<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE X3D PUBLIC "ISO//Web3D//DTD X3D 3.2//EN" "https://www.web3d.org/specifications/x3d-3.2.dtd">
<X3D profile='Immersive'  version='3.2 xmlns:xsd='http://www.w3.org/2001/XMLSchema-instance' xsd:noNamespaceSchemaLocation =' https://www.web3d.org/specifications/x3d-3.2.xsd ' >
<head>
<meta name='titlecontent=' FollowerPrototypeDeclarations.x3d '/>
<meta name='descriptioncontent='Original implementation pattern as prototype declarations for Follower (Chaser and Damper) nodes, useful for browser developers.'/>
<meta name='creatorcontent='Herbert Stocker'/>
<meta name='translatorcontent='Don Brutzman'/>
<meta name='createdcontent='18 April 2006'/>
<meta name='translatedcontent='2 December 2011'/>
<meta name='modifiedcontent='20 October 2019'/>
<meta name='referencecontent=' FollowerExternalPrototypeDeclarations.x3d '/>
<meta name='referencecontent='originals/Chasers.wrl'/>
<meta name='referencecontent='originals/Dampers.wrl'/>
<meta name='referencecontent=' Stocker_06_Followers.pdf '/>
<meta name='referencecontent=' http://www.hersto.com/Publications/Followers '/>
<meta name='requirescontent='X3D version 3.0, 3.1'/>
<meta name='subjectcontent='X3D Follower Chaser Damper'/>
<meta name=' warning content=' under development '/>
<meta name=' TODO content=' Rename and test these prototypes to match final names in X3D Specification Followers Component '/>
<meta name=' TODO content=' Ensure full coverage of follower nodes in order to provide backwards compatibility with X3D v3.0 and v3.1. '/>
<meta name=' TODO content=' Xj3D Player Bugzilla Issuehttp://bugzilla.xj3d.org/show_bug.cgi?id=639 '/>
<meta name='referencecontent=' https://www.web3d.org/x3d/specifications/ISO-IEC-19775-1.2-X3D-AbstractSpecification/Part01/components/followers.html '/>
<meta name='referencecontent=' https://www.web3d.org/x3d/content/examples/X3dSceneAuthoringHints.html '/>
<meta name='identifiercontent=' https://www.web3d.org/x3d/content/examples/Basic/Followers/FollowerPrototypeDeclarations.x3d '/>
<meta name='generatorcontent=' Vrml97ToX3dNist, http://ovrt.nist.gov/v2_x3d.html '/>
<meta name='generatorcontent='X3D-Edit 3.3, https://savage.nps.edu/X3D-Edit'/>
<meta name='licensecontent=' ../../license.html'/>
</head>
<!-- -->
<Scene>
<WorldInfo info=' "The ExternProto nodes found in this file implement principles described in the paper"
"Linear Filters - Animating Objects in a Flexible and Pleasing Way"
"They have been proposed and added to the X3D standard in 2006."
"Webpage: "http://www.hersto.net/Followers" ""
"Please use the code in this file in any content or application you like"
"or modify it in any way."
""
"The code here works, however things like detecting when a transition has ended"
"and when the node can stop calculating and updating the output or secondary fields"
"like set_value or initial_destination are not yet implemented."
"Nevertheless, set_destination and value_changed do work."
title='Damper nodes'/>

<ProtoDeclare name='PositionChaser'>
<ProtoInterface>
<field name='value_changedtype='SFVec3faccessType='outputOnly'/>
<field name='set_valuetype='SFVec3faccessType='inputOnly'/>
<field name='creditstype='MFStringvalue=' "Initial idea and copyright by Herbert Stocker "http://www.hersto.net" ' accessType='initializeOnly'/>
<field name='isActivetype='SFBoolaccessType='outputOnly'/>
<field name='set_destinationtype='SFVec3faccessType='inputOnly'/>
<field name='durationtype='SFTimevalue='1.0accessType='initializeOnly'/>
<field name='initial_destinationtype='SFVec3fvalue='0.0 0.0 0.0accessType='initializeOnly'/>
<field name='initial_valuetype='SFVec3fvalue='0.0 0.0 0.0accessType='initializeOnly'/>
</ProtoInterface>
<ProtoBody>
<!-- ROUTE information for ScreenPositionDamper_PositionChaser node:  [from Tmer_PositionChaser.time to Tick ] -->
<Script DEF='ScreenPositionDamper_PositionChaser'>
<field name='Ticktype='SFTimeaccessType='inputOnly'/>
<field name='set_valuetype='SFVec3faccessType='inputOnly'/>
<field name='durationtype='SFTimeaccessType='initializeOnly'/>
<field name='Buffertype='MFVec3faccessType='initializeOnly'/>
<field name='bInitializedtype='SFBoolvalue='falseaccessType='initializeOnly'/>
<field name='BufferEndTimetype='SFTimevalue='0.0accessType='initializeOnly'/>
<field name='cNumSupportstype='SFInt32value='10accessType='initializeOnly'/>
<field name='set_destinationtype='SFVec3faccessType='inputOnly'/>
<field name='value_changedtype='SFVec3faccessType='outputOnly'/>
<field name='cStepTimetype='SFTimevalue='0.0accessType='initializeOnly'/>
<field name='previousValuetype='SFVec3fvalue='0.0 0.0 0.0accessType='initializeOnly'/>
<field name='initial_destinationtype='SFVec3faccessType='initializeOnly'/>
<field name='destinationtype='SFVec3fvalue='0.0 0.0 0.0accessType='initializeOnly'/>
<field name='isActivetype='SFBoolaccessType='outputOnly'/>
<field name='initial_valuetype='SFVec3faccessType='initializeOnly'/>
<IS>
<connect nodeField='set_valueprotoField='set_value'/>
<connect nodeField='durationprotoField='duration'/>
<connect nodeField='set_destinationprotoField='set_destination'/>
<connect nodeField='value_changedprotoField='value_changed'/>
<connect nodeField='initial_destinationprotoField='initial_destination'/>
<connect nodeField='isActiveprotoField='isActive'/>
<connect nodeField='initial_valueprotoField='initial_value'/>
</IS>
<![CDATA[
          
ecmascript:

function initialize()
{
    CheckInit();
}

function CheckInit()
{
    if(!bInitialized)
    {
        bInitialized= true;  // Init() may call other functions that call CheckInit(). In that case it's better the flag is already set, otherwise an endless loop would occur.
        Init();
    }
}

function Init()
{
    destination= initial_destination;

    Buffer.length= cNumSupports;

    Buffer[0]= initial_destination;
    for(var C= 1; C<Buffer.length; C++ )
        Buffer[C]= initial_value;

    previousValue= initial_value;

    cStepTime= duration / cNumSupports;
}

function set_destination(Dest, Now)
{
    CheckInit();

    destination= Dest;
    // Somehow we assign to Buffer[-1] and wait untill this gets shifted into the real buffer.
    // Would we assign to Buffer[0] instead, we'd have no delay, but this would create a jump in the
    // output because Buffer[0] is associated with a value in the past.

    UpdateBuffer(Now);
}

function Tick(Now)
{
    CheckInit();

    if(!BufferEndTime)
    {
        BufferEndTime= Now; // first event we received, so we are in the initialization phase.

        value_changed= initial_value;
        return;
    }

    var Frac= UpdateBuffer(Now);
    // Frac is a value in   0 <= Frac < 1.

    // Now we can calculate the output.
    // This means we calculate the delta between each entry in Buffer and its previous
    // entries, calculate the step response of each such step and add it to form the output.

    // The oldest vaule Buffer[Buffer.length - 1] needs some extra thought, because it has
    // no previous value. More exactly, we haven't stored a previous value anymore.
    // However, the step response of that missing previous value has already reached its
    // destination, so we can - would we have that previous value - use this as a start point
    // for adding the step responses.
    // Actually UpdateBuffer(.) maintains this value in

    var Output= previousValue;

    var DeltaIn= Buffer[Buffer.length - 1].subtract(previousValue);

    var DeltaOut= DeltaIn.multiply(StepResponse((Buffer.length - 1 + Frac) * cStepTime));

    Output= Output.add(DeltaOut);

    for(var C= Buffer.length - 2; C>=0; C-- )
    {
        var DeltaIn= Buffer[C].subtract(Buffer[C + 1]);

        var DeltaOut= DeltaIn.multiply(StepResponse((C + Frac) * cStepTime));

        Output= Output.add(DeltaOut);
    }
    if(Output != value_changed)
        value_changed= Output;
}

function UpdateBuffer(Now)
{
    var Frac= (Now - BufferEndTime) / cStepTime;
    // is normally < 1. When it has grown to be larger than 1, we have to shift the array because the step response
    // of the oldest entry has already reached its destination, and it's time for a newer entry.
    // has already reached it
    // In the case of a very low frame rate, or a very short cStepTime we may need to shift by more than one entry.

    if(Frac >= 1)
    {
        var NumToShift= Math.floor(Frac);
        Frac-= NumToShift;

        if(NumToShift < Buffer.length)
        {   // normal case.

            previousValue= Buffer[Buffer.length - NumToShift];

            for(var C= Buffer.length - 1; C>=NumToShift; C-- )
                Buffer[C]= Buffer[C - NumToShift];

            for(var C= 0; C<NumToShift; C++ )
            {
                // Hmm, we have a destination value, but don't know how it has
                // reached the current state.
                // Therefore we do a linear interpolation from the latest value in the buffer to destination.

                var Alpha= C / NumToShift;

                Buffer[C]= Buffer[NumToShift].multiply(Alpha).add(destination.multiply((1 - Alpha)));
            }
        }else
        {
            // degenerated case:
            //
            // We have a _VERY_ low frame rate...
            // we can only guess how we should fill the array.
            // Maybe we could write part of a linear interpolation
            // from Buffer[0] to destination, that goes from BufferEndTime to Now
            // (possibly only the end of the interpolation is to be written),
            // but if we rech here we are in a very degenerate case...
            // Thus we just write destination to the buffer.

            previousValue= NumToShift == Buffer.length? Buffer[0] : destination;

            for(var C= 0; C<Buffer.length; C++ )
                Buffer[C]= destination;
        }

        BufferEndTime+= NumToShift * cStepTime;
    }
    return Frac;
}

function StepResponse(t)
{
    if(t < 0)
        return 0;

    if(t > duration)
        return 1;

    // When optimizing for speed, the above two if(.) cases can be omitted,
    // as this funciton will not be called for values outside of 0..duration.

    return StepResponseCore(t / duration);
}

// This function defines the shape of how the output responds to the input.
// It must accept values for T in the range 0 <= T <= 1.
// In order to create a smooth animation, it should return 0 for T == 0,
// 1 for T == 1 and be sufficient smooth in the range 0 <= T <= 1.

// It should be optimized for speed, in order for high performance. It's
// executed Buffer.length + 1 times each simulation tick.

function StepResponseCore(T)
{
    return .5 - .5 * Math.cos(T * Math.PI);
}

// The following functions are not used. They provide other responses (for fun).
function StepResponseCoreF(T)
{
    var cTau= .3;
    var cFrequency= 2.5;
    return 1 - Math.cos(T * 2 * Math.PI * cFrequency) * Math.exp(-T / cTau) * (1 - T);
//      return 1 - Math.cos(T * 2 * Math.PI * cFrequency) * Math.exp(-T / cTau) * (1 - T) * (1 - T);
//      return 1 - Math.cos(T * 2 * Math.PI * cFrequency) * Math.exp(-T / cTau) * (.5 + .5 * Math.cos(T * Math.PI));
//      return 1 - Math.cos(T * 2 * Math.PI * cFrequency) * Math.exp(-T / cTau) * (.5 + .5 * Math.cos(T * Math.PI))* (.5 + .5 * Math.cos(T * Math.PI));
}


function StepResponseCoreE(T)
{
    var A= .5 - .5 * Math.cos(T * Math.PI);

    var cFrequency= 2.5;
    var B= 1 - Math.cos(T * 2 * Math.PI * cFrequency) * Math.sin(Math.sqrt(1 - T) * Math.PI/2);

    return A * .8 + B * .2;
}


function StepResponseCoreD(T)
{
    var A= .5 - .5 * Math.cos(T * Math.PI);

    var cFrequency= 2.5;
    var B= 1 - Math.cos(T * 2 * Math.PI * cFrequency) * Math.sin((1 - T) * Math.PI/2);

    return A * .8 + B * .2;
}

function StepResponseCoreC(T)
{
    var A= .5 - .5 * Math.cos(T * Math.PI);

    var cTau= .3;
    var cFrequency= 5;
    var B= 1 - Math.cos(T * 2 * Math.PI * cFrequency) * Math.exp(-T / cTau) * (1 - T);

    return A * .8 + B * .2;
}

function StepResponseCoreB(T)
{
    var A= .5 - .5 * Math.cos(T * Math.PI);

    var cTau= .3;
    var cFrequency= 5;
    var B= 1 - Math.cos(T * 2 * Math.PI * cFrequency) /** Math.exp(-T / cTau)*/ * (1 - T);

    return A * .8 + B * .2;
}
function StepResponseCoreA(T)
{
    var A= .5 - .5 * Math.cos(T * Math.PI);

    var cTau= .3;
    var cFrequency= 5;
    var B= 1 - Math.cos(T * 2 * Math.PI * cFrequency) /** Math.exp(-T / cTau)*/ * (1 - T);

    var Alpha= .2 * T;
    return A * (1 - Alpha) + B * Alpha;
}

        
]]>
</Script>
<!-- ROUTE information for Tmer_PositionChaser node:  [from time to ScreenPositionDamper_PositionChaser.Tick ] -->
<TimeSensor DEF='Tmer_PositionChaserloop='true'/>

< ROUTE  fromNode=' Tmer_PositionChaser' fromField='time' toNode=' ScreenPositionDamper_PositionChaser' toField='Tick'/>
</ProtoBody>
</ProtoDeclare>
<ProtoDeclare name='OrientationChaser'>
<ProtoInterface>
<field name='value_changedtype='SFRotationaccessType='outputOnly'/>
<field name='set_valuetype='SFRotationaccessType='inputOnly'/>
<field name='creditstype='MFStringvalue=' "Initial idea and copyright by Herbert Stocker "http://www.hersto.net/" ' accessType='initializeOnly'/>
<field name='isActivetype='SFBoolaccessType='outputOnly'/>
<field name='set_destinationtype='SFRotationaccessType='inputOnly'/>
<field name='durationtype='SFTimevalue='1.0accessType='initializeOnly'/>
<field name='initial_destinationtype='SFRotationvalue='0.0 0.0 1.0 0.0accessType='initializeOnly'/>
<field name='initial_valuetype='SFRotationvalue='0.0 0.0 1.0 0.0accessType='initializeOnly'/>
</ProtoInterface>
<ProtoBody>
<!-- ROUTE information for ScreenPositionDamper_OrientationChaser node:  [from Tmer_OrientationChaser.time to Tick ] -->
<Script DEF='ScreenPositionDamper_OrientationChaser'>
<field name='Ticktype='SFTimeaccessType='inputOnly'/>
<field name='set_valuetype='SFRotationaccessType='inputOnly'/>
<field name='durationtype='SFTimeaccessType='initializeOnly'/>
<field name='Buffertype='MFRotationaccessType='initializeOnly'/>
<field name='bInitializedtype='SFBoolvalue='falseaccessType='initializeOnly'/>
<field name='BufferEndTimetype='SFTimevalue='0.0accessType='initializeOnly'/>
<field name='cNumSupportstype='SFInt32value='10accessType='initializeOnly'/>
<field name='set_destinationtype='SFRotationaccessType='inputOnly'/>
<field name='value_changedtype='SFRotationaccessType='outputOnly'/>
<field name='cStepTimetype='SFTimevalue='0.0accessType='initializeOnly'/>
<field name='previousValuetype='SFRotationvalue='0.0 0.0 1.0 0.0accessType='initializeOnly'/>
<field name='initial_destinationtype='SFRotationaccessType='initializeOnly'/>
<field name='destinationtype='SFRotationvalue='0.0 0.0 1.0 0.0accessType='initializeOnly'/>
<field name='isActivetype='SFBoolaccessType='outputOnly'/>
<field name='initial_valuetype='SFRotationaccessType='initializeOnly'/>
<IS>
<connect nodeField='set_valueprotoField='set_value'/>
<connect nodeField='durationprotoField='duration'/>
<connect nodeField='set_destinationprotoField='set_destination'/>
<connect nodeField='value_changedprotoField='value_changed'/>
<connect nodeField='initial_destinationprotoField='initial_destination'/>
<connect nodeField='isActiveprotoField='isActive'/>
<connect nodeField='initial_valueprotoField='initial_value'/>
</IS>
<![CDATA[
          
ecmascript:

function initialize()
{
    CheckInit();
}

function CheckInit()
{
    if(!bInitialized)
    {
        bInitialized= true;  // Init() may call other functions that call CheckInit(). In that case it's better the flag is already set, otherwise an endless loop would occur.
        Init();
    }
}

function Init()
{
    destination= initial_destination;

    Buffer.length= cNumSupports;

    Buffer[0]= initial_destination;
    for(var C= 1; C<Buffer.length; C++ )
        Buffer[C]= initial_value;

    previousValue= initial_value;

    cStepTime= duration / cNumSupports;
}

function set_destination(Dest, Now)
{
    CheckInit();

    destination= Dest;
    // Somehow we assign to Buffer[-1] and wait untill this gets shifted into the real buffer.
    // Would we assign to Buffer[0] instead, we'd have no delay, but this would create a jump in the
    // output because Buffer[0] is associated with a value in the past.

    UpdateBuffer(Now);
}

function Tick(Now)
{
    CheckInit();

    if(!BufferEndTime)
    {
        BufferEndTime= Now; // first event we received, so we are in the initialization phase.

        value_changed= initial_value;
        return;
    }

    var Frac= UpdateBuffer(Now);
    // Frac is a value in   0 <= Frac < 1.

    // Now we can calculate the output.
    // This means we calculate the delta between each entry in Buffer and its previous
    // entries, calculate the step response of each such step and add it to form the output.

    // The oldest vaule Buffer[Buffer.length - 1] needs some extra thought, because it has
    // no previous value. More exactly, we haven't stored a previous value anymore.
    // However, the step response of that missing previous value has already reached its
    // destination, so we can - would we have that previous value - use this as a start point
    // for adding the step responses.
    // Actually UpdateBuffer(.) maintains this value in

    var Output= previousValue;

    var DeltaIn= previousValue.inverse().multiply(Buffer[Buffer.length - 1]);

    Output= Output.slerp(Output.multiply(DeltaIn), StepResponse((Buffer.length - 1 + Frac) * cStepTime));

    for(var C= Buffer.length - 2; C>=0; C-- )
    {
        var DeltaIn= Buffer[C + 1].inverse().multiply(Buffer[C]);

        Output= Output.slerp(Output.multiply(DeltaIn), StepResponse((C + Frac) * cStepTime));
    }


    if(Output != value_changed)
        value_changed= Output;
}

function UpdateBuffer(Now)
{
    var Frac= (Now - BufferEndTime) / cStepTime;
    // is normally < 1. When it has grown to be larger than 1, we have to shift the array because the step response
    // of the oldest entry has already reached its destination, and it's time for a newer entry.
    // has already reached it
    // In the case of a very low frame rate, or a very short cStepTime we may need to shift by more than one entry.

    if(Frac >= 1)
    {
        var NumToShift= Math.floor(Frac);
        Frac-= NumToShift;

        if(NumToShift < Buffer.length)
        {   // normal case.

            previousValue= Buffer[Buffer.length - NumToShift];

            for(var C= Buffer.length - 1; C>=NumToShift; C-- )
                Buffer[C]= Buffer[C - NumToShift];

            for(var C= 0; C<NumToShift; C++ )
            {
                // Hmm, we have a destination value, but don't know how it has
                // reached the current state.
                // Therefore we do a linear interpolation from the latest value in the buffer to destination.

                Buffer[C]= destination.slerp(Buffer[NumToShift], C / NumToShift);
            }
        }else
        {
            // degenerated case:
            //
            // We have a _VERY_ low frame rate...
            // we can only guess how we should fill the array.
            // Maybe we could write part of a linear interpolation
            // from Buffer[0] to destination, that goes from BufferEndTime to Now
            // (possibly only the end of the interpolation is to be written),
            // but if we rech here we are in a very degenerate case...
            // Thus we just write destination to the buffer.

            previousValue= NumToShift == Buffer.length? Buffer[0] : destination;

            for(var C= 0; C<Buffer.length; C++ )
                Buffer[C]= destination;
        }
        BufferEndTime+= NumToShift * cStepTime;
    }

return Frac;
}

function StepResponse(t)
{
    if(t < 0)
        return 0;

    if(t > duration)
        return 1;

    // When optimizing for speed, the above two if(.) cases can be omitted,
    // as this funciton will not be called for values outside of 0..duration.

     return StepResponseCore(t / duration);
}

// This function defines the shape of how the output responds to the input.
// It must accept values for T in the range 0 <= T <= 1.
// In order to create a smooth animation, it should return 0 for T == 0,
// 1 for T == 1 and be sufficient smooth in the range 0 <= T <= 1.

// It should be optimized for speed, in order for high performance. It's
// executed Buffer.length + 1 times each simulation tick.

function StepResponseCore(T)
{
    return .5 - .5 * Math.cos(T * Math.PI);
}

// The following functions are not used. They provide other responses (for fun).

function StepResponseCoreG(T)
{
    var cTau= .3;
    var cFrequency= 5;
    return 1 - Math.cos(T * 2 * Math.PI * cFrequency) * Math.exp(-T / cTau) * (.5 + .5 * Math.cos(T * Math.PI));
}

function StepResponseCoreF(T)
{
    var cTau= .3;
    var cFrequency= 2.5;
//      return 1 - Math.cos(T * 2 * Math.PI * cFrequency) * Math.exp(-T / cTau) * (1 - T);
//      return 1 - Math.cos(T * 2 * Math.PI * cFrequency) * Math.exp(-T / cTau) * (1 - T) * (1 - T);
//      return 1 - Math.cos(T * 2 * Math.PI * cFrequency) * Math.exp(-T / cTau) * (.5 + .5 * Math.cos(T * Math.PI));
//      return 1 - Math.cos(T * 2 * Math.PI * cFrequency) * Math.exp(-T / cTau) * (.5 + .5 * Math.cos(T * Math.PI))* (.5 + .5 * Math.cos(T * Math.PI));
}

function StepResponseCoreE(T)
{
    var A= .5 - .5 * Math.cos(T * Math.PI);

    var cFrequency= 2.5;
    var B= 1 - Math.cos(T * 2 * Math.PI * cFrequency) * Math.sin(Math.sqrt(1 - T) * Math.PI/2);

    return A * .8 + B * .2;
}

function StepResponseCoreD(T)
{
    var A= .5 - .5 * Math.cos(T * Math.PI);

    var cFrequency= 2.5;
    var B= 1 - Math.cos(T * 2 * Math.PI * cFrequency) * Math.sin((1 - T) * Math.PI/2);

    return A * .8 + B * .2;
}

function StepResponseCoreC(T)
{
    var A= .5 - .5 * Math.cos(T * Math.PI);

    var cTau= .3;
    var cFrequency= 5;
    var B= 1 - Math.cos(T * 2 * Math.PI * cFrequency) * Math.exp(-T / cTau) * (1 - T);

    return A * .8 + B * .2;
}

function StepResponseCoreB(T)
{
    var A= .5 - .5 * Math.cos(T * Math.PI);

    var cTau= .3;
    var cFrequency= 5;
    var B= 1 - Math.cos(T * 2 * Math.PI * cFrequency) /** Math.exp(-T / cTau)*/ * (1 - T);

    return A * .8 + B * .2;
}

function StepResponseCoreA(T)
{
    var A= .5 - .5 * Math.cos(T * Math.PI);
    var cTau= .3;
    var cFrequency= 5;
    var B= 1 - Math.cos(T * 2 * Math.PI * cFrequency) /** Math.exp(-T / cTau)*/ * (1 - T);
    var Alpha= .2 * T;
    return A * (1 - Alpha) + B * Alpha;
}

        
]]>
</Script>
<!-- ROUTE information for Tmer_OrientationChaser node:  [from time to ScreenPositionDamper_OrientationChaser.Tick ] -->
<TimeSensor DEF='Tmer_OrientationChaserloop='true'/>

< ROUTE  fromNode=' Tmer_OrientationChaser' fromField='time' toNode=' ScreenPositionDamper_OrientationChaser' toField='Tick'/>
</ProtoBody>
</ProtoDeclare>
<ProtoDeclare name='Position2fChaser'>
<ProtoInterface>
<field name='value_changedtype='SFVec2faccessType='outputOnly'/>
<field name='set_valuetype='SFVec2faccessType='inputOnly'/>
<field name='creditstype='MFStringvalue=' "Initial idea and copyright by Herbert Stocker "http://www.hersto.net/" ' accessType='initializeOnly'/>
<field name='isActivetype='SFBoolaccessType='outputOnly'/>
<field name='set_destinationtype='SFVec2faccessType='inputOnly'/>
<field name='durationtype='SFTimevalue='1.0accessType='initializeOnly'/>
<field name='initial_destinationtype='SFVec2fvalue='0.0 0.0accessType='initializeOnly'/>
<field name='initial_valuetype='SFVec2fvalue='0.0 0.0accessType='initializeOnly'/>
</ProtoInterface>
<ProtoBody>
<!-- ROUTE information for ScreenPositionDamper_Position2fChaser node:  [from Tmer_Position2fChaser.time to Tick ] -->
<Script DEF='ScreenPositionDamper_Position2fChaser'>
<field name='Ticktype='SFTimeaccessType='inputOnly'/>
<field name='set_valuetype='SFVec2faccessType='inputOnly'/>
<field name='durationtype='SFTimeaccessType='initializeOnly'/>
<field name='Buffertype='MFVec2faccessType='initializeOnly'/>
<field name='bInitializedtype='SFBoolvalue='falseaccessType='initializeOnly'/>
<field name='BufferEndTimetype='SFTimevalue='0.0accessType='initializeOnly'/>
<field name='cNumSupportstype='SFInt32value='10accessType='initializeOnly'/>
<field name='set_destinationtype='SFVec2faccessType='inputOnly'/>
<field name='value_changedtype='SFVec2faccessType='outputOnly'/>
<field name='cStepTimetype='SFTimevalue='0.0accessType='initializeOnly'/>
<field name='previousValuetype='SFVec2fvalue='0.0 0.0accessType='initializeOnly'/>
<field name='initial_destinationtype='SFVec2faccessType='initializeOnly'/>
<field name='destinationtype='SFVec2fvalue='0.0 0.0accessType='initializeOnly'/>
<field name='isActivetype='SFBoolaccessType='outputOnly'/>
<field name='initial_valuetype='SFVec2faccessType='initializeOnly'/>
<IS>
<connect nodeField='set_valueprotoField='set_value'/>
<connect nodeField='durationprotoField='duration'/>
<connect nodeField='set_destinationprotoField='set_destination'/>
<connect nodeField='value_changedprotoField='value_changed'/>
<connect nodeField='initial_destinationprotoField='initial_destination'/>
<connect nodeField='isActiveprotoField='isActive'/>
<connect nodeField='initial_valueprotoField='initial_value'/>
</IS>
<![CDATA[
          
ecmascript:

function initialize()
{
    CheckInit();
}

function CheckInit()
{
    if(!bInitialized)
    {
        bInitialized= true;  // Init() may call other functions that call CheckInit(). In that case it's better the flag is already set, otherwise an endless loop would occur.
        Init();
    }
}

function Init()
{
    destination= initial_destination;

    Buffer.length= cNumSupports;

    Buffer[0]= initial_destination;
    for(var C= 1; C<Buffer.length; C++ )
        Buffer[C]= initial_value;

    previousValue= initial_value;

    cStepTime= duration / cNumSupports;
}

function set_destination(Dest, Now)
{
    CheckInit();

    destination= Dest;
    // Somehow we assign to Buffer[-1] and wait untill this gets shifted into the real buffer.
    // Would we assign to Buffer[0] instead, we'd have no delay, but this would create a jump in the
    // output because Buffer[0] is associated with a value in the past.

    UpdateBuffer(Now);
}

function Tick(Now)
{
    CheckInit();

    if(!BufferEndTime)
    {
        BufferEndTime= Now; // first event we received, so we are in the initialization phase.

        value_changed= initial_value;
        return;
    }

    var Frac= UpdateBuffer(Now);
    // Frac is a value in   0 <= Frac < 1.

    // Now we can calculate the output.
    // This means we calculate the delta between each entry in Buffer and its previous
    // entries, calculate the step response of each such step and add it to form the output.

    // The oldest vaule Buffer[Buffer.length - 1] needs some extra thought, because it has
    // no previous value. More exactly, we haven't stored a previous value anymore.
    // However, the step response of that missing previous value has already reached its
    // destination, so we can - would we have that previous value - use this as a start point
    // for adding the step responses.
    // Actually UpdateBuffer(.) maintains this value in

    var Output= previousValue;

    var DeltaIn= Buffer[Buffer.length - 1].subtract(previousValue);

    var DeltaOut= DeltaIn.multiply(StepResponse((Buffer.length - 1 + Frac) * cStepTime));

    Output= Output.add(DeltaOut);

    for(var C= Buffer.length - 2; C>=0; C-- )
    {
        var DeltaIn= Buffer[C].subtract(Buffer[C + 1]);

        var DeltaOut= DeltaIn.multiply(StepResponse((C + Frac) * cStepTime));

        Output= Output.add(DeltaOut);
    }


    if(Output != value_changed)
        value_changed= Output;
}

function UpdateBuffer(Now)
{
    var Frac= (Now - BufferEndTime) / cStepTime;
    // is normally < 1. When it has grown to be larger than 1, we have to shift the array because the step response
    // of the oldest entry has already reached its destination, and it's time for a newer entry.
    // has already reached it
    // In the case of a very low frame rate, or a very short cStepTime we may need to shift by more than one entry.

    if(Frac >= 1)
    {
        var NumToShift= Math.floor(Frac);
        Frac-= NumToShift;

        if(NumToShift < Buffer.length)
        {   // normal case.

            previousValue= Buffer[Buffer.length - NumToShift];

            for(var C= Buffer.length - 1; C>=NumToShift; C-- )
                Buffer[C]= Buffer[C - NumToShift];

            for(var C= 0; C<NumToShift; C++ )
            {
                // Hmm, we have a destination value, but don't know how it has
                // reached the current state.
                // Therefore we do a linear interpolation from the latest value in the buffer to destination.

                var Alpha= C / NumToShift;

                Buffer[C]= Buffer[NumToShift].multiply(Alpha).add(destination.multiply((1 - Alpha)));
            }
        }else
        {
            // degenerated case:
            //
            // We have a _VERY_ low frame rate...
            // we can only guess how we should fill the array.
            // Maybe we could write part of a linear interpolation
            // from Buffer[0] to destination, that goes from BufferEndTime to Now
            // (possibly only the end of the interpolation is to be written),
            // but if we rech here we are in a very degenerate case...
            // Thus we just write destination to the buffer.

            previousValue= NumToShift == Buffer.length? Buffer[0] : destination;

            for(var C= 0; C<Buffer.length; C++ )
                Buffer[C]= destination;
        }

        BufferEndTime+= NumToShift * cStepTime;
    }

return Frac;
}



function StepResponse(t)
{
    if(t < 0)
return 0;

    if(t > duration)
return 1;

    // When optimizing for speed, the above two if(.) cases can be omitted,
    // as this funciton will not be called for values outside of 0..duration.

return StepResponseCore(t / duration);
}


// This function defines the shape of how the output responds to the input.
// It must accept values for T in the range 0 <= T <= 1.
// In order to create a smooth animation, it should return 0 for T == 0,
// 1 for T == 1 and be sufficient smooth in the range 0 <= T <= 1.

// It should be optimized for speed, in order for high performance. It's
// executed Buffer.length + 1 times each simulation tick.
function StepResponseCore(T)
{
return .5 - .5 * Math.cos(T * Math.PI);
}


// The following functions are not used. They provide other responses (for fun).
function StepResponseCoreF(T)
{
    var cTau= .3;
    var cFrequency= 2.5;
return 1 - Math.cos(T * 2 * Math.PI * cFrequency) * Math.exp(-T / cTau) * (1 - T);
//      return 1 - Math.cos(T * 2 * Math.PI * cFrequency) * Math.exp(-T / cTau) * (1 - T) * (1 - T);
//      return 1 - Math.cos(T * 2 * Math.PI * cFrequency) * Math.exp(-T / cTau) * (.5 + .5 * Math.cos(T * Math.PI));
//      return 1 - Math.cos(T * 2 * Math.PI * cFrequency) * Math.exp(-T / cTau) * (.5 + .5 * Math.cos(T * Math.PI))* (.5 + .5 * Math.cos(T * Math.PI));
}

function StepResponseCoreE(T)
{
    var A= .5 - .5 * Math.cos(T * Math.PI);

  var cFrequency= 2.5;
    var B= 1 - Math.cos(T * 2 * Math.PI * cFrequency) * Math.sin(Math.sqrt(1 - T) * Math.PI/2);

return A * .8 + B * .2;
}

function StepResponseCoreD(T)
{
    var A= .5 - .5 * Math.cos(T * Math.PI);

  var cFrequency= 2.5;
    var B= 1 - Math.cos(T * 2 * Math.PI * cFrequency) * Math.sin((1 - T) * Math.PI/2);

return A * .8 + B * .2;
}

function StepResponseCoreC(T)
{
    var A= .5 - .5 * Math.cos(T * Math.PI);

  var cTau= .3;
  var cFrequency= 5;
    var B= 1 - Math.cos(T * 2 * Math.PI * cFrequency) * Math.exp(-T / cTau) * (1 - T);

return A * .8 + B * .2;
}

function StepResponseCoreB(T)
{
    var A= .5 - .5 * Math.cos(T * Math.PI);

  var cTau= .3;
  var cFrequency= 5;
    var B= 1 - Math.cos(T * 2 * Math.PI * cFrequency) /** Math.exp(-T / cTau)*/ * (1 - T);

return A * .8 + B * .2;
}

function StepResponseCoreA(T)
{
    var A= .5 - .5 * Math.cos(T * Math.PI);

  var cTau= .3;
  var cFrequency= 5;
    var B= 1 - Math.cos(T * 2 * Math.PI * cFrequency) /** Math.exp(-T / cTau)*/ * (1 - T);

    var Alpha= .2 * T;
return A * (1 - Alpha) + B * Alpha;
}

        
]]>
</Script>
<!-- ROUTE information for Tmer_Position2fChaser node:  [from time to ScreenPositionDamper_Position2fChaser.Tick ] -->
<TimeSensor DEF='Tmer_Position2fChaserloop='true'/>

< ROUTE  fromNode=' Tmer_Position2fChaser' fromField='time' toNode=' ScreenPositionDamper_Position2fChaser' toField='Tick'/>
</ProtoBody>
</ProtoDeclare>
<ProtoDeclare name='PlacementChaser'>
<ProtoInterface>
<field name='isLoadedtype='SFBoolaccessType='outputOnly'/>
<field name='set_valuePostype='SFVec3faccessType='inputOnly'/>
<field name='set_valueOritype='SFRotationaccessType='inputOnly'/>
<field name='set_destinationPostype='SFVec3faccessType='inputOnly'/>
<field name='creditstype='MFStringvalue=' "Initial idea and copyright by Herbert Stocker "http://www.hersto.net/" ' accessType='initializeOnly'/>
<field name='durationtype='SFTimevalue='1.0accessType='initializeOnly'/>
<field name='set_destinationOritype='SFRotationaccessType='inputOnly'/>
<field name='initial_valuePostype='SFVec3fvalue='0.0 0.0 0.0accessType='initializeOnly'/>
<field name='initial_destinationPostype='SFVec3fvalue='0.0 0.0 0.0accessType='initializeOnly'/>
<field name='valuePos_changedtype='SFVec3faccessType='outputOnly'/>
<field name='initial_valueOritype='SFRotationvalue='0.0 0.0 1.0 0.0accessType='initializeOnly'/>
<field name='initial_destinationOritype='SFRotationvalue='0.0 0.0 1.0 0.0accessType='initializeOnly'/>
<field name='valueOri_changedtype='SFRotationaccessType='outputOnly'/>
<field name='isActivetype='SFBoolaccessType='outputOnly'/>
</ProtoInterface>
<ProtoBody>
<!-- ROUTE information for ScreenPositionDamper_PlacementChaser node:  [from Tmer_PlacementChaser.time to Tick ] -->
<Script DEF='ScreenPositionDamper_PlacementChaser'>
<field name='previousValueOritype='SFRotationvalue='0.0 0.0 1.0 0.0accessType='initializeOnly'/>
<field name='Ticktype='SFTimeaccessType='inputOnly'/>
<field name='durationtype='SFTimeaccessType='initializeOnly'/>
<field name='set_destinationOritype='SFRotationaccessType='inputOnly'/>
<field name='bInitializedtype='SFBoolvalue='falseaccessType='initializeOnly'/>
<field name='set_valueOritype='SFRotationaccessType='inputOnly'/>
<field name='previousValuePostype='SFVec3fvalue='0.0 0.0 0.0accessType='initializeOnly'/>
<field name='destinationOritype='SFRotationvalue='0.0 0.0 1.0 0.0accessType='initializeOnly'/>
<field name='initial_valueOritype='SFRotationaccessType='initializeOnly'/>
<field name='set_destinationPostype='SFVec3faccessType='inputOnly'/>
<field name='BufferEndTimetype='SFTimevalue='0.0accessType='initializeOnly'/>
<field name='cNumSupportstype='SFInt32value='10accessType='initializeOnly'/>
<field name='set_valuePostype='SFVec3faccessType='inputOnly'/>
<field name='cStepTimetype='SFTimevalue='0.0accessType='initializeOnly'/>
<field name='initial_destinationOritype='SFRotationaccessType='initializeOnly'/>
<field name='BufferOritype='MFRotationaccessType='initializeOnly'/>
<field name='destinationPostype='SFVec3fvalue='0.0 0.0 0.0accessType='initializeOnly'/>
<field name='initial_valuePostype='SFVec3faccessType='initializeOnly'/>
<field name='valuePos_changedtype='SFVec3faccessType='outputOnly'/>
<field name='isActivetype='SFBoolaccessType='outputOnly'/>
<field name='initial_destinationPostype='SFVec3faccessType='initializeOnly'/>
<field name='valueOri_changedtype='SFRotationaccessType='outputOnly'/>
<field name='BufferPostype='MFVec3faccessType='initializeOnly'/>
<IS>
<connect nodeField='durationprotoField='duration'/>
<connect nodeField='set_destinationOriprotoField='set_destinationOri'/>
<connect nodeField='set_valueOriprotoField='set_valueOri'/>
<connect nodeField='initial_valueOriprotoField='initial_valueOri'/>
<connect nodeField='set_destinationPosprotoField='set_destinationPos'/>
<connect nodeField='set_valuePosprotoField='set_valuePos'/>
<connect nodeField='initial_destinationOriprotoField='initial_destinationOri'/>
<connect nodeField='initial_valuePosprotoField='initial_valuePos'/>
<connect nodeField='valuePos_changedprotoField='valuePos_changed'/>
<connect nodeField='isActiveprotoField='isActive'/>
<connect nodeField='initial_destinationPosprotoField='initial_destinationPos'/>
<connect nodeField='valueOri_changedprotoField='valueOri_changed'/>
</IS>
<![CDATA[
          
ecmascript:

function initialize()
{
    CheckInit();
}

function CheckInit()
{
    if(!bInitialized)
    {
        bInitialized= true;  // Init() may call other functions that call CheckInit(). In that case it's better the flag is already set, otherwise an endless loop would occur.
        Init();
    }
}
function Init()
{
    destinationPos= initial_destinationPos;
    destinationOri= initial_destinationOri;

    BufferPos.length=
    BufferOri.length= cNumSupports;

    BufferPos[0]= initial_destinationPos;
    BufferOri[0]= initial_destinationOri;
    for(var C= 1; C<BufferPos.length; C++ )
    {
        BufferPos[C]= initial_valuePos;
        BufferOri[C]= initial_valueOri;
    }

    previousValuePos= initial_valuePos;
    previousValueOri= initial_valueOri;

    cStepTime= duration / cNumSupports;
}
function set_destinationPos(Dest, Now)
{
    CheckInit();

    destinationPos= Dest;
    // Somehow we assign to Buffer[-1] and wait untill this gets shifted into the real buffer.
    // Would we assign to Buffer[0] instead, we'd have no delay, but this would create a jump in the
    // output because Buffer[0] is associated with a value in the past.

    //UpdateBuffer(Now);
}

function set_destinationOri(Dest, Now)
{
    CheckInit();

    destinationOri= Dest;
    // Somehow we assign to Buffer[-1] and wait untill this gets shifted into the real buffer.
    // Would we assign to Buffer[0] instead, we'd have no delay, but this would create a jump in the
    // output because Buffer[0] is associated with a value in the past.

    //UpdateBuffer(Now);
}
function Tick(Now)
{
    CheckInit();

    if(!BufferEndTime)
    {
        BufferEndTime= Now; // first event we received, so we are in the initialization phase.

        valuePos_changed= initial_valuePos;
        valueOri_changed= initial_valueOri;
        return;
    }

    var Frac= UpdateBuffer(Now);
    // Frac is a value in   0 <= Frac < 1.

    // Now we can calculate the output.
    // This means we calculate the delta between each entry in Buffer and its previous
    // entries, calculate the step response of each such step and add it to form the output.

    // The oldest vaule Buffer[Buffer.length - 1] needs some extra thought, because it has
    // no previous value. More exactly, we haven't stored a previous value anymore.
    // However, the step response of that missing previous value has already reached its
    // destination, so we can - would we have that previous value - use this as a start point
    // for adding the step responses.
    // Actually UpdateBuffer(.) maintains this value in

    var OutputPos= previousValuePos;
    var OutputOri= previousValueOri;

    var DeltaInPos= BufferPos[BufferPos.length - 1].subtract(previousValuePos);
    var DeltaInOri= previousValueOri.inverse().multiply(BufferOri[BufferOri.length - 1]);

    var DeltaOutPos= DeltaInPos.multiply(StepResponse((BufferPos.length - 1 + Frac) * cStepTime));

    OutputPos= OutputPos.add(DeltaOutPos);
    OutputOri= OutputOri.slerp(OutputOri.multiply(DeltaInOri), StepResponse((BufferOri.length - 1 + Frac) * cStepTime));

    for(var C= BufferPos.length - 2; C>=0; C-- )
    {
        var DeltaInPos= BufferPos[C].subtract(BufferPos[C + 1]);
        var DeltaInOri= BufferOri[C + 1].inverse().multiply(BufferOri[C]);

        var DeltaOutPos= DeltaInPos.multiply(StepResponse((C + Frac) * cStepTime));

        OutputPos= OutputPos.add(DeltaOutPos);
        OutputOri= OutputOri.slerp(OutputOri.multiply(DeltaInOri), StepResponse((C + Frac) * cStepTime));
    }
    if(OutputPos != valuePos_changed)
        valuePos_changed= OutputPos;

    if(OutputOri != valueOri_changed)
        valueOri_changed= OutputOri;
}
function UpdateBuffer(Now)
{
    var Frac= (Now - BufferEndTime) / cStepTime;
    // is normally < 1. When it has grown to be larger than 1, we have to shift the array because the step response
    // of the oldest entry has already reached its destination, and it's time for a newer entry.
    // has already reached it
    // In the case of a very low frame rate, or a very short cStepTime we may need to shift by more than one entry.

    if(Frac >= 1)
    {
        var NumToShift= Math.floor(Frac);
        Frac-= NumToShift;

        if(NumToShift < BufferPos.length)
        {   // normal case.

            previousValuePos= BufferPos[BufferPos.length - NumToShift];
            previousValueOri= BufferOri[BufferOri.length - NumToShift];

            for(var C= BufferPos.length - 1; C>=NumToShift; C-- )
            {
                BufferPos[C]= BufferPos[C - NumToShift];
                BufferOri[C]= BufferOri[C - NumToShift];
            }

            for(var C= 0; C<NumToShift; C++ )
            {
                // Hmm, we have a destination value, but don't know how it has
                // reached the current state.
                // Therefore we do a linear interpolation from the latest value in the buffer to destination.

                var Alpha= C / NumToShift;

                BufferPos[C]= BufferPos[NumToShift].multiply(Alpha).add(destinationPos.multiply((1 - Alpha)));
                BufferOri[C]= destinationOri.slerp(BufferOri[NumToShift], Alpha);
            }
        }else
        {
            // degenerated case:
            //
            // We have a _VERY_ low frame rate...
            // we can only guess how we should fill the array.
            // Maybe we could write part of a linear interpolation
            // from Buffer[0] to destination, that goes from BufferEndTime to Now
            // (possibly only the end of the interpolation is to be written),
            // but if we rech here we are in a very degenerate case...
            // Thus we just write destination to the buffer.

            previousValuePos= NumToShift == BufferPos.length? BufferPos[0] : destinationPos;
            previousValueOri= NumToShift == BufferOri.length? BufferOri[0] : destinationOri;

            for(var C= 0; C<BufferPos.length; C++ )
            {
                BufferPos[C]= destinationPos;
                BufferOri[C]= destinationOri;
            }
        }
        BufferEndTime+= NumToShift * cStepTime;
    }
    return Frac;
}
function StepResponse(t)
{
    if(t < 0)
        return 0;

    if(t > duration)
        return 1;

    // When optimizing for speed, the above two if(.) cases can be omitted,
    // as this funciton will not be called for values outside of 0..duration.

    return StepResponseCore(t / duration);
}


// This function defines the shape of how the output responds to the input.
// It must accept values for T in the range 0 <= T <= 1.
// In order to create a smooth animation, it should return 0 for T == 0,
// 1 for T == 1 and be sufficient smooth in the range 0 <= T <= 1.

// It should be optimized for speed, in order for high performance. It's
// executed Buffer.length + 1 times each simulation tick.
function StepResponseCore(T)
{
    return .5 - .5 * Math.cos(T * Math.PI);
}

// The following functions are not used. They provide other responses (for fun).
function StepResponseCoreF(T)
{
    var cTau= .3;
    var cFrequency= 2.5;
    return 1 - Math.cos(T * 2 * Math.PI * cFrequency) * Math.exp(-T / cTau) * (1 - T);
//      return 1 - Math.cos(T * 2 * Math.PI * cFrequency) * Math.exp(-T / cTau) * (1 - T) * (1 - T);
//      return 1 - Math.cos(T * 2 * Math.PI * cFrequency) * Math.exp(-T / cTau) * (.5 + .5 * Math.cos(T * Math.PI));
//      return 1 - Math.cos(T * 2 * Math.PI * cFrequency) * Math.exp(-T / cTau) * (.5 + .5 * Math.cos(T * Math.PI))* (.5 + .5 * Math.cos(T * Math.PI));
}
function StepResponseCoreE(T)
{
    var A= .5 - .5 * Math.cos(T * Math.PI);

    var cFrequency= 2.5;
    var B= 1 - Math.cos(T * 2 * Math.PI * cFrequency) * Math.sin(Math.sqrt(1 - T) * Math.PI/2);

    return A * .8 + B * .2;
}
function StepResponseCoreD(T)
{
    var A= .5 - .5 * Math.cos(T * Math.PI);

    var cFrequency= 2.5;
    var B= 1 - Math.cos(T * 2 * Math.PI * cFrequency) * Math.sin((1 - T) * Math.PI/2);

    return A * .8 + B * .2;
}
function StepResponseCoreC(T)
{
    var A= .5 - .5 * Math.cos(T * Math.PI);

    var cTau= .3;
    var cFrequency= 5;
    var B= 1 - Math.cos(T * 2 * Math.PI * cFrequency) * Math.exp(-T / cTau) * (1 - T);

    return A * .8 + B * .2;
}


function StepResponseCoreB(T)
{
    var A= .5 - .5 * Math.cos(T * Math.PI);

    var cTau= .3;
    var cFrequency= 5;
    var B= 1 - Math.cos(T * 2 * Math.PI * cFrequency) /** Math.exp(-T / cTau)*/ * (1 - T);

    return A * .8 + B * .2;
}
function StepResponseCoreA(T)
{
    var A= .5 - .5 * Math.cos(T * Math.PI);

    var cTau= .3;
    var cFrequency= 5;
    var B= 1 - Math.cos(T * 2 * Math.PI * cFrequency) /** Math.exp(-T / cTau)*/ * (1 - T);

    var Alpha= .2 * T;
    return A * (1 - Alpha) + B * Alpha;
}

        
]]>
</Script>
<!-- ROUTE information for Tmer_PlacementChaser node:  [from time to ScreenPositionDamper_PlacementChaser.Tick ] -->
<TimeSensor DEF='Tmer_PlacementChaserloop='true'/>

< ROUTE  fromNode=' Tmer_PlacementChaser' fromField='time' toNode=' ScreenPositionDamper_PlacementChaser' toField='Tick'/>
<Script DEF='LastNode'>
<field name='isLoadedtype='SFBoolaccessType='outputOnly'/>
<IS>
<connect nodeField='isLoadedprotoField='isLoaded'/>
</IS>
<![CDATA[
          
ecmascript:

function initialize()
{
    isLoaded= true;
}

        
]]>
</Script>
</ProtoBody>
</ProtoDeclare>
<ProtoDeclare name='PositionDamper'>
<ProtoInterface>
<field name='isLoadedtype='SFBoolaccessType='outputOnly'/>
<field name='value_changedtype='SFVec3faccessType='outputOnly'/>
<field name='set_destinationtype='SFVec3faccessType='inputOnly'/>
<field name='takeFirstInputtype='SFBoolvalue='trueaccessType='initializeOnly'/>
<field name='initial_destinationtype='SFVec3fvalue='0.0 0.0 0.0accessType='initializeOnly'/>
<field name='ordertype='SFInt32value='1accessType='initializeOnly'/>
<field name='creditstype='MFStringvalue=' "Initial idea and copyright by Herbert Stocker "http://www.hersto.net/" ' accessType='initializeOnly'/>
<field name='reachThresholdtype='SFFloatvalue='0.01accessType='initializeOnly'/>
<field name='tautype='SFFloatvalue='1.0accessType='inputOutput'/>
<field name='set_valuetype='SFVec3faccessType='inputOnly'/>
<field name='reachedtype='SFBoolaccessType='outputOnly'/>
<field name='initial_valuetype='SFVec3fvalue='0.0 0.0 0.0accessType='initializeOnly'/>
<field name='isActivetype='SFBoolaccessType='outputOnly'/>
<field name='epstype='SFFloatvalue='0.0010accessType='initializeOnly'/>
</ProtoInterface>
<ProtoBody>
<ProtoDeclare name='EFFS'>
<ProtoInterface>
<field name='tautype='SFFloatvalue='1.0accessType='inputOutput'/>
</ProtoInterface>
<ProtoBody>
<Group/>
</ProtoBody>
</ProtoDeclare>
<ProtoInstance name='EFFSDEF='EFFS'>
<fieldValue name='tauvalue='1.0'/>
</ProtoInstance>
<!-- ROUTE information for Worker node:  [from Timer_PositionDamper.time to tick ] [from needTimer to Timer_PositionDamper.enabled ] -->
<Script DEF='Worker'>
<field name='set_valuetype='SFVec3faccessType='inputOnly'/>
<field name='IsCortonatype='SFBoolvalue='falseaccessType='initializeOnly'/>
<field name='bInitializedtype='SFBoolvalue='falseaccessType='initializeOnly'/>
<field name='reachThresholdtype='SFFloataccessType='initializeOnly'/>
<field name='lastTicktype='SFTimevalue='0.0accessType='initializeOnly'/>
<field name='bNeedToTakeFirstInputtype='SFBoolvalue='trueaccessType='initializeOnly'/>
<field name='value5type='SFVec3fvalue='0.0 0.0 0.0accessType='initializeOnly'/>
<field name='value4type='SFVec3fvalue='0.0 0.0 0.0accessType='initializeOnly'/>
<field name='value3type='SFVec3fvalue='0.0 0.0 0.0accessType='initializeOnly'/>
<field name='value2type='SFVec3fvalue='0.0 0.0 0.0accessType='initializeOnly'/>
<field name='inputtype='SFVec3faccessType='initializeOnly'/>
<field name='value1type='SFVec3fvalue='0.0 0.0 0.0accessType='initializeOnly'/>
<field name='epstype='SFFloataccessType='initializeOnly'/>
<field name='set_destinationtype='SFVec3faccessType='inputOnly'/>
<field name='value_changedtype='SFVec3faccessType='outputOnly'/>
<field name='tautype='SFFloatvalue='1.0accessType='initializeOnly'/>
<field name='effstype='SFNodeaccessType='initializeOnly'>
<ProtoInstance USE=' EFFS'/>
</field>
<field name='ordertype='SFInt32accessType='initializeOnly'/>
<field name='needTimertype='SFBoolaccessType='outputOnly'/>
<field name='ticktype='SFTimeaccessType='inputOnly'/>
<field name='set_tautype='SFFloataccessType='inputOnly'/>
<field name='initial_valuetype='SFVec3faccessType='initializeOnly'/>
<field name='reachedtype='SFBoolaccessType='outputOnly'/>
<field name='takeFirstInputtype='SFBoolaccessType='initializeOnly'/>
<IS>
<connect nodeField='set_valueprotoField='set_value'/>
<connect nodeField='reachThresholdprotoField='reachThreshold'/>
<connect nodeField='inputprotoField='initial_destination'/>
<connect nodeField='epsprotoField='eps'/>
<connect nodeField='set_destinationprotoField='set_destination'/>
<connect nodeField='value_changedprotoField='value_changed'/>
<connect nodeField='orderprotoField='order'/>
<connect nodeField='needTimerprotoField='isActive'/>
<connect nodeField='initial_valueprotoField='initial_value'/>
<connect nodeField='reachedprotoField='reached'/>
<connect nodeField='takeFirstInputprotoField='takeFirstInput'/>
</IS>
<![CDATA[
          
ecmascript:

function StartTimer()
{
    if(IsCortona)
        return;

    if(!needTimer)
    {
        lastTick= 0;
        needTimer= true;
    }
}

function StopTimer()
{
    if(IsCortona)
        return;

    if(needTimer)
    {
        needTimer= false;
    }
}

function initialize()
{
    CheckInit();
}

function CheckInit()
{
    if(!bInitialized)
    {
        bInitialized= true;
        Init();
    }

}

function Init()
{
    IsCortona= false && Browser.getName().indexOf('Cortona') != -1;

    bNeedToTakeFirstInput= takeFirstInput;

    tau= effs.tau;
    set_value(initial_value);
    if(IsCortona)
        needTimer= true;
    else
        needTimer=    input.x != initial_value.x
                   || input.y != initial_value.y
                   || input.z != initial_value.z
                   ;
}

function set_tau(t)
{
    CheckInit();

    tau= t;
}

function set_destination(i)
{
    CheckInit();

    if(bNeedToTakeFirstInput)
    {
        bNeedToTakeFirstInput= false;
        set_value(i);
    }


    if(i != input)
    {
        input= i;
        StartTimer();
    }
}

function set_value(o)
{
    CheckInit();

    bNeedToTakeFirstInput= false;

    value1= value2= value3= value4= value5= o;
    value_changed= o;
    UpdateReached();
    StartTimer();
}

function tick(now)
{
    CheckInit();

    if(!lastTick)
    {
        lastTick= now;
        return;
    }

    var delta= now - lastTick;
    lastTick= now;

    var alpha= Math.exp(-delta / tau);


    if(bNeedToTakeFirstInput)  // then don't do any processing.
        return;

    value1= order > 0 && tau
               ? input  .add(value1.subtract(input  ).multiply(alpha))
               : input;

    value2= order > 1 && tau
               ? value1.add(value2.subtract(value1).multiply(alpha))
               : value1;

    value3= order > 2 && tau
               ? value2.add(value3.subtract(value2).multiply(alpha))
               : value2;

    value4= order > 3 && tau
               ? value3.add(value4.subtract(value3).multiply(alpha))
               : value3;

    value5= order > 4 && tau
               ? value4.add(value5.subtract(value4).multiply(alpha))
               : value4;

    var dist= GetDist();

    if(dist < eps)
    {
        value1= value2= value3= value4= value5= input;

        value_changed= input;
        UpdateReached2(dist);

        StopTimer();
        return;
    }
    value_changed= value5;
    UpdateReached2(dist);

}

function GetDist()
{
    var dist= value1.subtract(input).length();
    if(order > 1)
    {
        var dist2= value2.subtract(value1).length();
        if( dist2 > dist)  dist= dist2;
    }
    if(order > 2)
    {
        var dist3= value3.subtract(value2).length();
        if( dist3 > dist)  dist= dist3;
    }
    if(order > 3)
    {
        var dist4= value4.subtract(value3).length();
        if( dist4 > dist)  dist= dist4;
    }
    if(order > 4)
    {
        var dist5= value5.subtract(value4).length();
        if( dist5 > dist)  dist= dist5;
    }
    return dist;
}

function UpdateReached()
{
    return UpdateReached2(GetDist());
}

function UpdateReached2(Dist)
{
    if(reached)
    {
        if(Dist > reachThreshold)
            reached= false;
    }else
    {
        if(Dist <= reachThreshold)
            reached= true;
    }
}

        
]]>
</Script>
<!-- ROUTE information for Timer_PositionDamper node:  [from Worker.needTimer to enabled ] [from time to Worker.tick ] -->
<TimeSensor DEF='Timer_PositionDamperloop='true'/>

< ROUTE  fromNode=' Worker' fromField='needTimer' toNode=' Timer_PositionDamper' toField='enabled'/>
< ROUTE  fromNode=' Timer_PositionDamper' fromField='time' toNode=' Worker' toField='tick'/>
</ProtoBody>
</ProtoDeclare>
</Scene>
</X3D>
<!--

to top <!-- Event Graph ROUTE Table shows event connections -->
 
<!-- Index for DEF nodes: EFFS, LastNode, ScreenPositionDamper_OrientationChaser, ScreenPositionDamper_PlacementChaser, ScreenPositionDamper_Position2fChaser, ScreenPositionDamper_PositionChaser, Timer_PositionDamper, Tmer_OrientationChaser, Tmer_PlacementChaser, Tmer_Position2fChaser, Tmer_PositionChaser, Worker

Index for ProtoDeclare definitions: EFFS, OrientationChaser, PlacementChaser, Position2fChaser, PositionChaser, PositionDamper
-->

Event Graph ROUTE Table entries with 6 ROUTE connections total, showing X3D event-model relationships for this scene.

Each row shows an event cascade that may occur during a single timestamp interval between frame renderings, as part of the X3D execution model.

The following ROUTE begins an event-routing loop! Loop occurs at nodeDepth=3.
 
ROUTE Timer_PositionDamper.time TO Worker.tick
Timer_PositionDamper
TimeSensor
time
SFTime

ROUTE
event to
(1)
Worker
Script
tick
SFTime

 
 
then
Worker
Script
needTimer
SFBool

ROUTE
event to
(2)
Timer_PositionDamper
TimeSensor
enabled
SFBool

 
 
then
Timer_PositionDamper
TimeSensor
time
SFTime

ROUTE
event to
(3)
Worker
Script
tick
SFTime

 
 
then
Worker
Script
needTimer
SFBool

ROUTE
event to
(4)
Timer_PositionDamper
TimeSensor
enabled
SFBool

 
 
then
Timer_PositionDamper
TimeSensor
time
SFTime

ROUTE
event to
(5)
Worker
Script
tick
SFTime

 
 
then
Worker
Script
needTimer
SFBool

ROUTE
event to
(6)
Timer_PositionDamper
TimeSensor
enabled
SFBool


Tmer_OrientationChaser
TimeSensor
time
SFTime

ROUTE
event to
(1)
ScreenPositionDamper_OrientationChaser
Script
Tick
SFTime


Tmer_PlacementChaser
TimeSensor
time
SFTime

ROUTE
event to
(1)
ScreenPositionDamper_PlacementChaser
Script
Tick
SFTime


Tmer_Position2fChaser
TimeSensor
time
SFTime

ROUTE
event to
(1)
ScreenPositionDamper_Position2fChaser
Script
Tick
SFTime


Tmer_PositionChaser
TimeSensor
time
SFTime

ROUTE
event to
(1)
ScreenPositionDamper_PositionChaser
Script
Tick
SFTime


LastNode
Script
No ROUTE connection found for output from this node.
 


      ScreenPositionDamper_OrientationChaser
Script
No ROUTE connection found for output from this node.
 


      ScreenPositionDamper_PlacementChaser
Script
No ROUTE connection found for output from this node.
 


      ScreenPositionDamper_Position2fChaser
Script
No ROUTE connection found for output from this node.
 


      ScreenPositionDamper_PositionChaser
Script
No ROUTE connection found for output from this node.
 


     
The following ROUTE begins an event-routing loop! Loop occurs at nodeDepth=3.
 
ROUTE Worker.needTimer TO Timer_PositionDamper.enabled
Worker
Script
needTimer
SFBool

ROUTE
event to
(1)
Timer_PositionDamper
TimeSensor
enabled
SFBool

 
 
then
Timer_PositionDamper
TimeSensor
time
SFTime

ROUTE
event to
(2)
Worker
Script
tick
SFTime

 
 
then
Worker
Script
needTimer
SFBool

ROUTE
event to
(3)
Timer_PositionDamper
TimeSensor
enabled
SFBool

 
 
then
Timer_PositionDamper
TimeSensor
time
SFTime

ROUTE
event to
(4)
Worker
Script
tick
SFTime

 
 
then
Worker
Script
needTimer
SFBool

ROUTE
event to
(5)
Timer_PositionDamper
TimeSensor
enabled
SFBool

 
 
then
Timer_PositionDamper
TimeSensor
time
SFTime

ROUTE
event to
(6)
Worker
Script
tick
SFTime


EFFS
ProtoInstance
EFFS
No ROUTE connection found for output from this node.
Contains SFNode/MFNode field with indirect access to other nodes. 


-->

<!-- Online at
https://www.web3d.org/x3d/content/examples/Basic/Followers/FollowerPrototypeDeclarationsIndex.html -->
<!-- Version control at
https://sourceforge.net/p/x3d/code/HEAD/tree/www.web3d.org/x3d/content/examples/Basic/Followers/FollowerPrototypeDeclarations.x3d -->

<!-- Color legend: X3D terminology <X3dNode DEF='idName' field='value'/> matches XML terminology <XmlElement DEF='idName' attribute='value'/>
(Light-blue background: event-based behavior node or statement) (Grey background inside box: inserted documentation) (Magenta background: X3D Extensibility)
    <ProtoInstance name='ProtoName'> <field name='fieldName'/> </ProtoInstance> -->

to top <!-- For additional help information about X3D scenes, please see X3D Tooltips, X3D Resources, and X3D Scene Authoring Hints. -->