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S
cene graphs are data structures used
to organize and manage the contents
of hierarchically oriented scene data.
Traditionally considered a high-level

data management facility for 3D content,
scene graphs are becoming popular as
general-purpose mechanisms for manag-
ing a variety of media types. MPEG-4, for
instance, uses the Virtual Reality Model-
ing Language (VRML) scene-graph pro-
gramming model for multimedia scene
composition, regardless of whether 3D
data is part of such content. In this arti-
cle, I’ll examine what scene graphs are,
what problems they address, and scene-
graph programming models supported by
VRML, Extensible 3D (X3D), MPEG-4, and
Java 3D.

Scene Composition and Management
Scene graphs address problems that gen-
erally arise in scene composition and
management. Popularized by SGI Open
Inventor (the basis for VRML), scene-
graph programming shields you from the
gory details of rendering, letting you fo-
cus on what to render rather than how to
render it. 

As Figure 1 illustrates, scene graphs of-
fer a high-level alternative to low-level
graphics rendering APIs such as OpenGL
and Direct3D. In turn, they provide an ab-
straction layer to graphics subsystems re-
sponsible for processing, eventually pre-
senting scene data to users via monitors,
stereoscopic goggles/glasses, projectors,
and the like.

Before scene-graph programming mod-
els, we usually represented scene data and
behavior procedurally. Consequently, code
that defined the scene was often inter-
spersed with code that defined the pro-
cedures that operated on it. The result was
complex and inflexible code that was dif-
ficult to create, modify, and maintain—
problems that scene graphs help resolve. 

By separating the scene from the op-
erations performed on it, the scene-graph
programming model establishes a clean
boundary between scene representation
and rendering. Thus, scenes can be com-
posed and maintained independent of rou-
tines that operate on them. In addition to
making things easier, this lets you create
sophisticated content using visual author-
ing tools without regard for how work is
processed. 

Listing One is VRML code for a scene
consisting of a sphere that, when touched,
appears yellow. As you can see, the ob-
jects and their behavior are represented
at a high level. You don’t know (or care)
how the sphere is rendered— just that it
is. Nor do you know or care about how
the input device is handled by the un-
derlying run-time system to support the
“touch” behavior. Ditto for the light.

At the scene level, you concern your-
self with what’s in the scene and any as-
sociated behavior or interaction among
objects therein. Underlying implementa-
tion and rendering details are abstracted
out of the scene-graph programming mod-
el. In this case, you can assume that your
VRML browser plug-in handles low-level
concerns.

Nodes and Arcs
As Figure 2 depicts, scene graphs consist
of nodes (that represent objects in a scene)
connected by arcs (edges that define re-
lationships between nodes). Together,
nodes and arcs produce a graph structure
that organizes a collection of objects hi-
erarchically, according to their spatial po-
sition in a scene.

With the exception of the topmost root
node (which defines the entry point into
the scene graph), every node in a scene
has a parent. Nodes containing other
nodes are parent nodes, while the nodes
they contain are the child nodes (children)
of their parent. Nodes that can contain
children are grouping nodes; those that
cannot are leaf nodes. Subgraph structures
in Figure 2 let a specific grouping of nodes
exist as a discrete and independently ad-
dressed unit of data within the main scene-
graph structure. Operations on the scene
can be performed on all nodes in the
graph, or they may be restricted to a par-
ticular subgraph (scenes can therefore be
composed of individual nodes as well as
entire subgraphs that may be attached or
detached as needed).

Scene graphs in Figure 2 resemble tree
data structures when depicted visually.
Not surprisingly, trees are often used for
scene-graph programming. The directed
acyclic graph (DAG) data structure (also
known as an “oriented acyclic graph”) is
commonly used because it supports node
sharing at a high level in the graph (nodes
in a DAG can have more than one par-
ent) although typically at the expense of
additional code complexity and memory
consumption. In a DAG, all nodes in the
graph have a directed parent-child rela-
tionship in which no cycles are allowed—
nodes cannot be their own parent.

Graph Traversal
Scene-graph nodes represent objects in a
scene. Scene graphs used for 3D content,
for instance, usually support nodes that
represent 3D geometric primitives (prede-
fined boxes, cones, spheres, and so forth),
arbitrarily complex polygonal shapes, lights,
materials, audio, and more. On the other
hand, scene-graph programming models
for other forms of media might support
nodes for audio/video content, timing and
synchronization, layers, media control, spe-
cial effects, and other functionality for com-
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posing multimedia.
Scene-graph programming models sup-

port a variety of operations through tra-
versals of the graph data structure that typ-
ically begin with the root node (root nodes
are usually the entry point for scene ren-
dering traversals). Graph traversals are re-
quired for a number of operations, in-
cluding rendering activities related to
transformations, clipping and culling (pre-
venting objects that fall outside of the
user’s view from being rendered), light-
ing, and interaction operations such as
collision detection and picking.

Nodes affected by a given operation are
visited during a corresponding traversal.
Upon visitation, a node’s internal state
may be set or altered (if supported) so
that it reflects the state of the operation
at that point in time. Rendering traversals
occur almost constantly with interactive
and animated graphics because the state
of affairs change as often as the user’s
viewpoint, necessitating continual scene-
graph queries and updates in response to
an ever-changing perspective. To increase
performance, effect caching can be used
so that commonly applied operations use
cached results when possible. 

Virtual Reality 
Modeling Language (VRML)
VRML is an international Standard for 3D
computer graphics developed by the
Web3D Consortium (formerly the VRML
Consortium) and standardized by ISO/IEC.
The complete specification for ISO/IEC
14772–1:1997 (VRML97) is available at
http://web3d.org/.

An Internet and web-enabled outgrowth
of Open Inventor technology developed
by SGI (http://www.sgi.com/), VRML stan-
dardizes a DAG-based scene-graph pro-
gramming model for describing interactive
3D objects and 3D worlds. Also intended
to be a universal interchange format for
integrated 3D graphics and multimedia, the
VRML Standard defines nodes that can gen-
erally be categorized as: 

• Geometry nodes that define the shape
or form of an object.

• Geometric property nodes used to de-
fine certain aspects of geometry nodes.

• Appearance nodes.
• Grouping nodes that define a coordi-

nate space for children nodes they may
contain.

• Light-source nodes that illuminate ob-
jects in the scene.

• Sensor nodes that react to environmen-
tal or user activity.

• Interpolator nodes that define a piecewise-
linear function for animation purposes.

• Time-dependent nodes that activate and
deactivate themselves at specified times.

• Bindable children nodes that are unique

because only one of each type can be
bound, or affect the user’s experience,
at any instant in time.

Every VRML node has an associated
type name that defines the formal name
for the node—Box, Fog, Shape, and so
forth. Each node may contain zero or
more fields that define how nodes differ
from other nodes of the same type (field
values are stored in the VRML file along
with the nodes and encode the state of
the virtual world) in addition to a set of
events, if any, that the node can send or
receive. When a node receives an event,
it reacts accordingly by changing its state,
which might trigger additional events.
Nodes can change the state of objects in
the scene by sending events. A node’s im-
plementation defines how it reacts to
events, when it may generate and send
events, and any visual or auditory ap-
pearance it might have in the scene. 

VRML supports a Script node that fa-
cilitates dynamic behaviors written in pro-
gramming languages such as ECMAScript,
JavaScript, and Java. Script nodes are typ-
ically used to signify a change in the scene
or some form of user action, receive events
from other nodes, encapsulate program
modules that perform computations, or
effect change elsewhere in the scene by
sending events. External programmatic
control over the VRML scene graph is pos-
sible via the External Authoring Interface
(EAI). Currently awaiting final ISO stan-
dardization as Part 2 of the VRML97 Stan-
dard, EAI is a model and binding for the
interface between VRML worlds and ex-
ternal environments.

All in all, the VRML Standard defines
semantics for 54 built- in nodes that im-
plementers, such as VRML browser plug-
ins, are obligated to provide. In addition,
VRML’s PROTO and EXTERNPROTO state-
ments (short for “prototype” and “exter-
nal prototype”) offer extension mecha-
nisms for creating custom nodes and
behaviors beyond those defined by the
Standard. 

VRML is a text-based language for
which a variety of authoring and viewer
applications and freely available browser
plug-ins exist, making it popular for ex-
ploring scene-graph programming funda-
mentals. The file human.wrl (available
electronically; see “Resource Center,” page
5), for instance, defines the 3D humanoid
in Figure 3, which is composed of prim-
itive sphere and cylinder shapes. To view
and examine this scene, open human.wrl
file in your web browser (after installing
a VRML plug-in such as Contact, http://
blaxxun.com/, or Cortona, http://www
.parallelgraphics.com/).

The scene graph in human.wrl relies
heavily on Transform, a grouping node
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that contains one or more children. Each
Transform node has its own coordinate
system to position the children it contains
relative to the node’s parent coordinate
system (Transform children are typically
Shape nodes, Group nodes, and other
Transform nodes). The Transform node
supports transformation operations relat-
ed to position, scale, and size that are ap-
plied to each of the node’s children. To
help identify the children of each Trans-
form used in human.wrl, I’ve placed al-
phabetical comments (#a, #b, #c, and so
on) at the beginning/ending braces of each
children field.

As with Listing One, the nodes that
compose human.wrl are named using
VRML’s DEF mechanism. After a node
name has been defined with DEF (short
for “define”), it can then be referenced
elsewhere in the scene. Listing One shows
how USE is combined with ROUTE to fa-
cilitate event routing; human.wrl illustrates
how specific node instances can be reused
via the USE statement. With Figure 3, the
arm segments defined for the left side of
the body are reused on the right. Like-
wise, the skin appearance DEF’ed for the
body is USE’d for the skull.

In addition to enabling node sharing and
reuse within the scene, DEF is handy for
sharing VRML models with other program-
ming environments. Human.wrl takes care
to DEF a number of nodes based on the
naming conventions established by the
Web3D Consortium’s Humanoid Animation
Working Group (H-Anim; http://hanim
.org/). As a result, the Human_body,
Human_r_shoulder, Human_r_elbow, and
Human_skullbase nodes are accessible
to applications that support H-Anim se-
mantics for these and other human-like
structures. VRML Viewer (VView), http://
coreweb3d.com/, does this. 

Nodes are discrete building blocks used
to assemble arbitrarily complex scenes. If
you need lower-level application and plug-
in plumbing, check OpenVRML (http://
openvrml.org/) and FreeWRL (http://www
.crc.ca/FreeWRL/). Both are open-source
implementations that add VRML support
to projects. 

OpenVRML and FreeWRL are open-
source VRML implementations hosted by
SourceForge (http://sourceforge.net/). X3D
is the official successor to VRML that
promises to significantly reduce develop-
ment requirements while advancing state-
of-the-art for 3D on and off the Web.

Extensible 3D (X3D)
Extensible 3D (X3D; http://web3d.org/x3d/)
enables interactive web- and broadcast-
based 3D content to be integrated with
multimedia while specifically address-
ing limitations and issues with the now-
obsolete VRML Standard. X3D adds features

and capabilities beyond VRML including
advanced APIs, additional data-encoding
formats, stricter conformance, and a com-
ponentized architecture that enables a
modular approach to supporting the Stan-
dard (as opposed to VRML’s monolithic
approach). 

X3D is intended for use on a variety of
devices and application areas — engi-
neering and scientific visualization, multi-
media presentations, entertainment and
education, web-page enhancement, and
shared multiuser environments. As with
VRML, X3D is designed as a universal in-
terchange format for integrated 3D graph-
ics and multimedia. But because X3D sup-
ports multiple encodings— including XML
encoding— it should surpass VRML as a
3D interchange format.

X3D was designed as a content devel-
opment and deployment solution for a va-
riety of systems— number-crunching sci-
entific workstations, desktop/laptop
computers, set-top boxes, PDAs, tablets,
web-enabled cell phones, and devices that
don’t have the processing power required
by VRML. X3D also enables the integra-
tion of high-performance 3D facilities into
broadcast and embedded devices, and is
the cornerstone of MPEG-4’s baseline 3D
capabilities.

X3D’s componentized architecture en-
ables lightweight client players and plug-
ins that support add-on components. X3D
eliminates VRML’s all-or-nothing complexity
by breaking functionality into discrete com-
ponents loaded at run time. An X3D com-
ponent is a set of related functions con-
sisting of various objects and services, and
is typically a collection of nodes, although
a component may also include encodings,
API services, or other X3D features. 

The X3D Standard specifies a number
of components including a Core compo-
nent that defines the base functionality for
the X3D run-time system, abstract base-
node type, field types, event model, and
routing. The Core component provides the
minimum functionality required by all X3D-
compliant implementations, and may be
supported at a variety of levels for imple-
mentations conformant to the X3D archi-
tecture, object model, and event model. 

The X3D Standard defines components
such as Time (nodes that provide the time-
based functionality), Aggregation and
Transformation (organizing and grouping
nodes that support hierarchy in the scene
graph), Geometry (visible geometry
nodes), Geometric Properties (nodes that
specify the basic properties of geometry
nodes), Appearance (nodes that describe
the appearance properties of geometry
and the scene environment), Lighting
(nodes that illuminate objects in the
scene), and many other feature suites in-
cluding Navigation, Interpolation, Text,
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Sound, Pointing Device Sensor, Environ-
mental Sensor, Texturing, Prototyping, and
Scripting components. 

A number of proposed components are
under consideration including nodes need-
ed for geometry using Non-Uniform B-
Splines (NURBS), for applying multiple
textures to geometry using multipass or
multistage rendering, to relate X3D worlds
to real world locations, humanoid anima-
tion nodes (H-Anim), Distributed Interac-
tive Simulation (DIS) IEEE 1284 commu-
nications nodes, and more. Since it is
extensible, you can create your own com-
ponents when X3D’s predefined compo-
nents aren’t sufficient.

X3D also specifies a suite of imple-
mentation profiles for a range of applica-
tions, including an Interchange Profile for
content exchange between authoring and
publishing systems; an Interactive Profile
that supports delivery of lightweight in-
teractive animations; an Extensibility Pro-
file that enables add-on components; and
a VRML97 Profile that ensures interoper-
ability between X3D and VRML97 legacy
content.

By letting scenes be constructed using
the Extensible Markup Language (XML),
X3D scene graphs can be exposed via
markup. This lets you weave 3D content
into web pages and XML documents like
that of Scalable Vector Graphics (SVG), Syn-
chronized Multimedia Integration Language
(SMIL), and other XML vocabularies. 

The file mountains3.x3d.txt (available
electronically) is an X3D scene encoded
in XML. In this case, the scene consists of
a NavigationInfo node that specifies phys-
ical characteristics of the viewer’s avatar
and viewing model, and a Background
node that specifies ground and sky tex-
tures, which create a panoramic backdrop
for the scene. Because this scene is ex-
pressed in XML, the nodes that make up
this scene graph are exposed through the
Document Object Model (DOM), and the
scene graph itself may be transformed into
other formats as needed. In this way, XML-
encoded X3D content is a convenient
mechanism by which 3D content can be
delivered to devices that don’t yet support
X3D. Figure 4, for instance, shows the
X3D scene in human.wrl displayed in a
VRML-enabled web browser. Here the
XML file was transformed into VRML97
format, letting the scene be viewed using
any VRML product. When the benefits of
XML aren’t required, an alternate data-
encoding format (say, X3D’s binary and
VRML97 UTF-8 encodings) can be used. 

MPEG-4
Developed by the Moving Picture Ex-
perts Group (MPEG; http://web3dmedia
.com/web3d-mpeg/ and http://mpeg
.telecomitalialab.com/), MPEG-4 is an

ISO/IEC Standard for delivering multi-
media content to any platform over any
network. As a global media toolkit for
developing multimedia applications
based on any combination of still im-
agery, audio, video, 2D, and 3D content,
MPEG-4 builds on VRML97 while em-
bracing X3D. MPEG-4 uses the VRML
scene graph for composition purposes,
and introduces new nodes and features
not supported by the VRML Standard. In
addition, MPEG has adopted the X3D In-
teractive Profile as its baseline 3D pro-
file for MPEG-4, thereby enabling 3D
content that can play across MPEG-4 and
X3D devices.

Recall from my article “The MPEG-4
Java API & MPEGlets” (DDJ, April 2002)
that MPEG-4 revolves around the concept
of discrete media objects composed into
scenes. As such, it builds on scene-graph
programming concepts popularized by
VRML. MPEG-4 also introduces features
not supported by VRML— streaming, bi-
nary compression, content synchroniza-
tion, face/body animation, layers, intel-
lectual property management/protection,
and enhanced audio/video/2D. 

MPEG-4’s Binary Format for Scenes
(BIFS) composes and dynamically alters
MPEG-4 scenes. BIFS describes the spatio-
temporal composition of objects in a scene
and provides this data to the presentation
layer of the MPEG-4 terminal. The BIFS-
Command protocol supports commands
for adding/removing scene objects and
changing object properties in a scene. In
addition, the BIFS-Anim protocol offers
sophisticated object animation capabilities
by allowing animation commands to be
streamed directly to scene-graph nodes.

As a binary format, BIFS content is typ-
ically 10 to 15 times smaller in size than
VRML content stored in plain-text format,
and in some cases up to 30 times small-
er. (VRML can also be compressed with
GZip, although GZip’s Lempel-Zip LZ77
compression isn’t as efficient as binary
compression, resulting in files around eight
times smaller than the uncompressed
VRML file.) 

In its uncompressed state, BIFS content
resembles VRML, although nonVRML
nodes are often present in the BIFS scene
graph. Listing Two, for instance, contains
a snippet of the MPEG-4 uncompressed
(raw text) ClockLet scene presented in my
April article. If you’re familiar with VRML,
you’ll recognize several 2D nodes not de-
fined by the VRML Standard. Back-
ground2D, Transform2D, and Material2D
are a few of the new nodes introduced
by BIFS, which currently supports over
100 nodes. 

In addition to new nodes, VRML pro-
grammers will notice the absence of the
#VRML V2.0 utf8 comment in the first line
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of every VRML97 file. (“Utf8” comments
identify version and UTF-8 encoding in-
formation.) In MPEG-4, information like
this is conveyed in object descriptors (OD).
Similar in concept to URLs, MPEG-4 ODs
identify and describe elementary streams
and associate these streams with corre-
sponding audio/visual scene data.

As Figure 5 illustrates, a media object’s
OD identifies all streams associated with
that object. In turn, each stream is char-
acterized by a set of descriptors that cap-
ture configuration information that can be
used; for instance, to determine what re-
sources the decoder requires or the pre-
cision of encoded timing information.
Stream descriptors can also convey Qual-
ity of Service (QoS) hints for optimal trans-
mission.

MPEG-4 scene descriptions are coded
independently from streams related to
primitive media objects, during which
identification of various parameters be-
longing to the scene description are giv-
en special attention. In particular, care is
taken to differentiate parameters that im-
prove object coding efficiency (such as
video coding motion vectors) from those
that are used as modifiers of an object
(such as parameters that specify the po-
sition of the object in the scene) so that
the latter may be modified without actu-
ally requiring decoding of the media ob-
jects. By placing parameters that modify
objects into the scene description instead
of intermingling them with primitive me-
dia objects, MPEG-4 lets media be un-
bound from its associated behavior.

In addition to BIFS, MPEG-4 supports
a textual representation called Extensible
MPEG-4 Textual format (XMT). As an
XML-based textual format, XMT enhances
MPEG-4 content interchange while pro-
viding a mechanism for interoperability
with X3D, SMIL, SVG, and other forms of
XML-based media.

Java 3D
Java 3D is a collection of Java classes that
define a high-level API for interactive 3D
development. As an optional package
(standard extension) to the base Java tech-
nology, Java 3D lets you construct
platform-independent applets/applications
with interactive 3D graphics and sound
capabilities. 

Java 3D is part of Sun’s Java Media APIs
multimedia extensions (http://java.sun
.com/products/java-media/). Java 3D pro-
grams are created using classes in the
javax.media.j3d, javax.vecmath, and com
.sun.j3d packages. Java 3D’s primary
functionality is provided by the javax.me-
dia.j3d package (the core Java 3D class-
es), which contains more than 100 3D-
graphics-related classes. Alternatively, the
javax.vecmath package contains a collec-

tion of vector and matrix math classes used
by the core Java 3D classes and Java 3D
programs. A variety of convenience and
utility classes (content loaders, scene-graph
assembly classes, and geometry conve-
nience classes) are in com.sun.j3d. 

Unlike scene-graph programming mod-
els, Java 3D doesn’t define a specific 3D
file format. Instead, it supports run-time
loaders that let Java 3D programs support
a range of 3D file formats. Loaders cur-
rently exist for VRML, X3D, Wavefront
(OBJ), AutoCAD Drawing Interchange File
(DXF), Caligari trueSpace (COB), Light-
wave Scene Format (LSF), Lightwave Ob-
ject Format (LOF), 3D-Studio (3DS), and
more. You can also create custom loaders.

Java 3D uses a DAG-based scene-graph
programming model similar to VRML,
X3D, and MPEG-4. Java 3D scene graphs
are more difficult to construct, however,
owing to the inherent complexity of Java.
For each Java 3D scene object, transform,
or behavior, you must create a new ob-
ject instance using corresponding Java 3D
classes, set the fields of the instance, and
add it to the scene. Figure 6 shows sym-
bols visually representing aspects of Java
3D scenes in scene-graph diagrams like
those in Figures 7 and 8.

Although complex, Java 3D’s program-
matic approach is expressive: All of the
code necessary to represent a scene can
be placed in a central structure, over which
you have direct control. Altering Java 3D
node attributes and values is achieved by
invoking instance methods and setting
fields.

The Java 3D term “virtual universe” is
analogous to scene or world and describes
a 3D space populated with objects. As Fig-
ure 7 illustrates, Java 3D scene graphs are
rooted to a Locale object, which itself is
attached to a VirtualUniverse object. Vir-
tual universes represent the largest possi-
ble unit of aggregation in Java 3D, and as
such can be thought of as databases. The
Locale object specifies a high-resolution
coordinate anchor for objects in a scene;
objects attached to a Locale are positioned
in the scene relative to that Locale’s high-
resolution coordinates, specified using
floating-point values.

Together, VirtualUniverse and Locale
objects comprise scene-graph superstruc-
tures. Virtual universes can be extremely
large and can accommodate more than
one Locale object. A single VirtualUni-
verse object, therefore, can act as the data-
base for multiple scene graphs (each Lo-
cale object is the parent of a unique scene
graph). 

The Java 3D renderer is responsible for
traversing a Java 3D scene graph and dis-
playing its visible geometry in an on-
screen window (an applet canvas or ap-
plication frame). In addition to drawing
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visible geometry, the Java 3D renderer is
responsible for processing user input.

Unlike modeling languages such as
VRML, rendering APIs such as Java 3D
typically give you complete control over
the rendering process and often provide
control over exactly when items are ren-
dered to screen. Java 3D supports three
rendering modes— immediate, retained,
and compiled retained — which corre-
spond to the level of control you have
over the rendering process and the
amount of liberty Java 3D has to optimize
rendering. Each successive rendering
mode gives Java 3D more freedom for op-
timizing program execution.

Java 3D lets you create customized be-
haviors for objects that populate a virtual
universe. Behaviors embed program log-
ic into a scene graph and can be thought
of as the capacity of an object to change
in response to input or stimulus. Behav-
ior nodes, or objects, can be added to or
removed from a scene graph as needed.
Every Behavior object contains a sched-
uling region that defines a spatial volume
used to enable the scheduling of the node.
The file HelloUniverse.java (available elec-
tronically) shows how a simple rotation
Behavior can be applied to a cube shape
in Java 3D. In this case, the rotation Be-
havior makes the cube spin on the y-axis.

Java 3D supports a unique view mod-
el that separates the virtual world from
the physical world users reside in. Al-
though more complicated than view mod-
els typically employed by other 3D APIs,
Java 3D’s approach lets programs operate
seamlessly across a range of viewing de-
vices: A Java 3D program works just as
well when viewed on a monitor as when
viewed through stereoscopic video gog-
gles. The ViewPlatform object represents
the user’s viewpoint in the virtual world
while the View object and its associated
components represent the physical (Fig-
ure 7). Java 3D provides a bridge between
the virtual and physical environment by
constructing a one-to-one mapping from
one space to another, letting activity in
one space affect the other.

The Java 3D program HelloUniverse.java
(available electronically) is a slightly mod-
ified version of Sun’s HelloUniverse pro-
gram. Figure 7 is a corresponding scene-
graph diagram. The content branch of
HelloUniverse consists of a Transform-
Group node that contains a ColorCube
shape node. A rotation Behavior node an-
imates this shape by changing the trans-
formation on the cube’s TransformGroup. 

The content branch of this scene graph
is on the left side of Figure 7, while the
right side illustrates aspects related to view-
ing the scene. The SimpleUniverse con-
venience utility manages the view branch
so that you don’t have to handle these de-

tails unless you want that level of control.
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Figure 4: VRML scene generated from
the X3D code in human.wrl.
Universal Media images courtesy of
Gerardo Quintieri (http://web3dmedia
.com/UniversalMedia/).

Figure 1: Scene-graph programming models shield you from underlying
graphics APIs, and graphics rendering and display devices. 
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Figure 2: Scene graphs consist of nodes connected by arcs that define node
relationships.
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Figure 3: (a) VRML humanoid; 
(b) Corresponding scene-graph
diagram based on human.wrl.
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Figure 7: Java 3D scene-graph nodes are rooted to a Locale object that is in
turn rooted to a VirtualUniverse object.
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Figure 6: Symbols commonly used to visually depict Java 3D scene graphs.
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Figure 5: MPEG-4 media streams are composed at the terminal according to a
scene description.
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Figure 8: HelloUniverse scene-graph diagram (right branch provided by the
SimpleUniverse utility).
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Listing One
#VRML V2.0 utf8
Group {
children [ 
Shape {
geometry Sphere {} 
appearance Appearance {material Material{}}
}
DEF TOUCH TouchSensor { }    # define sensor 
DEF LIGHT DirectionalLight { # define light 
color 1 1 0   # R G B             
on FALSE      # start with light off

} ]
ROUTE TOUCH.isOver TO LIGHT.set_on
}

Listing Two
Group {
children [
Background2D {
backColor 0.4 0.4 0.4
url []

}
Transform2D {
children [
Transform2D {
children [
DEF ID0 Shape {
appearance Appearance {
material Material2D {
emissiveColor 0.6 0.6 0.6
filled TRUE
transparency 0.0

}}
geometry Rectangle {size 20.0 20.0}

}
]
center 0.0 0.0
rotationAngle 0.0
scale 1.0 1.0
scaleOrientation 0.0
translation 0.0 204.0

}

DDJ
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