
Linear Filters – Animating Objects in a Flexible and Pleasing Way
Herbert Stocker

Bitmanagement Software GmbH
herbert.stocker@bitmanagement.de

Abstract
In this work we propose an alternative animation approach to the
traditional key frame based interpolation model. By way of
illustration we propose a set of nodes that apply these principles to
the X3D standard. In contrast to predefined key frame animations
our way of defining animations allows an application to
dynamically respond to the current situation and calculate an
animation on the fly, while the content author can work with an
extremely simple mental model for the animations. It is also our
opinion that the way these nodes calculate an animation creates
smooth and thus pleasing transitions. In addition, our node set can
be used to approximate the effects of inertia, without the
requirement and overhead of a heavy physics engine being
present. With only a little of this inertia effect applied, objects
(e.g. a slider thumb) can subjectively appear to have more
physical substance.

Keywords
animation control, dynamics, linear filters, key frame animation,
X3D, VRML, inertia, physical simulation, interaction, virtual
reality

CCS Classification
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism--Animation,Virtual Reality
I.6.8 [Simulation and Modeling]: Types of Simulation--
Animation, Continuous, Discrete event
I.3.6 [Computer Graphics]: Methodology and Techniques--
Interaction techniques

1. Introduction
Animations made with the standard means provided by X3D, the
so-called Interpolator nodes which provide for key frame based
animations, often lack the flexibility of responding to arbitrary
user input or to conditions emerging at runtime. Also, if they are
used in a low-bandwidth scenario they provide only jerky
movements with a limited amount of realism. This paper proposes
a set of nodes that overcome these limitations without requiring
the author to use programming skills.

The proposed nodes can be seen as linear filters according to
signal theory. They receive a time dependent value as their input,
process it and output another time dependent value. The output
value is calculated based on the current input value as well as on
the past of the input value. Input can be received at discrete points
in time or as a continuous series of values. We call these nodes
'Follower' nodes.

The Follower nodes serve to be useful in three scenarios:

1. Creating animations.
A Follower node receives a new destination value, e.g. a
position, at a single instance in time and creates a
smooth transition from the current position to that
destination position taking the current speed of
movement into account.

2. Smoothing existing animations.
A Follower node receives the output values of an
Interpolator node, post-processes them and outputs a
smoother version of the values changing over time.
Such a transition may be more lifelike to end-users.

3. Approximating inertia.
Usually when software processes user input in order to
move an object, a viewpoint etc, then the data from the
input device is mapped directly to the moving object.
This makes the objects appear weightless and the
created animation seems “robotic” or unnatural.
Follower nodes overcome this by simulating a small
amount of inertia.

Please see section 5. Usage in X3D Content / Examples for a
detailed description.

2. Motivation
The X3D standard has evolved from a file format for static 3D
content (VRML 1), to a complex standard with many animation
features and programmability options for creating interactive 3D
applications. When it comes to creating animations it supports
both novice users, who have no programming skills with nodes
that allow them to create simple animations, as well as advanced
programmers who can manipulate the scene graph dynamically.

However, the nodes that allow the creation of animations without
using scripts – the Interpolator nodes in conjunction with the
TimeSensor node – are limited to predefined animations. This
means that the starting point, the end point and the path of an
animation must be known at the design time of an X3D-based
application. The standard nodes don't calculate an animation path
from information that emerges at runtime, e.g. when fed with a
position based on a user click.

Moreover, interactive applications have to respond to user input
which is usually non-predictable. The simple case of a door that
opens when the user clicks it and should close when they click it
again, illustrates the dilemma for content authors with limtted or
no skills in writing programmatic code. The dilemma arises when
the author wants to specify the behavior that should occur when
the user clicks the door while it is in transition. With Interpolator
nodes the author can define the animation of an opening door and
of a closing door, but not an animation from an arbitrary point in-
between to either the opened or closed state.

Authors usually solve this by defining the animations between
both states and disabling the ability to click the door while the
door is in transition. Such solutions contribute to user frustration

because they make an application non-responsive at times. Other
authors don't make provisions at all for this case and clicking the
door while in transition creates a fan-out conflict for the two
defined animations and the actual behavior of the door is left to
the browser implementation. This leads to either a sharp jump in
the door's motion at, or shortly after, the user click, which is never
physically correct or aesthetically pleasing. Please see the
example “door-classical.wrl” in [4] for an illustration of the issue.
The example “door-desired.wrl” demonstrates how the issue
should be solved.

Another simple, straight-forward scenario that shouldn't require
the ability to program animations is the example of a simple
interior design application. In such an application the user clicks a
position on a wall and the selected piece of furniture moves to that
location. Programming is required to calculate the right
orientation of the piece, but should not be necessary to calculate
the time-based transition of the object from the current position
and orientation to the new one. This scenario is illustrated in
“room-direct.wrl” and the desired behavior is shown in “room-
desired.wrl” in [4].

From a usability point of view, transition animations help the user
understand what’s going on. In the interior design application, for
example when the previous position is out of view the transition
helps the user to understand that the piece did not simply
materialize from nowhere, but instead came from somewhere
offscreen in the direction implied by its motion.

In both scenarios, a node is desirable to which an application can
send a destination position and which then calculates a transition
from the current position to the desired one. In order to create a
smooth transition it should also factor in the current speed of
movement. Besides animations of positions, animations of
orientations, colors, 2D coordinates, mesh coordinates, etc are
also desirable, so that users only need to specify a new state and a
transition is generated automatically.

This paper proposes a set of nodes that accomplish these tasks.
Besides creating new transitions dynamically, these nodes also
facilitate the smoothing of existing animations, which produces
more natural, realistic results. For example, they can imbue user
interface elements with more physical substance by projecting a
feeling of inertia, or resistance to changes.

The problems solved in this paper have been addressed in the
context of character, facial and physics animation et cetera ([6],
[7], [8]), however, literature about this abstract scenario of simply
and realistically transitioning from one value to another, without
the onerous requirement of programming skills, is hard to find.

3. Linear Filters
The functionality of the animation nodes proposed in this paper
can be implemented using the concept of linear filters. Linear
filters shall be briefly explained in this section. Further
information can be found at [1] and [2].

A filter in system theory is a device which accepts a time
dependent value as its input, and outputs another time dependent
value as its output. The value of the output at any instance in time
depends on both the value of the input at that time and the values
of the input in the past. Such a time dependent value is also called
‘a signal’. A signal can be a scalar value (real number) as well as
a multidimensional value (vector). If the discreteness of computer
simulations is neglected, the output of Interpolator nodes can be
seen as a continuous signal. A signal in the form of a two-

dimensional vector is illustrated by the following equation:







=

)3*sin(*10
)3*cos(*10

)(
t
t

tv

Let i(t) be the signal input port of the filter, o(t) the signal output
port and T the operator of the filter, then a filter can be described
as:

)]([)(tiTto =

A linear filter is one which adheres to two useful conditions.
Authors of X3D content need not understand these conditions in
order to use Follower nodes, but these conditions explain how the
Follower nodes work.

The first condition is that with a linear filter the output is
independent of the time the input is supplied – if you supply the
same input signal at a later time, it will respond with the same
output as before.

)])([()]([∆+=∆+ tiTtiT

The other condition is that superimposing multiple input signals
results in the same superimposition of the responses for each input
signal – if you scale the input, the output will be scaled the same
way, and if you send the sum of two signals to the input, the
output will be the sum of the responses to the individual signals.

)]([)]([)]([2121 tibTtiaTtbiaiT +=+

These two conditions lead to the fact that a linear filter can be
described by the response signal to just one input signal. One such
commonly used response function is the step response. The step
response S(t) is the output of a filter that has received a step
function s(t) as its input.





≥∀
<∀

=
01
00

)(
t
t

ts

)]([)(tsTtS = .

Since the Follower nodes proposed here should dynamically
respond to input signals they receive at runtime, we need to limit
our consideration to the so-called 'causal' filters. These filters
produce output only after they receive an input signal or at the
time they receive it. For the step response this means that the step
response is 0 for t<0.

Another limitation to the set of filters that is applicable for
Follower nodes is that the output value of the step response should
move towards the value 1 for large t. If it would target another
value, the output of a Follower node would never reach the value
received as a destination value.

Any continuous signal can be approximated by the sum of a series
of shifted and scaled step functions. The shifts for each step
function need not necessarily be an integer multiple of some Δt
value, they just need to be small enough. This allows for
describing a signal with its value for each simulation tick in an
X3D browser that usually does not have a constant delay between
simulation ticks.

Because of this ability to approximate a signal by step functions,
and due to the shift invariance and superimposition constraints for

linear filters, the output of a linear filter can be approximately
described as the same combination of shifted and scaled step
responses. The following diagram illustrates a smooth input
function approximated by a series of step responses.

This means that if an input signal has been described by the
approximation

∑
+∞

−∞=

−=
n

nn Ttsati)()(

then the output of the filter can be described as:

∑
+∞

−∞=

−=
n

nn TtSato)()(

Linear filters can be put into two categories each of which has its
drawbacks and advantages for authoring animations. These
categories are finite impulse response (FIR) and infinite impulse
response (IIR) filter. Their names derive from the impulse
response function, which is not used in this paper in favor of the
step response. Basically, the impulse response is the first
derivative of the step response.

3.1. Finite Impulse Response Filters
Finite impulse response (FIR) filters have an impulse response
that goes to zero after a finite amount of time. For the step
response this means that it reaches a static value after that amount
of time and the output of a FIR filter does not change thereafter.
Since only a value of 1 is applicable as the static value for
creating Follower nodes, the step response of a FIR filter used
here can be described with the following equation. Values other
than 1 would create outputs that do not match the value of the
inputs after a transition.







≥
<≤

<

∀
∀
∀

=

Dt
Dt

t
tftS 0

0

1
)(

0
)(

Here D is the duration of the filter and f is a function that
describes the transition from 0 to 1.

If the input to a FIR filter ceases at a certain point in time, the
output also stops changing after a period of length D following
that point in time.

3.2. Infinite Impulse Response Filters
Infinite impulse response (IIR) filters have an impulse response
that generally never goes to zero once they have received a non-
zero input. They usually consist of a feed-back loop. However,
they may approach the zero value asymptotically. For the step
response of an IIR filter this means that their step response
asymptotically approaches a certain output value. Useful for
Follower nodes are those IIR filters whose step responses
approach the value 1. Due to the causality constraint in real-world
applications, IIR filters as used in this paper can be described with

the following equations:

∞→∀
<∀

→
=

t
t

tS
tS

0

1)(
0)(

3.3. Linear First-Order Filters
The type of IIR filters used here are linear first-order filters. They
have an exponential step response described by the following
equation:

0
0

1

0
)(

>
≤

∀
∀







−
= − t

t
e

tS t
τ

Here τ is the time constant of the filter. It determines how fast the
filter responds, i.e. how long it takes the output to reach the level
of the input. Since the e-function never reaches zero for negative
arguments, the output of a linear first-order filter reaches the input
only approximately. However, it approaches it very fast due to the
properties of the e-function. The parameter τ dictates the time
required to reduce the output to 63 % of the difference from the
input (1 - 1/e). After a few such periods the output can practically
be said to have reached the value of the input.

The fact that the e-function is self-similar for scaling makes
implementing linear first-order filters very simple and light-
weight.

4. Proposed Nodes
The idea of a Follower node is that the application sends the
Follower node a new destination value when the need for an
object to change to a certain position, color or other type of value
has emerged, and then the Follower node calculates a smooth
transition to that value – the output of a Follower node seems to
'follow' its input.

This idea leads to the below declaration of an
X3DFollowerNode, which is an abstract node that has various
specializations for different data types and for two different
animation methods.

A Follower node has an input field called set_destination
and an output field value_changed, thus forming a filter. If a
Follower hasn't received input for a long time, its output has
relaxed at a certain value – the value of the last received input –
and no longer sends output anymore. The follower is inactive.

When such an inactive Follower receives a value on
set_destination it begins sending events on
value_changed. These events begin with the current value of
the value_changed field and move gradually towards the value
received until they reach that value, at which point
value_changed stops sending events. In this way the Follower
creates a smooth transition from the current to the desired value
when it receives a new destination.

If a transition is currently in progress when a Follower node
receives another destination value, it calculates a new animation
that goes to the newly received destination starting at the value
value_changed has at the time the Follower receives the new
destination. It takes the current speed of movement (first
derivative of the signal on value_changed) into account, and
the transition created continues with this speed of movement for
the first moments. The combined transition is smooth in that it

neither jumps nor suddenly changes the direction of movement.

The above diagram illustrates this behavior: The circles mark the
values that the Follower has received at certain instances in time
and the curve shows the animation performed by the Follower on
behalf of the destinations received. Before destination α has been
received the Follower has relaxed at a certain value. Upon
reception of α it creates a transition from this relaxation value to
the new destination, whereupon it relaxes again. The transition
features ease-in and ease-out. When the next destination β is
received, another transition is created towards this new
destination. Similarly for destination γ.

Destination δ follows γ very quickly, so that the animation
triggered through γ has not yet been finished when δ is received.
In this case the resulting animation after reception of δ smoothly
diverges from the current animation until it becomes a transition
towards the destination δ.

Follower nodes can also cope with continuous input on
set_destination. If a Follower node receives a value on
set_destination every simulation tick, and that value changes only
minimallly on each event (like the transitions generated by
Interpolator or Sensor nodes), then this creates another curve on
value_changed. This curve follows the rules described in
conjunction with event γ and δ above. The difference is that the
distance between adjacent input events is much shorter and the
Follower always has to calculate a new transition. The result is
that the output curve is a smoother and slightly delayed version of
the input curve.

Example “t est_PosFollower.wrl ” in [4] illustrates the behavior of
Follower nodes. Click in the gray area to generate a single input
value or click-drag the mouse to generate continuous input, then
watch the two spheres following your input. They visualize the
output of two implementation approaches of a Follower node.

This paper proposes two categories of Follower nodes, each of
which services different needs and has unique advances and
drawbacks. The first category takes only a limitted amount of time
to reach the new destination. We call these nodes Chaser nodes
because they reach their destination very quickly.

The other category is that of the Damper nodes. Damper nodes
follow a dynamic equation that can be found in some physical
systems (heat distribution, shock absorber - spring combinations,
etc). Damper nodes approach their destination very smoothly.
They actually don't reach it completely but approach it very
quickly in an asymptotic way. In comparison to the Chaser nodes
their implementation is more straight-forward and more light­
weight.

In the abovementioned example the red sphere visualizes the
output of an X3DDamperNode, and the green sphere visualizes
the output of an X3DChaserNode.

4.1. Inheritance Structure
We propose an abstract node X3DFollowerNode, from which
the X3DChaserNode and X3DDamperNode are derived nodes
each having their specialization for the various data types. A few
of the specializations are mentioned as examples, whilst others are
conceivable.

X3DFollowerNode
+––– X3DChaserNode
| +––– PositionChaser
| +––– OrientationChaser
| +––– PositionChaser2D
| +––– ScalarChaser
| +––– PlacementChaser
+––– X3DDamperNode

+––– PositionDamper
+––– OrientationDamper
+––– ColorDamper
+––– PositionDamper2D
+––– CoordinateDamper
+––– TexCoordDamper
+––– PlacementDamper

The PlacementChaser and PlacementDamper are here for
convenience in the cases where objects or viewpoints are moved.
The PlacementChaser combines a PositionChaser and an
OrientationChaser, and the PlacementDamper combines a
PositionDamper and an OrientationDamper.

4.2. Definition of Chaser Nodes
X3DChaserNode nodes have a finite duration for their transition
from the current value to the destination value. It can be specified
as a field on the node. In the case in which the X3DChaserNode
receives only a single destination value, the transition produced
has the shape of a cosine function so that the resulting transition
features ease-in and ease-out.

The following equation applies for an X3DCahserNode that has
relaxed at the output value v0 and receives the destination v1 at
time T0. Its response duration has been set to D.

DTt
DTtT

Tt

v
D
TtRvvv

v

tV
+≥

+<<
≤

∀
∀
∀








−−+=

0

00

0

1

0
010

0

)()()(

2
cos1)(xxRwith π−=

If an X3DChaserNode receives multiple destination values
during a period of duration D, then each event received causes a
similar response and all of them are added together
(superimposed) in order to form the output. In that case the value
v0 is the value received before the current value received. This
superimposition is in accordance with the ability to approximate
signals by step functions described in 3. Linear Filters.

In terms of a mathematical description, an X3DChaserNode
describes a linear filter with the step response







≥
<≤

<

∀
∀
∀

−=

Dt
Dt

t
tS D

t
owerX3DFIRFoll 0

0

1
)cos1(

0
)(2

1 π

transitiontheofdurationDwith =

4.3. Definition of Damper Nodes
The X3DDamperNode uses an e-function for its step response. Its
output asymptotically approaches the destination value received.
X3DDamperNodes have an order parameter, which specifies how
many linear first-order filters are chained together. In such a chain
the nth filter receives the output of its previous filter for n > 1 and
the 1st filter processes the input of the X3DDamperNode.
Chaining filters together increases the smoothness of the output.

For the case in which the X3DDamperNode with order=1
receives only a single destination value, the transition produced
has the shape of a horizontally mirrored e-function.

The following equation applies for an X3DDamperNode with
order=1 that has relaxed at the output value v0 and receives the
destination v1 at time T0. The horizontal stretch factor τ is a
parameter of the node as well as the number of filters in the chain.

0

0

0010

0

)()(
)(

Tt
Tt

TtEvvv
v

tV
>
≤

∀
∀





−−+
=

 τ
x

exEwith
−

−=1)(

Since the response V(t) never reaches the value v1 exactly but
approaches it very quickly, there is a tolerance value eps, which
specifies at what proximity of V(t) to v1 the animation can be
stopped.

If an X3DamperNode receives multiple destination values when
the previous transitions have not yet finished, then each event
received causes a similar response and all of them are added
together (superimposed) in order to form the output. In that case
the value v0 is the value received before the current value
received. This superimposition is in accordance with the ability to
approximate signals by step functions described in 3. Linear
Filters.

The step response of an X3DDamperNode with order=1 is
described with:

0
0

1

0
)(

>
≤

∀
∀







−
= − t

t
e

tS t
odeX3DDamperN

τ

with: τ = time constant of the filter.

4.4. Interface Descriptions
Here an abbreviated notation is used, where a derived node does
not repeat the fields of its base type and the always present
metadata field is omitted.

The abstract base types for all Follower nodes can be described as
follows:

X3DFollowerNode: X3DChildNode {
 SFBool [out] isActive
}
X3DChaserNode: X3DFollowerNode {
 SFTime [] duration
}
X3DDamperNode: X3DFollowerNode {
 SFFloat [in,out] tau (0, ∞)
 SFInt32 [] order (0, 5)
 SFFloat [in,out] eps (0, ∞)
}
To describe each specialization, “<Type>” is used as a place­
holder for the data type being animated, and “Xxxxx” is used as a
placeholder for the descriptive component of the node name:

XxxxxChaser: X3DChaserNode {
 <Type> [in] set_destination
 <Type> [out] value_changed
 <Type> [] initial_destination
 <Type> [] initial_value
 <Type> [in] set_value
}
XxxxxDamper: X3DDamperNode {
 <Type> [in] set_destination
 <Type> [out] value_changed
 <Type> [] initial_destination
 <Type> [] initial_value
 <Type> [in] set_value
}
As can be seen, the interface for all Follower nodes is the same
and differs only in the data type animated. The parameters
defining the transition to be performed depends on whether a
finite response is required or an exponential approach is sufficient.

The following assignments to the placeholders are possible:

Xxxxx <Type> Node name
Position SFVec3f PositionChaser,

PositionDamper
Orientation SFRotation OrientationChaser,

OrientationDamper
Color SFColor ColorChaser,

ColorDamper
Scalar SFFloat ScalarChaser,

ScalarDamper
Position'2D SFVec2f PositionDamper2D
Coordinate MFVec3f CoordinateDamper
TexCoord MFVec2f TexCoordDamper
Placement SFVec3f,

SFRotation
PlacementChaser,
PlacementDamper

The PlacementChaser and PlacementDamper do not fit the
above scheme well because there is no data type for holding the
combination of a position and an orientation. MFFloat with 7
entries could be used, but this would complicate routes. The
PlacementChaser and PlacementDamper are declared as
follows:
PlacementChaser: X3DChaserNode {
 orPlacementDamper: X3DDamperNode {
 SFVec3f [in] set_destinationPos
 SFRotation [in] set_destinationOri
 SFVec3f [out] valuePos_changed
 SFRotation [out] valueOri_changed
 SFVec3f [] initial_destinationPos
 SFRotation [] initial_destinationOri
 SFVec3f [] initial_valuePos
 SFRotation [] initial_val ueOri
 SFVec3f [in] set_valuePos
 SFRotation [in] set_valueOri
}
Each field has been mirrored, it exists once for the position and
once for the orientation.

4.5. Field Semantics
Follower nodes serve as filters in the context of signal theory.
Therefore the fields of a Follower node serve to:

- provide input to the Follower;

- receive output from the Follower; and

- control the parameters of the filtering process.

All Follower nodes follow the same scheme of operation. They
differ only in the data type on which they operate and whether it is
a Chaser with a finite response time or a Damper with an
exponential approach. Therefore the fields are, by way of
example, described only for the PositionChaser and
PositionDamper nodes. For the description of another Damper
node, replace the data type SFVec3f with the respective type.

4.5.1.Fields Common for Followers and Dampers
SFVec3f [in] set_destination:

This sends input to the Follower. When a value is received, the
Follower begins continuously sending values to

value_changed. The values gradually grow from the current
value of value_changed until they reach the value received on
set_destination.

For a Chaser the length of this period is defined by the duration
field. For a Damper it depends on the tau, order and eps
parameters as well as on the current state and destination value of
the Damper.

The set_destination field can be used either by sending it a
single value at certain instances in time, each of which triggers a
complete animation towards that value, or it can be used by
sending it a gradually changing value on each simulation tick, so
that the Follower serves as a post-processor, e.g. for the output of
an Interpolator or Sensor node. If used with a single value at
certain points in time, receiving a new destination value while the
last transition is still in progress does not cause any irregularity.
Instead, the Follower calculates a new transition based on the
current and, in most cases, factoring in the speed of movement
towards the new destination.

How the Damper decides when the destination value has been
reached is specified by the value of the eps field. The Damper
may not send an value_changed event at all if no animation is
required to reach that value, i.e. if value_changed already has
the value received and, in the case that order is larger than 0, if the
Damper is already at rest.

In the special cases where order or tau is 0 for Dampers, or
duration is 0 for a FIR Follower, the Follower simply forwards
the value received to value_changed, without any processing.

SFVec3f [out] value_changed:
Emits the animation calculated by the Follower node. It usually
sends values at times when there is not necessarily a stimulus to
one of the input fields. The isActive field indicates whether
value_changed is currently outputting values or not.

SFVec3f [] initial_destination,
SFVec3f [] initial_value:
These two fields allow initialization of the Follower to a certain
state. If both fields are set to the same value, value_changed
sends this value once on scene startup and then stops sending
values. Alternatively, if the fields are set to different values, the
Damper performs an animation from initial_value towards
initial_destination on scene startup. The shape of that
animation is that of the step response. This is to say it is the same
as if it had received the value of initial_value a long time
ago, and had received the value of initial_destination just
at the moment of scene startup.

SFVec3f [in] set_value:
This allows an application to directly set the output of the
Damper. When set_value receives a value, value_changed
sends this value and thereafter animates from this to the
destination. The shape of this animation is the same as that of the
step response of the Follower, i.e. it is the same as if it had
received the value sent to set_value on set_destination a
long time ago, and had just received the current destination.

One can use this to force the output of the Follower node to jump
immediately to a certain value. If the same value is sent to both
set_value and set_destination, the Damper outputs that
value and stays there. If that happens to be the value last output on
value_changed, the effect is that the animation is immediately
brought to a halt without a jump.

An application can set up an animation from one value to another
by sending the 'from' value to set_value and the 'to' value to
set_destination.

SFBool [out] isActive:
This indicates when an animation is being performed. It changes
to TRUE when a new destination value is received via
set_destination or when set_value forces
value_changed away from the destination, and it flips to
FALSE when value_changed has reached the destination value.
For a Chaser not the flip to FALSE happens duration seconds
after the last value has been received at set_destination. For
a Damper this happens when the difference between
value_changed and the destination falls below eps.

4.5.2.Fields specific to FIR Followers
SFTime [] duration (0,∞):
Specifies how long it takes the output value to reach the
destination value.

4.5.3.Fields specific to Dampers
SFFloat [in,out] tau (0,∞):
Specifies how long it takes value_changed to reach the
destination value. Strictly speaking a Damper never reaches its
destination but nonetheless the destination is approached very
quickly. After the period of time specified in the tau field, the
distance of value_changed to the destination value has been
reduced by 63 %. After the next such period of time the distance
has again been reduced by 63 %, and so on. The value 63 % is
derived from the euler number e = 2.71828... by the equation
.63 = 1 – 1/e.

SFInt32 [] order (0,5):
Specifies the number of linear first-order filters chained together
internally. The larger the value of order is, the smoother the
generated animation becomes, but the greater the overall delay
between input and output is.

With values for order greater than 5, no improvement in
smoothness is subjectively achieved, only the delay increases.
Because of this, and the fact that other means can probably be
implemented more efficiently to create a more accurate delay,
only values up to 5 need to be supported for order.

In the case that order is 0, the Damper node just forwards every
value received on set_destination to value_changed
without any processing.

If order is 1, the whole Damper node is a linear first-order filter
and the value_changed immediately changes the direction
and/or speed of movement when a new destination value is
received for set_destination at a single instance in time. For
objects being moved by a PositionDamper and/or
OrientationDamper, this effect can be quite noticeable to the
user and can be desired.

If order is larger than 1, and a new destination value is received
via set_destination while an animation is currently being
performed, the values sent from value_changed continue to
move with the current direction and speed. The Damper gradually
changes these properties so that they eventually move towards the
new destination.

SFFloat [in,out] eps (0,∞):
Theoretically a Damper never reaches its destination due to the
properties of the e-function (f(t)=e-t/τ). The field eps allows
authors to specify a threshold value, which the Damper uses to
determine when it can assume to have reached the destination
value. When the difference between output value and destination
value becomes smaller than eps, the Damper sends the
destination value via the value_changed field and stops the

animation. This creates a little jump in the output, but this is
always smaller than eps. The test is done individually for each
internal filter, and the animation is only stopped if all of them are
at rest.

5. Usage in X3D Content / Examples
Follower nodes can be used for creating new animations as well
as for post processing existing animations or user input.

5.1. Creating Animations
As outlined in the sections above, Follower nodes can be used for
easy creation of animations at runtime. When an object should
move to a new place, change its color or should change shape (get
new mesh coordinates), the application sends this value to the
proper Follower node and the Follower node calculates a
transition from the current value to the one given. No precautions
have to be made for the case that the previous transition is still in
progress. Instead of repeating the goal of the Follower nodes
specified above, a few scenarios of application should be given
here. The example files can be found at [4]. All the examples
facilitate the following route structure:

User interface elements like buttons, drop-down boxes, menus,
sliders, are still often done from scratch in context with X3D.
These elements often change state, e.g. on mouse-over, button
activation, slider movement, or fading in menus. With the
Follower nodes authors need not be concerned about animating all
these. They just insert a Follower node between the Script that
calculates the color values, transparencies or positions and the
geometry nodes of the UI element. Here Damper nodes can be
prefered to Chaser nodes for their more light-weight
implementation. The examples in [4] incorporate this concept.

The scenario of an interior design application where users can
place objects in a room has already been outlined in section 2.
Motivation. It's an example that demonstrates that with a Follower
node consistent behavior can be achieved for arbitrary input and
if new destinations are received before the current transition
is finished. A Script node receives the mouse clicks onto the
walls, calculates the proper object position and orientation and
sends that information through a PlacementFollower to the
Transform node containing the object. See “room-desired.wrl”.

The door example shall also be mentioned here. It demonstrates
the behavior when input is received while the current transition is
still in progress. See “door_desired.wrl”.

With network communication position or other updates come in
with a quite low frequency. Yet smooth transitions are desired.
This can be achieved by feeding the values received from the
network through a Follower node. Example “MultiUser.wrl”
demonstrates this in form of a simple multi-user world. Avatar
positions are received about every .7 seconds and the
PlacementFollower used has duration set to 1.

Example “test_OriFollower.wrl” demonstrates the use of
Followers for rotations. On the top of the screen a few orientations
can be predefined and then sent to the main object. The left side
decides whether a Chaser or a Damper should be used. By rotating
the below object on the right side a continuous signal can be sent
to the Follower.

5.1.1. Initialization
Damper nodes can be set to perform animations directly after
initialization. To do this, one must assign the starting point of the
animation to initial_value and the destination to
initial_destination.

By default, a Damper node initializes with zero as the state of the
output and animates from there the first time it receives an input
via set_destination. If this is not desired, the
initial_value field can be used to initialize with another
value. In that case, initial_destination should be assigned
the same value, or an animation towards the zero state is
performed after initialization.

5.1.2. Direct Control
When a Damper node receives a value via set_value,
value_changed immediately goes to that value and starts a new
animation towards the current destination. This allows for:

- stopping an animation if the value sent is the current
value of value_changed and this value is also sent to
set_destination;

- creating a jump prior to moving towards the destination
if set_destination does not receive a value; or

- setting up new animations if both set_destination
and set_value receive different values at the same
time.

The last case is demonstrated in the user interface of the
“test_OriFollower.wrl” example. Most buttons there exhibit a
little flash when they are activated. All the author had to do for
achieving this effect is to use a ColorDamper, set
initial_destination and initial_value to the color of a
non-highlighted button and send the color of a highlighted button
to set_value each time a flash is to occur.

5.2. Smoothing Existing Animations
If fed with continuous input signals, i.e. the set_destination
field receives a value almost every simulation tick, then the
Follower nodes perform a low-pass filtering of the input signal.
Fast changes in the input signal or edges are leveled out, and the
resulting transitions become smooth, curved trajectories.

In combination with Interpolator nodes, this can be used to model
smooth animations with a minimal number of key frame values.

By varying tau and order or duration, respectively the curve
can be biased towards either accuracy or smoothness. Example
“coaster-classical.wrl” and “coaster-damper.wrl” illustrate this
behavior.

Another example of smoothing animations is given in
“3rdPersonView-c.wrl” and “3rdPersonView-f.wrl”. A 3rd person
view is created through a Script node calculating an offset
position and orientation to an avatar position and orientation. If
fed directly to a Viewpoint node, the avatar appears stuck to the
screen, like if being put into a HUD. If a PlacementChaser is
inserted between the Script and Viewpoint, the avatar seams to
move lifelike over the terrain.

5.3. Approximating Inertia
Although not creating a physically correct simulation, Dampers
can be used to create the sensation of innertia. The delay
introduced through Damper nodes and the effect of smoothening
out the input signal create the sensation of inertia when they
process user input that is used for creating motion.

User interfaces like sliders benefit from Dampers with small
values for tau, say ≤ .3 . The controlled objects appear to become
solid objects as opposed to hollow massless things. Such
applications use the following route structure:

The example “test_Sliders.wrl” demonstrates this. It contains a
few sliders that manipulate a box. By playing a bit with the sliders
one can verify that a little smoothening with a Damper node does
not impair the usability of the sliders. Clicking the box disables
the Damper node. The object then appears massless/'computerish'.

With greater values for tau, say ≥ .7 one can create some kind of
inertia effect. “poor-mans-inertia.wrl” shows this effect: It is hard
to accelerate, and once moving, it is hard to stop. Some work on
the orientation should be done in this example in order to make it
usable.

6. Implementation
Most of the nodes proposed here have been implemented as
ExternProtos using EcmaScript. These nodes can be found at [4].
With the exception of the PlacementDamper all Damper nodes
have been implemented completely and have been used in real-
world applications. For the Chasers only the PositionChaser,
OrientationChaser and PlacementChaser have been
implemented for the sake of prove-of-concept. Trivial things like
set_output or initial_destination have been omitted
for now.

6.1. Chasers
In their implementations Chasers have to model the concept of a
step response. This means that an array constituting the input
signal history – the events received on set_destination –
must be maintained. Since the shape of the transition is finite for
Chasers, the input array needs to cover only a limited period of
time, namely that extending from the current point in time back
into the past by duration seconds. Due to the smoothness of the
response function it is not necessary to remember each event
received with its associated time stamp. It is sufficient to divide
the history period into, say 20, equidistant slices, each of which is
summarized by the latest received input value during that slice.
This limits the number of evaluations of the step response
function at each simulation tick to a certain value.

The Chaser nodes have a function Tick(.) which is evaluated
each simulation tick. Due to the fact that the input to a linear filter

can be approximated by a series of step functions and the output is
the sum of the step responses to each of those input steps, the
Tick(.) function evaluates the current output value by
evaluating the step response for each value in the history buffer
and summing the results.

When the Tick(.) function is entered, the first thing it does is
update the history buffer. As X3D browsers don't necessarily
provide a constant frame rate, the function is not called on a
regular basis, so it evaluates whether a new slice of time has been
entered, and if so it shifts the contents of the history buffer
towards the past so that it covers the right period of time. The
newly freed slot in the history buffer is set to the latest value of
set_destination. This code is outsourced into the function
UpdateBuffer(.) and just contains time-stamp and buffer
works, so that we don't include it here. See [4] for details.

function Tick(now) // will be called once for
{ // every simulation tick.
 var Frac= UpdateBuffer(Now);
The value Frac we get from UpdateBuffer(.) is the amount
of time we are ahead of the time-stamp of the latest value in the
history buffer divided by the length of a time slice. Thus Frac is
in the range 0 ≤ Frac < 1.

The history buffer is designed to contain the latest received input
value at index 0 and the values at index n have been recorded
n * Δt seconds before that point in time, where Δt is the length of
a time slice in seconds. Thus, the time an entry in the array has
been recorded is Tn = (n + Frac) * Δt seconds ago.

Tick(.) simply calculates the difference between each entry in
the history buffer and the previous entry, evaluates the step
response function at the time of Tn , multiplies both and sums them
up. For the oldest value in the buffer it uses the value itself
because all input steps received before don't contribute to the
shape of the response function anymore and their responses can be
assumed to have reached that value already. This algorithm
conforms to the equation:

∑
−

=
− +−=

1

0
1)()(

N

n
nn FracnRBBO

with
Bn: Entry in the history buffer at index n.
N: Number of entries in the history buffer.
R: Response function as defined in section 4.2

 var Output= previousValue; // the value just
 //shifted off the buffer.
 var DeltaIn= Buffer[Buffer.length – 1]
 .subtract(previousValue);
 var DeltaOut= DeltaIn.multiply(StepResponse(
 (Buffer.length - 1 + Frac) * cStepTime));
 Output= Output.add(DeltaOut);
 for(var C= Buffer.length - 2; C>=0; C--)
 {
 var DeltaIn= Buffer[C].subtract(Buffer[C+1]);
 var DeltaOut= DeltaIn.multiply(StepResponse(
 (C + Frac) * cStepTime));
 Output= Output.add(DeltaOut);
 }
 value_changed= Output;
}

6.2. OrientationChaser and SFRotation
The iteration in a Chaser is basically calculating the following
equation:

)()(11 FracnRBBOO nnnn +−+= −−

where On is the sum after iteration n. With the Term substitutions

1), −−=+= nn BBAFracR(n α

the equation can be written as:

αAOO nn += −1

This can be interpreted as going from one point On-1 towards A by
the relative amount of α, even if α is a bit out of the range 0..1.
The slerp(.) method available on SFRotation objects does just
that.

),(.1 α AslerpOO nn −=

A can be calculated using the operator replacements:

)(()..),(. XmultiplyinverseYYXYmultiplyXYX  −+

Therefore Chaser nodes can also be implemented for orientation
values.

6.3.Dampers

6.3.1. Core Formula
The core formula of a Damper node is the step response of a
linear first-order filter:





≥∀−
<∀

= − 0t
0t

τ/1
0

)(te
tF

Usually in digital signal processing this step response is evaluated
via the following equation, where the value of the output for the
current simulation step is calculated from the output value at the
last simulation step and the current input.

nnn ioo αα +−= −1)1(

Here on is the output value at simulation step n, in is the input
value at simulation step n and α is a parameter that depends on τ
and the time between simulation steps.

This equation requires the time between two simulation steps to
be constant. X3D players are commonly best-effort systems,
which try to run as fast as possible. No constant delay between
two simulation ticks can be assumed for them. Therefore we have
used the impulse response directly.

If a linear first-order filter receives a new input value every
simulation tick or less often, then the real signal can be seen as
approximated by the sum of a series of scaled step functions
which have their temporal origin shifted towards the point in time
of the simulation tick they belong to. The scale factor is the
difference between the current signal value and the previous one.

∑
+∞

−∞=
− −−≈

n
nnn ttstititi)())()(()(1

Due to the superimposition principle of linear filters (see section
3. Linear Filters) the output can be calculated as a similar sum of
step responses.

 ∑
+∞

−∞=
− −−≈

n
nnn ttStitito)())()(()(1

This leads to the formula below, which is used for calculating the
output value for the current simulation tick from the value of the
previous tick and the last received input value.

τ
t

nnnn etitotito
∆−

− −+=))()(()()(1

Here ∆τ is the time between the current and last simulation tick.

Since the Damper nodes contain one or more such filters,
depending on the value of the order field, this leads to the
following code in the EcmaScript implementation of the Damper.
The code snippet is taken from the PositionDamper.

function Tick(now) // will be called once for
{ // every simulation tick.

 var delta= now - lastTick;
 var alpha= Math.exp(-delta / tau);
 value1= order > 0 && tau
 ? input .add(value1.subtract(input)
 .multiply(alpha))
 : input;

 value2= order > 1 && tau
 ? value1.add(value2.subtract(value1)
 .multiply(alpha))
 : value1;

...
 value5= order > 4 && tau
 ? value4.add(value5.subtract(value4)
 .multiply(alpha))
 : value4;
The remainder of the Tick(.) function contains the code
described in the following section 6.3.2. Endign the Animation, a
statement that outputs the newly calculated value and some house-
keeping.

 <end detection>
 value_changed= value5;

 lastTick= now;
}

6.3.2. Ending the Animation
Due to the e-function in the step response of a first-order filter the
output will never reach the destination value exactly. For practical
reasons the animation calculations should stop after the
destination has nearly been reached. The following code
calculates the input-output distance for each internal filter and

stops the animation if all are below the limit specified by the eps
field.

var dist= value1.subtract(input).length();
if(order > 1)
{
 var dist2=
 value2.subtract(value1).length();
 if(dist2 > dist) dist= dist2;
}
if(order > 2)
{
 var dist3=
 value3.subtract(value2).length();
 if(dist3 > dist) dist= dist3;
}
...

if(dist < eps)
{
 value1= value2= value3= value4=
 value5= input;
 value_changed= input;
 StopTimer();
return;
}
This code snippet is to be inserted in the Tick(.) function
described in 6.3.1 Core Formula at the place marked with <end
detection>.

6.3.3. Performance Issues
The Tick(.) function, which is called once for each simulation
tick, is a straight block of consecutive statements. There is no loop
and no recursion, which would cause a significant amount of CPU
utilization if executed.

6.4. OrientationDamper and SFRotation
Similar to OrientationChasers, with the substitutions

)(),(, 1−

∆−

=== nn

t

toBtiAe τα

the core term

τ
t

nnnn etitotito
∆−

− −+=))()(()()(1

for a linear first-order filter can be written as:

)()(ABAto n −+= α

Since α is in the range 0..1, this can be interpreted as going from
one point A towards B by the relative amount α.

The slerp(.) function available in EcmaScript in X3D players
does exactly this for SFRotations:

),(.)(α BslerpAto n =

Therefore the OrientationDamper can be implemented using
the slerp(.) function.

7. Comparing Chasers and Dampers
Chaser nodes and Damper nodes each address the same kind of
problems, namly dynamically creating animations. Therefore their
benefits and drawbacks should be contrasted.

Chaser nodes feature a finite transition time, after which they
come at rest completely. There is a clear point in time at which a
transition has ended, and follow-on actions can be triggered.

Their drawback is that their implementation is more complex than
with Damper nodes, however, with nowadays computers this will
not be a problem unless a huge number of instances are used in a
scene.

Damper nodes, due to their dynamic equation being closer to
physical systems, create slightly more natural looking transitions.

Their drawback is that there is no clear end of an animation,
however, this contributes to aestetics. This makes it difficult to
trigger follow-on actions. Tweaking the eps parameter causes
either a little jump noticable at the end of an animation, or the
animation easing out for too long with no visual effect.

However, due to its straight-forward implementation a Damper
node is very light-weight and user interface design, where many
of its instances could be used, is a good application for Damper
nodes.

8. Conclusion
In this work we outline the need for a flexible scheme to create
animations based on data available only at runtime of a 3D
application. We develop a set of nodes, which we call Follower
nodes. It allows content creators to author transitions by just
indicating which new value a certain parameter should assume
and how much time the transition can take to perform. The
animations generated are smooth and stable, even for orientations.
Due to the easy application of the Follower nodes user interfaces
can be made richer and conventional key frame based animations
can be smoothed. Proof of concept is given through an
implementation using EcmaScript and a rich set of examples. The
implementation has been described in principle.

We plan to implement the missing nodes of the proposed node set.
We believe that Follower nodes are a general means of creating
animations and could be useful as part of the X3D specification.
Therefore we plan to implement them as native nodes in our X3D
player family BS Contact. We also want to investigate second-
order filter, as they exhibit the behavior of physical systems like
spring-mass-damper combinations. For the Chaser nodes we
proposed to use a cosine based step response. A parameter could
be added to switch to other step responses.

References
[1] LATHI, B. P. 2001. Linear Systems and Signals

[2] HEEGER, Pr. D. 2000. Signals, Linear Systems, and
Convolution

[3] OPPENHEIM, WILLSKY, A. S., and YOUNG, I. T. 1983 Signlas
and Systems. Prentice-Hall, Englewood Cliffs, New Jersey

[4] Followers home page, (Feb. 2006).
http://www.hersto.com/redir.php?Followers

[5] Bitmanagement, BS Contact VRML/X3D home page, (Dec 2005).
http://www.bitmanagement.de/products/bs_contact_vrml.en.html

[6] Dynamic Motion Synthesis, (Feb. 2006).
http://www.naturalmotion.com/files/dms_wp2005.pdf

[7] STEWARD, J.A., and CREMER C.F. Beyond keyframing: an
algorithmic approach to animation (Proceedings of the
conference on Graphics interface 1992) p. 273-281

[8] HODGINS, J. K., SWEENEY, P. K., and LAWRENCE, D. G.
Generating natural-looking motion for computer animation.
(Proceedings of the conference on Graphics interface 1992)
p. 265-272

http://www.bitmanagement.de/products/bs_contact_vrml.en.html
http://www.naturalmotion.com/files/dms_wp2005.pdf

	Abstract
	Keywords
	CCS Classification
	1. Introduction
	2. Motivation
	3. Linear Filters
	3.1. Finite Impulse Response Filters
	3.2. Infinite Impulse Response Filters
	3.3. Linear First-Order Filters

	4. Proposed Nodes
	4.1. Inheritance Structure
	4.2. Definition of Chaser Nodes
	4.3. Definition of Damper Nodes
	4.4. Interface Descriptions
	4.5. Field Semantics
	4.5.1.Fields Common for Followers and Dampers
	4.5.2.Fields specific to FIR Followers
	4.5.3.Fields specific to Dampers

	5. Usage in X3D Content / Examples
	5.1. Creating Animations
	5.1.1. Initialization
	5.1.2. Direct Control

	5.2. Smoothing Existing Animations
	5.3. Approximating Inertia

	6. Implementation
	6.1. Chasers
	6.2. OrientationChaser and SFRotation
	6.3.Dampers
	6.3.1. Core Formula
	6.3.2. Ending the Animation
	6.3.3. Performance Issues

	6.4. OrientationDamper and SFRotation

	7. Comparing Chasers and Dampers
	8. Conclusion
	References

