we were trying to make is that compression—
in particular geometry compression for VRML—does not re-
quire a binary file format. The presented technique is inde-
pendent from the mesh compression scheme we used [8] and
may also be combined with other binary mesh coders [13,

Figure 2: The eight example models used in this paper are all textured and have non-triangular connectivity.

11]. In fact, it can be applied to any binary data that needs
a compact representation inside a (gzipped) text file. There-
fore it could also be used to keep compressed BIFS nodes
inside the extensible MPEG-4 Textual Format (XMT) [7].

6. REFERENCES
[1] M. Isenburg. Compressing polygon mesh connectivity

with degree duality prediction. In Graphics Interface’02
Conference Proceedings, pages 161–170, 2002.

[2] M. Isenburg and P. Alliez. Compressing polygon mesh
geometry with parallelogram prediction. In Visualiza-
tion’02 Conference Proceedings, pages 141–146, 2002.

[3] M. Isenburg and J. Snoeyink. Face Fixer: Compress-
ing polygon meshes with properties. In SIGGRAPH’00
Conference Proceedings, pages 263–270, 2000.

[4] M. Isenburg and J. Snoeyink. Compressing the prop-
erty mapping of polygon meshes. In Pacific Graphics’01
Conference Proceedings, pages 4–11, 2001.

[5] M. Isenburg and J. Snoeyink. Compressing polygon
meshes as compressable ASCII. In Proceedings of
Web3D’02 Symposium, pages 1–10, 2002.

[6] M. Isenburg and J. Snoeyink. Compressing texture co-
ordinates with selective linear predictions. submitted.

[7] M. Kim, S. Wood, and L. Cheok. The extensible
MPEG-4 textual format (XMT). In Proceedings of the
ACM workshops on Multimedia, pages 71–74, 2000.

[8] A benchmark coder for polygon mesh compression.
http://www.cs.unc.edu/˜ isenburg/pmc/

[9] A. Moffat, R. M. Neal, and I. H. Witten. Arithmetic
coding revisited. In ACM Transactions on Information
Systems, 16(3):256–294, 1998.

[10] Shout3D. a pure java Web3D API, www.shout3d.com.
[11] G. Taubin, W. Horn, F. Lazarus, and J. Rossignac.

Geometry coding and VRML. Proceedings of the IEEE,
86(6):1228–1243, 1998.

[12] G. Taubin and J. Rossignac. Geometric compression
through topological surgery. In ACM Transactions on
Graphics, 17(2):84–115, 1998.

[13] C. Touma and C. Gotsman. Triangle mesh compression.
In Graphics Interface’98 Proc., pages 26–34, 1998.

[14] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic
coding for data compression. In Communications of the
ACM, 30(6):520–540, 1987.

mesh size of ASCII file [KB] size of gzipped ASCII file [KB] mesh size of compressed file [KB]
name plain old new ratio plain old new ratio name binary gzipped ASCII difference

lion 1360 311 57 1:24 442 66 43 1:10 lion 42.94 43.49 1.3 %
wolf 569 135 25 1:23 183 29 19 1:10 wolf 18.47 18.80 1.8 %
raptor 586 154 29 1:20 200 35 22 1:9 raptor 21.78 22.14 1.7 %
fish 375 91 17 1:22 123 23 13 1:9 fish 12.78 13.06 2.2 %
snake 909 211 24 1:38 312 35 18 1:17 snake 17.61 17.93 1.8 %
horse 749 189 27 1:28 266 41 21 1:13 horse 20.30 20.64 1.7 %
cat 791 192 30 1:26 267 40 23 1:11 cat 22.56 22.92 1.6 %
dog 586 143 29 1:20 186 35 22 1:8 dog 21.58 21.94 1.7 %
average 1:25 1:11 average 1.7 %

Table 2: The tables lists the file size of (gzipped) ASCII scenes that contain a polygon model using either the plain Indexed-
FaceSet node, the old CodedIndexedFaceSet node proposed in [5], or the new CompressedIndexedFaceSet node proposed here.
In addition the compression ratios between new and plain are given. Quantization of positions was to 12 and of texcoords to
10 bits of precision. The table also reports the compression difference between binary and gzipped ASCII in percent.

#VRML V2.0 utf8
Shape {

appearance Appearance {
material Material {

modulateTextureWithDiffuse true
diffuseColor 1 1 1

}
texture ImageTexture {

url fish.jpg
}

}
geometry IndexedFaceSet {

creaseAngle .9
coord Coordinate {

point [-0.0715 4.7609 6.3930 -0.0715 ... -0.4689 -4.4092 4.4136]
}
coordIndex [7 6 209 204 -1 4 217 210 5 -1 ... -1 4577 4423 4222 -1]
texCoord TextureCoordinate {

point [0.3735 0.9441 0.3289 0.9315 ... 0.2666 0.4990 0.1082]
}
texCoordIndex [0 1 2 3 -1 4 5 6 7 -1 8 9 ... -1 4311 4293 4683 -1]

}
}

#VRML V2.0 utf8
Shape {

appearance Appearance {
material Material {

modulateTextureWithDiffuse true
diffuseColor 1 1 1

}
texture ImageTexture {

url fish.jpg
}

}
geometry CompressedIndexedFaceSet {

creaseAngle .9
code "CgEofTPoTnfUYfTWzzAbc9ehFji6UL0ZwL ... PvAU34iOfyvXS7GVbHHUuX"
box tex [0.0146 0.0749 0.9896 0.9834]
bits tex 10
box [-1.9725 -7.6861 -10 1.9725 7.6861 10]
bits 12

}
}

Figure 3: Two simple VRML scenes that describe a texture-mapped polygon model of a fish. The first scene uses the
standard IndexedFaceSet node to describe this textured polygon mesh. The second scene uses our CompressedIndexedFaceSet
node to describe the same model much more compactly. It contains the following data: the floating-precision bounding box
for positions (box) and texture coordinates (box tex), the number of precision bits used for quantization of positions (bits) and
texture coordinates (bits tex), and the base64 coded bits of the arithmetic coder (code). The loss in precision resulting from
quantizing the vertex positions and the textures coordinates to 12 and 10 bits respectively is not visible. The compressed
scene can still be viewed and edited in any text editor to, for example, change the material or the crease angle. However, the
size of the gzipped VRML file is now only 13 KB instead of 123 KB bytes.

