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Abstract
In this work we propose an alternative animation approach to the 
traditional  key  frame  based  interpolation  model.  By  way  of 
illustration we propose a set of nodes that apply these principles to 
the X3D standard. In contrast to predefined key frame animations 
our  way  of  defining  animations  allows  an  application  to 
dynamically  respond  to  the  current  situation  and  calculate  an 
animation on the fly, while the content author can work with an 
extremely simple mental model for the animations. It is also our 
opinion that the way these nodes calculate an animation creates 
smooth and thus pleasing transitions. In addition, our node set can 
be  used  to  approximate  the  effects  of  inertia,  without  the 
requirement  and  overhead  of  a  heavy  physics  engine  being 
present.  With only a little  of this inertia effect  applied,  objects 
(e.g.  a  slider  thumb)  can  subjectively  appear  to  have  more 
physical substance.
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1. Introduction
Animations made with the standard means provided by X3D, the 
so-called  Interpolator nodes which provide for key frame based 
animations,  often lack the  flexibility  of  responding to  arbitrary 
user input or to conditions emerging at runtime. Also, if they are 
used  in  a  low-bandwidth  scenario  they  provide  only  jerky 
movements with a limited amount of realism. This paper proposes 
a set of nodes that overcome these limitations without requiring 
the author to use programming skills.

The proposed nodes can be seen as  linear filters according to 
signal theory. They receive a time dependent value as their input, 
process it and output another time dependent value. The output 
value is calculated based on the current input value as well as on 
the past of the input value. Input can be received at discrete points 
in time or as a continuous series of values. We call these nodes 
'Follower' nodes.

The Follower nodes serve to be useful in three scenarios:

1. Creating animations.
A Follower node receives a new destination value, e.g. a 
position,  at  a  single  instance  in  time  and  creates  a 
smooth  transition  from  the  current  position  to  that 
destination  position  taking  the  current  speed  of 
movement into account.

2. Smoothing existing animations.
A  Follower node  receives  the  output  values  of  an 
Interpolator node,  post-processes  them  and  outputs  a 
smoother  version  of  the  values  changing  over  time.  
Such a transition may be more lifelike to end-users.

3. Approximating inertia.
Usually when software processes user input in order to 
move an object, a viewpoint etc, then the data from the 
input device is mapped directly to the moving object. 
This  makes  the  objects  appear  weightless  and  the 
created  animation  seems  “robotic”  or  unnatural. 
Follower nodes  overcome  this  by  simulating  a  small 
amount of inertia.

Please  see section  5.  Usage in  X3D Content  /  Examples for  a 
detailed description.

2. Motivation
The X3D standard has evolved from a file format for static 3D 
content (VRML 1), to a complex standard with many animation 
features and programmability options for creating interactive 3D 
applications.  When it  comes to  creating  animations  it  supports 
both novice users, who have no programming skills with nodes 
that allow them to create simple animations, as well as advanced 
programmers who can manipulate the scene graph dynamically.

However, the nodes that allow the creation of animations without 
using  scripts  –  the  Interpolator  nodes  in  conjunction  with  the 
TimeSensor node – are limited to predefined animations. This 
means that the starting point,  the end point and the path of an 
animation must  be known at  the design time of  an X3D-based 
application. The standard nodes don't calculate an animation path 
from information that emerges at runtime, e.g. when fed with a 
position based on a user click.

Moreover, interactive applications have to respond to user input 
which is usually non-predictable. The simple case of a door that 
opens when the user clicks it and should close when they click it 
again, illustrates the dilemma for content authors with limtted or 
no skills in writing programmatic code. The dilemma arises when 
the author wants to specify the behavior that should occur when 
the user clicks the door while it is in transition. With Interpolator 
nodes the author can define the animation of an opening door and 
of a closing door, but not an animation from an arbitrary point in-
between to either the opened or closed state.

Authors  usually  solve this  by defining the  animations  between 
both states and disabling the ability to click the door while the 
door is in transition. Such solutions contribute to user frustration 



because they make an application non-responsive at times. Other 
authors don't make provisions at all for this case and clicking the 
door  while  in  transition  creates  a  fan-out  conflict  for  the  two 
defined animations and the actual behavior of the door is left to 
the browser implementation. This leads to either a sharp jump in 
the door's motion at, or shortly after, the user click, which is never 
physically  correct  or  aesthetically  pleasing.  Please  see  the 
example “door-classical.wrl” in [4] for an illustration of the issue. 
The  example  “door-desired.wrl” demonstrates  how  the  issue 
should be solved.

Another simple,  straight-forward scenario  that shouldn't  require 
the  ability  to  program animations  is  the  example  of  a  simple 
interior design application. In such an application the user clicks a 
position on a wall and the selected piece of furniture moves to that 
location.  Programming  is  required  to  calculate  the  right 
orientation of the piece, but should not be necessary to calculate 
the time-based transition of the object from the current position 
and  orientation  to  the  new one.  This  scenario  is  illustrated  in 
“room-direct.wrl” and the desired behavior is shown in  “room-
desired.wrl” in [4].

From a usability point of view, transition animations help the user 
understand what’s going on. In the interior design application, for 
example when the previous position is out of view the transition 
helps  the  user  to  understand  that  the  piece  did  not  simply 
materialize  from  nowhere,  but  instead  came  from  somewhere 
offscreen in the direction implied by its motion.

In both scenarios, a node is desirable to which an application can 
send a destination position and which then calculates a transition 
from the current position to the desired one. In order to create a 
smooth  transition  it  should  also  factor  in  the  current  speed  of 
movement.  Besides  animations  of  positions,  animations  of 
orientations,  colors,  2D  coordinates,  mesh  coordinates,  etc  are 
also desirable, so that users only need to specify a new state and a 
transition is generated automatically.

This paper proposes a set of nodes that accomplish these tasks. 
Besides  creating  new transitions  dynamically,  these  nodes  also 
facilitate the smoothing of existing animations,  which produces 
more natural, realistic results. For example, they can imbue user 
interface elements with more physical substance by projecting a 
feeling of inertia, or resistance to changes.

The  problems  solved in  this  paper  have  been addressed in  the 
context of character, facial and physics animation et cetera ([6], 
[7], [8]), however, literature about this abstract scenario of simply 
and realistically transitioning from one value to another, without 
the onerous requirement of programming skills, is hard to find.

3. Linear Filters
The functionality of the animation  nodes proposed in this paper 
can  be  implemented  using  the  concept  of  linear  filters.  Linear 
filters  shall  be  briefly  explained  in  this  section. Further 
information can be found at [1] and [2].

A  filter  in  system  theory  is  a  device  which  accepts  a  time 
dependent value as its input, and outputs another time dependent 
value as its output. The value of the output at any instance in time 
depends on both the value of the input at that time and the values 
of the input in the past. Such a time dependent value is also called 
‘a signal’. A signal can be a scalar value (real number) as well as 
a multidimensional value (vector). If the discreteness of computer 
simulations is  neglected, the output of Interpolator nodes can be 
seen as a continuous signal. A signal in the form of a two-

dimensional vector is illustrated by the following equation:
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Let i(t) be the signal input port of the filter, o(t) the signal output 
port and T the operator of the filter, then a filter can be described 
as:
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A linear  filter  is  one  which  adheres  to  two  useful  conditions. 
Authors of X3D content need not understand these conditions in 
order to use Follower nodes, but these conditions explain how the 
Follower nodes work.

The  first  condition  is  that  with  a  linear  filter  the  output  is 
independent of the time the input is supplied – if you supply the 
same input signal at a later time, it will respond with the same 
output as before.
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The other condition is that superimposing multiple input signals 
results in the same superimposition of the responses for each input 
signal – if you scale the input, the output will be scaled the same 
way,  and if  you send the sum of  two signals  to  the  input,  the 
output will be the sum of the responses to the individual signals.
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These two conditions lead to the fact that a linear filter can be 
described by the response signal to just one input signal. One such 
commonly used response function is the step response. The step 
response  S(t) is  the  output  of  a  filter  that  has  received  a  step 
function s(t) as its input.
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Since  the  Follower  nodes  proposed  here  should  dynamically 
respond to input signals they receive at runtime, we need to limit 
our  consideration  to  the  so-called  'causal'  filters.  These  filters 
produce output only after they receive an input signal or at the 
time they receive it. For the step response this means that the step 
response is 0 for t<0.

Another  limitation  to  the  set  of  filters  that  is  applicable  for 
Follower nodes is that the output value of the step response should 
move towards the value 1 for large t. If it would target another 
value, the output of a Follower node would never reach the value 
received as a destination value.

Any continuous signal can be approximated by the sum of a series 
of  shifted  and  scaled  step  functions.  The  shifts  for  each  step 
function need not necessarily be an integer multiple of some  Δt 
value,  they  just  need  to  be  small  enough.  This  allows  for 
describing a signal with its value for each simulation tick in an 
X3D browser that usually does not have a constant delay between 
simulation ticks. 

Because of this ability to approximate a signal by step functions, 
and due to the shift invariance and superimposition constraints for 



linear filters,  the output  of a  linear filter  can be approximately 
described  as  the  same  combination  of  shifted  and  scaled  step 
responses.  The  following  diagram  illustrates  a  smooth  input 
function approximated by a series of step responses.

This  means  that  if  an  input  signal  has  been  described  by  the 
approximation 
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then the output of the filter can be described as:
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Linear filters can be put into two categories each of which has its 
drawbacks  and  advantages  for  authoring  animations.  These 
categories are  finite  impulse  response (FIR) and infinite  impulse 
response  (IIR)  filter.  Their  names  derive  from  the  impulse 
response function, which is not used in this paper in favor of the 
step  response.  Basically,  the  impulse  response  is  the  first 
derivative of the step response.

3.1. Finite Impulse Response Filters
Finite  impulse  response (FIR) filters  have an impulse  response 
that  goes  to  zero  after  a  finite  amount  of  time.  For  the  step 
response this means that it reaches a static value after that amount 
of time and the output of a FIR filter does not change thereafter. 
Since  only  a  value  of  1  is  applicable  as  the  static  value  for 
creating Follower nodes,  the step response of a FIR filter used 
here can be described with the following equation. Values other 
than 1 would create outputs that do not match the value of the 
inputs after a transition.
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Here  D is  the  duration  of  the  filter  and  f is  a  function  that 
describes the transition from 0 to 1.

If the input to a FIR filter ceases at a certain point in time, the 
output also stops changing after a period of length  D following 
that point in time.

3.2. Infinite Impulse Response Filters
Infinite impulse response (IIR) filters have an impulse response 
that generally never goes to zero once they have received a non-
zero input.  They usually consist of a feed-back loop. However, 
they may approach the  zero value asymptotically.  For  the  step 
response  of  an  IIR  filter  this  means  that  their  step  response 
asymptotically  approaches  a  certain  output  value.  Useful  for 
Follower  nodes  are  those  IIR  filters  whose  step  responses 
approach the value 1. Due to the causality constraint in real-world 
applications, IIR filters as used in this paper can be described with

the following equations:
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3.3. Linear First-Order Filters
The type of IIR filters used here are linear first-order filters. They 
have  an  exponential  step  response  described  by  the  following 
equation:
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Here τ is the time constant of the filter. It determines how fast the 
filter responds, i.e. how long it takes the output to reach the level 
of the input. Since the e-function never reaches zero for negative 
arguments, the output of a linear first-order filter reaches the input 
only approximately. However, it approaches it very fast due to the 
properties  of  the  e-function.  The  parameter  τ dictates  the  time 
required to reduce the output to 63 % of the difference from the 
input (1 - 1/e). After a few such periods the output can practically 
be said to have reached the value of the input.

The  fact  that  the  e-function  is  self-similar  for  scaling  makes 
implementing  linear  first-order  filters  very  simple  and  light-
weight.

4. Proposed Nodes
The  idea  of  a  Follower  node  is  that  the  application  sends  the 
Follower  node  a  new  destination  value  when  the  need  for  an 
object to change to a certain position, color or other type of value 
has  emerged,  and  then  the  Follower  node  calculates  a  smooth 
transition to that value – the output of a Follower node seems to 
'follow' its input.

This  idea  leads  to  the  below  declaration  of  an 
X3DFollowerNode, which is an abstract node that has various 
specializations  for  different  data  types  and  for  two  different 
animation methods.

A Follower node has an input field called  set_destination 
and an output field  value_changed, thus forming a filter. If a 
Follower  hasn't  received  input  for  a  long  time,  its  output  has 
relaxed at a certain value – the value of the last received input – 
and no longer sends output anymore. The follower is inactive.

When  such  an  inactive  Follower  receives  a  value  on 
set_destination it  begins  sending  events  on 
value_changed. These events begin with the current value of 
the value_changed field and move gradually towards the value 
received  until  they  reach  that  value,  at  which  point 
value_changed stops sending events. In this way the Follower 
creates a smooth transition from the current to the desired value 
when it receives a new destination.

If  a  transition  is  currently  in  progress  when  a  Follower  node 
receives another destination value, it calculates a new animation 
that goes to the newly received destination starting at the value 
value_changed has at the time the Follower receives the new 
destination.  It  takes  the  current  speed  of  movement  (first 
derivative of the signal on  value_changed) into account, and 
the transition created continues with this speed of movement for 
the first moments. The combined transition is smooth in that it 



neither jumps nor suddenly changes the direction of movement.

The above diagram illustrates this behavior: The circles mark the 
values that the Follower has received at certain instances in time 
and the curve shows the animation performed by the Follower on 
behalf of the destinations received. Before destination α has been 
received  the  Follower  has  relaxed  at  a  certain  value.  Upon 
reception of α it creates a transition from this relaxation value to 
the  new destination,  whereupon it  relaxes again.  The transition 
features  ease-in  and  ease-out.  When  the  next  destination  β is 
received,  another  transition  is  created  towards  this  new 
destination. Similarly for destination γ.

Destination  δ follows  γ very quickly,  so  that  the  animation 
triggered through γ has not yet been finished when δ is received. 
In this case the resulting animation after reception of δ smoothly 
diverges from the current animation until it becomes a transition 
towards the destination δ.

Follower  nodes  can  also  cope  with  continuous  input  on 
set_destination.  If  a  Follower  node  receives  a  value  on 
set_destination every simulation tick, and that value changes only 
minimallly  on  each  event  (like  the  transitions  generated  by 
Interpolator or Sensor nodes), then this creates another curve on 
value_changed.  This  curve  follows  the  rules  described  in 
conjunction with event  γ and  δ above. The difference is that the 
distance between adjacent input events is much shorter and the 
Follower always has to calculate a new transition. The result is 
that the output curve is a smoother and slightly delayed version of 
the input curve.

Example “t  est_PosFollower.wrl  ” in [4] illustrates the behavior of 
Follower nodes. Click in the gray area to generate a single input 
value or click-drag the mouse to generate continuous input, then 
watch the two spheres following your input.  They visualize the 
output of two implementation approaches of a Follower node.

This paper proposes two categories of Follower nodes, each of 
which  services  different  needs  and  has  unique  advances  and 
drawbacks. The first category takes only a limitted amount of time 
to reach the new destination. We call these nodes  Chaser nodes 
because they reach their destination very quickly.

The other category is that of the  Damper nodes. Damper nodes 
follow a dynamic equation that can be found in some physical 
systems (heat distribution, shock absorber - spring combinations, 
etc).  Damper  nodes  approach  their  destination  very  smoothly. 
They  actually  don't  reach  it  completely  but  approach  it  very 
quickly in an asymptotic way. In comparison to the Chaser nodes 
their  implementation  is  more  straight-forward  and  more  light­
weight.

In  the  abovementioned  example  the  red  sphere  visualizes  the 
output of an  X3DDamperNode,  and the green sphere visualizes 
the output of an X3DChaserNode.

4.1. Inheritance Structure
We propose an abstract  node  X3DFollowerNode,  from which 
the  X3DChaserNode and  X3DDamperNode are  derived nodes 
each having their specialization for the various data types. A few 
of the specializations are mentioned as examples, whilst others are 
conceivable.

X3DFollowerNode
+––– X3DChaserNode
| +––– PositionChaser
| +––– OrientationChaser
| +––– PositionChaser2D
| +––– ScalarChaser
| +––– PlacementChaser
+––– X3DDamperNode

+––– PositionDamper
+––– OrientationDamper
+––– ColorDamper
+––– PositionDamper2D
+––– CoordinateDamper
+––– TexCoordDamper
+––– PlacementDamper

The  PlacementChaser and  PlacementDamper are here for 
convenience in the cases where objects or viewpoints are moved. 
The PlacementChaser combines a PositionChaser and an 
OrientationChaser, and the PlacementDamper combines a 
PositionDamper and an OrientationDamper.

4.2. Definition of Chaser Nodes
X3DChaserNode nodes have a finite duration for their transition 
from the current value to the destination value. It can be specified 
as a field on the node. In the case in which the X3DChaserNode 
receives only a single destination value, the transition produced 
has the shape of a cosine function so that the resulting transition 
features ease-in and ease-out. 

The following equation applies for an X3DCahserNode that has 
relaxed at the output value  v0 and receives the destination  v1 at 
time T0. Its response duration has been set to D.
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If  an  X3DChaserNode receives  multiple  destination  values 
during a period of duration D, then each event received causes a 
similar  response  and  all  of  them  are  added  together 
(superimposed) in order to form the output. In that case the value 
v0 is the value received before the current value received. This 
superimposition is in accordance with the ability to approximate 
signals by step functions described in 3. Linear Filters.



In  terms  of  a  mathematical  description,  an  X3DChaserNode 
describes a linear filter with the step response
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4.3. Definition of Damper Nodes
The X3DDamperNode uses an e-function for its step response. Its 
output asymptotically approaches the destination value received. 
X3DDamperNodes have an order parameter, which specifies how 
many linear first-order filters are chained together. In such a chain 
the nth filter receives the output of its previous filter for n > 1 and 
the  1st filter  processes  the  input  of  the  X3DDamperNode. 
Chaining filters together increases the smoothness of the output.

For  the  case  in  which  the  X3DDamperNode with  order=1 
receives only a single destination value, the transition produced 
has the shape of a horizontally mirrored e-function. 

The  following  equation  applies  for  an  X3DDamperNode with 
order=1 that has relaxed at the output value v0 and receives the 
destination  v1 at  time  T0.  The  horizontal  stretch  factor  τ is  a 
parameter of the node as well as the number of filters in the chain.
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Since the  response  V(t) never  reaches the  value  v1 exactly  but 
approaches it very quickly, there is a tolerance value eps, which 
specifies  at  what  proximity  of  V(t) to  v1 the  animation can be 
stopped.

If an  X3DamperNode receives multiple destination values when 
the  previous  transitions  have  not  yet  finished,  then  each  event 
received  causes  a  similar  response  and  all  of  them are  added 
together (superimposed) in order to form the output. In that case 
the  value  v0 is  the  value  received  before  the  current  value 
received. This superimposition is in accordance with the ability to 
approximate  signals  by  step  functions  described  in  3.  Linear
Filters.

The  step  response  of  an  X3DDamperNode with  order=1 is 
described with:
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with: τ = time constant of the filter.

4.4. Interface Descriptions
Here an abbreviated notation is used, where a derived node does 
not  repeat  the  fields  of  its  base  type  and  the  always  present 
metadata field is omitted.

The abstract base types for all Follower nodes can be described as 
follows:

X3DFollowerNode: X3DChildNode {
  SFBool   [out]   isActive
}
X3DChaserNode: X3DFollowerNode {
  SFTime   []      duration
}   
X3DDamperNode: X3DFollowerNode {
  SFFloat   [in,out]   tau    (0, ∞)
  SFInt32   []         order  (0, 5)
  SFFloat   [in,out]   eps    (0, ∞)
}
To  describe  each  specialization,  “<Type>”  is  used  as  a  place­
holder for the data type being animated, and “Xxxxx” is used as a 
placeholder for the descriptive component of the node name:

XxxxxChaser: X3DChaserNode {
  <Type>       [in]         set_destination
  <Type>       [out]            value_changed
  <Type>       []       initial_destination
  <Type>       []       initial_value
  <Type>       [in]         set_value
}
XxxxxDamper: X3DDamperNode {
  <Type>       [in]         set_destination
  <Type>       [out]            value_changed
  <Type>       []       initial_destination
  <Type>       []       initial_value
  <Type>       [in]         set_value
}
As can be seen, the interface for all Follower nodes is the same 
and  differs  only  in  the data  type  animated.  The  parameters 
defining  the  transition  to  be  performed  depends  on  whether  a 
finite response is required or an exponential approach is sufficient. 



The following assignments to the placeholders are possible:

Xxxxx <Type> Node name
Position SFVec3f PositionChaser,

PositionDamper
Orientation SFRotation OrientationChaser,

OrientationDamper
Color SFColor ColorChaser,

ColorDamper
Scalar SFFloat ScalarChaser,

ScalarDamper
Position'2D SFVec2f PositionDamper2D
Coordinate MFVec3f CoordinateDamper
TexCoord MFVec2f TexCoordDamper
Placement SFVec3f, 

SFRotation
PlacementChaser,
PlacementDamper

The PlacementChaser and PlacementDamper do not fit the 
above scheme well because there is no data type for holding the 
combination of  a position and an orientation.  MFFloat with 7 
entries  could  be  used,  but  this  would  complicate  routes.  The 
PlacementChaser and  PlacementDamper are  declared  as 
follows:
PlacementChaser: X3DChaserNode {
   orPlacementDamper:   X3DDamperNode {
  SFVec3f       [in]         set_destinationPos
  SFRotation    [in]         set_destinationOri
  SFVec3f       [out]            valuePos_changed
  SFRotation    [out]            valueOri_changed
  SFVec3f       []       initial_destinationPos
  SFRotation    []       initial_destinationOri
  SFVec3f       []       initial_valuePos
  SFRotation    []       initial_val ueOri
  SFVec3f       [in]         set_valuePos
  SFRotation    [in]         set_valueOri
}
Each field has been mirrored, it exists once for the position and 
once for the orientation.

4.5. Field Semantics
Follower nodes serve as  filters  in  the  context  of  signal  theory. 
Therefore the fields of a Follower node serve to:

- provide input to the Follower;

- receive output from the Follower; and

- control the parameters of the filtering process.

All Follower nodes follow the same scheme of operation. They 
differ only in the data type on which they operate and whether it is 
a  Chaser  with  a  finite  response  time  or  a  Damper  with  an 
exponential  approach.  Therefore  the  fields  are,  by  way  of 
example,  described  only  for  the  PositionChaser and 
PositionDamper nodes. For the description of another Damper 
node, replace the data type SFVec3f with the respective type.

4.5.1.Fields Common for Followers and Dampers
SFVec3f  [in]  set_destination:

This sends input to the Follower. When a value is received, the 
Follower  begins  continuously  sending  values  to 

value_changed.  The values  gradually grow from the current 
value of value_changed until they reach the value received on 
set_destination.

For a Chaser the length of this period is defined by the duration 
field.  For  a  Damper  it  depends  on  the  tau,  order and  eps 
parameters as well as on the current state and destination value of 
the Damper.

The set_destination field can be used either by sending it a 
single value at certain instances in time, each of which triggers a 
complete  animation  towards  that  value,  or  it  can  be  used  by 
sending it a gradually changing value on each simulation tick, so 
that the Follower serves as a post-processor, e.g. for the output of 
an  Interpolator  or  Sensor  node.  If  used  with  a  single  value  at 
certain points in time, receiving a new destination value while the 
last transition is still in progress does not cause any irregularity. 
Instead,  the  Follower  calculates  a  new transition  based  on  the 
current and, in most cases, factoring in the speed of movement 
towards the new destination.

How the Damper  decides  when the  destination value has  been 
reached is specified by the value of the  eps field. The Damper 
may not send an value_changed event at all if no animation is 
required to reach that value, i.e. if value_changed already has 
the value received and, in the case that order is larger than 0, if the 
Damper is already at rest.

In the special cases where  order or  tau is 0 for  Dampers, or 
duration is 0 for a FIR Follower, the Follower simply forwards 
the value received to value_changed, without any processing.

SFVec3f  [out]  value_changed:
Emits the animation calculated by the Follower node. It usually 
sends values at times when there is not necessarily a stimulus to 
one of  the input  fields.  The  isActive field indicates whether 
value_changed is currently outputting values or not.

SFVec3f  []  initial_destination,
SFVec3f  []  initial_value:
These two fields allow initialization of the Follower to a certain 
state. If both fields are set to the same value,  value_changed 
sends this  value once  on  scene  startup  and then stops sending 
values. Alternatively, if the fields are set to different values, the 
Damper performs an animation from  initial_value towards 
initial_destination on  scene  startup.  The  shape  of  that 
animation is that of the step response. This is to say it is the same 
as if it had received the value of  initial_value a long time 
ago, and had received the value of initial_destination just 
at the moment of scene startup.

SFVec3f  [in]  set_value:
This  allows  an  application  to  directly  set  the  output  of  the 
Damper. When set_value receives a value,  value_changed 
sends  this  value  and  thereafter  animates  from  this  to  the 
destination. The shape of this animation is the same as that of the 
step  response  of  the  Follower,  i.e.  it  is  the  same  as  if  it  had 
received the value sent to set_value on set_destination a 
long time ago, and had just received the current destination.

One can use this to force the output of the Follower node to jump 
immediately to a certain value. If the same value is sent to both 
set_value and  set_destination,  the Damper outputs that 
value and stays there. If that happens to be the value last output on 
value_changed, the effect is that the animation is immediately 
brought to a halt without a jump.

An application can set up an animation from one value to another 
by sending the 'from' value to  set_value and the 'to' value to 
set_destination.



SFBool  [out]  isActive:
This indicates when an animation is being performed. It changes 
to  TRUE when  a  new  destination  value  is  received  via 
set_destination or  when  set_value forces 
value_changed away  from  the  destination,  and  it  flips  to 
FALSE when value_changed has reached the destination value. 
For a Chaser not the flip to  FALSE happens  duration seconds 
after the last value has been received at set_destination. For 
a  Damper  this  happens  when  the  difference  between 
value_changed and the destination falls below eps.

4.5.2.Fields specific to FIR Followers
SFTime  []  duration  (0,∞):
Specifies  how  long  it  takes  the  output  value  to  reach  the 
destination value.

4.5.3.Fields specific to Dampers
SFFloat  [in,out]  tau  (0,∞):
Specifies  how  long  it  takes  value_changed to  reach  the 
destination value.  Strictly speaking a Damper  never  reaches its 
destination  but  nonetheless  the  destination  is  approached  very 
quickly. After the period of time specified in the  tau field, the 
distance of  value_changed to the destination value has been 
reduced by 63 %. After the next such period of time the distance 
has again been reduced by 63 %, and so on. The value 63 % is 
derived from the euler  number  e  = 2.71828...  by the  equation 
.63 = 1 – 1/e.

SFInt32  []  order (0,5):
Specifies the number of linear first-order filters chained together 
internally.  The  larger  the  value  of  order  is,  the  smoother  the 
generated animation becomes,  but  the greater  the  overall  delay 
between input and output is.

With  values  for  order greater  than  5,  no  improvement  in 
smoothness  is  subjectively  achieved,  only  the  delay  increases. 
Because of this,  and the fact that other means can probably be 
implemented  more  efficiently  to  create  a  more  accurate  delay, 
only values up to 5 need to be supported for order.

In the case that order is 0, the Damper node just forwards every 
value  received  on  set_destination to  value_changed 
without any processing.

If order is 1, the whole Damper node is a linear first-order filter 
and  the   value_changed immediately  changes  the  direction 
and/or  speed  of  movement  when  a  new  destination  value  is 
received for set_destination at a single instance in time. For 
objects  being  moved  by  a  PositionDamper and/or 
OrientationDamper, this effect can be quite noticeable to the 
user and can be desired.

If order is larger than 1, and a new destination value is received 
via  set_destination while  an animation  is  currently  being 
performed,  the  values  sent  from  value_changed continue  to 
move with the current direction and speed. The Damper gradually 
changes these properties so that they eventually move towards the 
new destination.

SFFloat  [in,out]  eps  (0,∞):
Theoretically a Damper never reaches its destination due to the 
properties  of  the  e-function  (f(t)=e-t/τ).  The  field  eps allows 
authors to specify a threshold value, which the Damper uses to 
determine when  it  can  assume to  have reached the  destination 
value. When the difference between output value and destination 
value  becomes  smaller  than  eps,  the  Damper  sends  the 
destination value via  the  value_changed field  and  stops  the 

animation.  This  creates  a  little  jump  in  the  output,  but  this  is 
always smaller than  eps. The test is done individually for each 
internal filter, and the animation is only stopped if all of them are 
at rest.

5. Usage in X3D Content / Examples
Follower nodes can be used for creating new animations as well 
as for post processing existing animations or user input.

5.1. Creating Animations
As outlined in the sections above, Follower nodes can be used for 
easy creation of animations at  runtime.  When an object should 
move to a new place, change its color or should change shape (get 
new mesh coordinates),  the  application sends  this  value  to  the 
proper  Follower  node  and  the  Follower  node  calculates  a 
transition from the current value to the one given. No precautions 
have to be made for the case that the previous transition is still in 
progress.  Instead  of  repeating  the  goal  of  the  Follower  nodes 
specified above, a few scenarios of application should be given 
here.  The example  files  can be found at  [4].  All  the  examples 
facilitate the following route structure:

User interface elements like buttons, drop-down boxes, menus, 
sliders,  are  still  often  done from scratch in  context  with  X3D. 
These  elements  often  change  state,  e.g.  on  mouse-over,  button 
activation,  slider  movement,  or  fading  in  menus.  With  the 
Follower nodes authors need not be concerned about animating all 
these. They just  insert  a Follower node between the Script that 
calculates  the  color  values,  transparencies  or  positions  and  the 
geometry nodes of the UI element. Here Damper nodes can be 
prefered  to  Chaser  nodes  for  their  more  light-weight 
implementation. The examples in [4] incorporate this concept.

The scenario  of  an interior  design application where  users  can 
place objects in a room has already been outlined in section 2. 
Motivation. It's an example that demonstrates that with a Follower 
node consistent behavior can be achieved for arbitrary input and 
if new destinations are received before the current transition 
is finished. A  Script node receives the mouse clicks onto the 
walls,  calculates  the  proper  object  position and orientation and 
sends that information through a  PlacementFollower to the 
Transform node containing the object. See “room-desired.wrl”.

The door example shall also be mentioned here. It demonstrates 
the behavior when input is received while the current transition is 
still in progress. See “door_desired.wrl”.

With network communication position or other updates come in 
with a quite low frequency. Yet smooth transitions are desired. 
This  can be achieved  by  feeding  the  values  received  from the 
network  through  a  Follower  node.  Example  “MultiUser.wrl” 
demonstrates this in form of a simple multi-user world.  Avatar 
positions  are  received  about  every  .7  seconds  and  the 
PlacementFollower used has duration set to 1.

Example  “test_OriFollower.wrl” demonstrates  the  use  of 
Followers for rotations. On the top of the screen a few orientations 
can be predefined and then sent to the main object. The left side 
decides whether a Chaser or a Damper should be used. By rotating 
the below object on the right side a continuous signal can be sent 
to the Follower.



5.1.1. Initialization
Damper  nodes  can  be  set  to  perform animations  directly  after 
initialization. To do this, one must assign the starting point of the 
animation  to  initial_value and  the  destination  to 
initial_destination.

By default, a Damper node initializes with zero as the state of the 
output and animates from there the first time it receives an input 
via  set_destination.  If  this  is  not  desired,  the 
initial_value field  can  be  used  to  initialize  with  another 
value. In that case, initial_destination should be assigned 
the  same  value,  or  an  animation  towards  the  zero  state  is 
performed after initialization.

5.1.2. Direct Control
When  a  Damper  node  receives  a  value  via  set_value, 
value_changed immediately goes to that value and starts a new 
animation towards the current destination. This allows for:

- stopping an animation if  the value sent  is  the  current 
value of value_changed and this value is also sent to 
set_destination;

- creating a jump prior to moving towards the destination 
if set_destination does not receive a value; or

- setting up new animations if both set_destination 
and  set_value receive different  values  at  the  same 
time.

The  last  case  is  demonstrated  in  the  user  interface  of  the 
“test_OriFollower.wrl” example.  Most  buttons  there  exhibit  a 
little flash when they are activated. All the author had to do for 
achieving  this  effect  is  to  use  a  ColorDamper,  set 
initial_destination and initial_value to the color of a 
non-highlighted button and send the color of a highlighted button 
to set_value each time a flash is to occur.

5.2. Smoothing Existing Animations
If fed with continuous input signals, i.e. the set_destination 
field  receives  a  value  almost  every  simulation  tick,  then  the 
Follower nodes perform a low-pass filtering of the input signal. 
Fast changes in the input signal or edges are leveled out, and the 
resulting transitions become smooth, curved trajectories.

In combination with Interpolator nodes, this can be used to model 
smooth animations with a minimal number of key frame values.

By varying tau and order or duration, respectively the curve 
can be biased towards either accuracy or smoothness. Example 
“coaster-classical.wrl” and  “coaster-damper.wrl” illustrate  this 
behavior.

Another  example  of  smoothing  animations  is  given  in 
“3rdPersonView-c.wrl” and  “3rdPersonView-f.wrl”. A 3rd person 
view  is  created  through  a  Script  node  calculating  an  offset 
position and orientation to an avatar position and orientation. If 
fed directly to a Viewpoint node, the avatar appears stuck to the 
screen, like if being put into a HUD. If a PlacementChaser is 
inserted between the Script and Viewpoint,  the avatar seams to 
move lifelike over the terrain.

5.3. Approximating Inertia
Although not creating a physically correct simulation, Dampers 
can  be  used  to  create  the  sensation  of  innertia.  The  delay 
introduced through Damper nodes and the effect of smoothening 
out  the  input  signal  create  the  sensation  of  inertia  when  they 
process user input that is used for creating motion.

User  interfaces  like  sliders  benefit  from  Dampers  with  small 
values for tau, say ≤ .3 . The controlled objects appear to become 
solid  objects  as  opposed  to  hollow  massless  things.  Such 
applications use the following route structure:

The  example  “test_Sliders.wrl” demonstrates  this.  It  contains  a 
few sliders that manipulate a box. By playing a bit with the sliders 
one can verify that a little smoothening with a Damper node does 
not impair the usability of the sliders. Clicking the box disables 
the Damper node. The object then appears massless/'computerish'.

With greater values for tau, say ≥ .7 one can create some kind of 
inertia effect. “poor-mans-inertia.wrl” shows this effect: It is hard 
to accelerate, and once moving, it is hard to stop. Some work on 
the orientation should be done in this example in order to make it 
usable.

6. Implementation
Most  of  the  nodes  proposed  here  have  been  implemented  as 
ExternProtos using EcmaScript. These nodes can be found at [4]. 
With the exception of the PlacementDamper all Damper nodes 
have been implemented completely and have been used in real-
world applications. For the Chasers only the PositionChaser, 
OrientationChaser and  PlacementChaser have   been 
implemented for the sake of prove-of-concept. Trivial things like 
set_output or  initial_destination have  been  omitted 
for now.

6.1. Chasers
In their implementations Chasers have to model the concept of a 
step  response.  This  means  that  an  array  constituting  the  input 
signal  history  –  the  events  received  on  set_destination – 
must be maintained. Since the shape of the transition is finite for 
Chasers, the input array needs to cover only a limited period of 
time, namely that extending from the current point in time back 
into the past by duration seconds. Due to the smoothness of the 
response  function  it  is  not  necessary  to  remember  each  event 
received with its associated time stamp. It is sufficient to divide 
the history period into, say 20, equidistant slices, each of which is 
summarized by the latest received input value during that slice. 
This  limits  the  number  of  evaluations  of  the  step  response 
function at each simulation tick to a certain value.

The Chaser nodes have a function  Tick(.) which is evaluated 
each simulation tick. Due to the fact that the input to a linear filter 



can be approximated by a series of step functions and the output is 
the sum of the step responses to each of those input steps,  the 
Tick(.) function  evaluates  the  current  output  value  by 
evaluating the step response for each value in the history buffer 
and summing the results.

When the  Tick(.) function is entered, the first thing it does is 
update  the  history  buffer.  As  X3D  browsers  don't  necessarily 
provide  a  constant  frame  rate,  the  function  is  not  called  on  a 
regular basis, so it evaluates whether a new slice of time has been 
entered,  and  if  so  it  shifts  the  contents  of  the  history  buffer 
towards the past so that it covers the right period of time. The 
newly freed slot in the history buffer is set to the latest value of 
set_destination.  This code is outsourced into  the function 
UpdateBuffer(.) and  just  contains  time-stamp  and  buffer 
works, so that we don't include it here. See [4] for details. 

function Tick(now) // will be called once for
{                  // every simulation tick.
  var Frac= UpdateBuffer(Now);
The value Frac we get from UpdateBuffer(.) is the amount 
of time we are ahead of the time-stamp of the latest value in the 
history buffer divided by the length of a time slice. Thus Frac is 
in the range 0 ≤ Frac < 1. 

The history buffer is designed to contain the latest received input 
value at  index  0 and the values at  index  n have been recorded 
n * Δt seconds before that point in time, where Δt is the length of 
a time slice in seconds. Thus, the time an entry in the array has 
been recorded is Tn = (n + Frac) * Δt seconds ago.

Tick(.) simply calculates the difference between each entry in 
the  history  buffer  and  the  previous  entry,  evaluates  the  step 
response function at the time of Tn , multiplies both and sums them 
up.  For  the  oldest  value  in  the  buffer  it  uses  the  value  itself 
because  all  input  steps  received  before  don't  contribute  to  the 
shape of the response function anymore and their responses can be 
assumed  to  have  reached  that  value  already.  This  algorithm 
conforms to the equation:
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with
Bn: Entry in the history buffer at index n.
N: Number of entries in the history buffer.
R: Response function as defined in section 4.2

  var Output= previousValue; // the value just
                        //shifted off the buffer.
  var DeltaIn= Buffer[Buffer.length – 1]
               .subtract(previousValue);
  var DeltaOut= DeltaIn.multiply(StepResponse(
        (Buffer.length - 1 + Frac) * cStepTime));
  Output= Output.add(DeltaOut);
  for(var C= Buffer.length - 2; C>=0; C-- )
  {
    var DeltaIn= Buffer[C].subtract(Buffer[C+1]);
    var DeltaOut= DeltaIn.multiply(StepResponse(
                        (C + Frac) * cStepTime));
    Output= Output.add(DeltaOut);
  }
  value_changed= Output;
}

6.2. OrientationChaser and SFRotation
The iteration in  a  Chaser  is  basically  calculating the  following 
equation:
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where On is the sum after iteration n. With the Term substitutions
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the equation can be written as:
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This can be interpreted as going from one point On-1 towards A by 
the relative amount of  α, even if  α is a bit out of the range 0..1. 
The slerp(.) method available on SFRotation objects does just 
that.
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A can be calculated using the operator replacements:
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Therefore Chaser nodes can also be implemented for orientation 
values.

6.3.Dampers

6.3.1. Core Formula
The core  formula of  a  Damper  node is  the  step response of  a 
linear first-order filter:
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Usually in digital signal processing this step response is evaluated 
via the following equation, where the value of the output for the 
current simulation step is calculated from the output value at the 
last simulation step and the current input. 
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Here on  is  the output value at  simulation step n,  in is the input 
value at simulation step n and α is a parameter that depends on τ 
and the time between simulation steps.

This equation requires the time between two simulation steps to 
be  constant.  X3D  players  are  commonly  best-effort  systems, 
which try to run as fast as possible. No constant delay between 
two simulation ticks can be assumed for them. Therefore we have 
used the impulse response directly. 

If  a  linear  first-order  filter  receives  a  new  input  value  every 
simulation tick or less often, then the real signal can be seen as 
approximated  by  the  sum of  a  series  of  scaled  step  functions 
which have their temporal origin shifted towards the point in time 
of  the  simulation  tick  they  belong  to.  The  scale  factor  is  the 
difference between the current signal value and the previous one.
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Due to the superimposition principle of linear filters (see section 
3. Linear Filters) the output can be calculated as a similar sum of 
step responses.
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This leads to the formula below, which is used for calculating the 
output value for the current simulation tick from the value of the 
previous tick and the last received input value.
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Here ∆τ is the time between the current and last simulation tick.

Since  the  Damper  nodes  contain  one  or  more  such  filters, 
depending  on  the  value  of  the  order  field,  this  leads  to  the 
following code in the EcmaScript implementation of the Damper. 
The code snippet is taken from the PositionDamper.

function Tick(now) // will be called once for
{                  // every simulation tick.

  var delta= now - lastTick;
  var alpha= Math.exp(-delta / tau);
  value1= order > 0 && tau
         ? input .add(value1.subtract(input)
                      .multiply(alpha))
         : input;

  value2= order > 1 && tau
         ? value1.add(value2.subtract(value1)
                       .multiply(alpha))
         : value1;

...
  value5= order > 4 && tau
         ? value4.add(value5.subtract(value4)
                       .multiply(alpha))
         : value4;
The  remainder  of  the  Tick(.)  function  contains  the  code 
described in the following section 6.3.2. Endign the Animation, a 
statement that outputs the newly calculated value and some house-
keeping.

  <end detection>
  value_changed= value5;

  lastTick= now;
}

6.3.2. Ending the Animation
Due to the e-function in the step response of a first-order filter the 
output will never reach the destination value exactly. For practical 
reasons  the  animation  calculations  should  stop  after  the 
destination  has  nearly  been  reached.  The  following  code 
calculates  the  input-output  distance  for  each  internal  filter and 

stops the animation if all are below the limit specified by the eps 
field.

var dist= value1.subtract(input).length();
if(order > 1)
{
    var dist2=
           value2.subtract(value1).length();
    if(dist2 > dist)  dist= dist2;
}
if(order > 2)
{
    var dist3=
           value3.subtract(value2).length();
    if( dist3 > dist) dist= dist3;
}
...

if(dist < eps)
{
    value1= value2= value3= value4= 
             value5= input;
    value_changed= input;
    StopTimer();
return;
}
This  code  snippet  is  to  be  inserted  in  the  Tick(.) function 
described in 6.3.1 Core Formula at the place marked with  <end 
detection>.

6.3.3. Performance Issues
The Tick(.) function, which is called once for each simulation 
tick, is a straight block of consecutive statements. There is no loop 
and no recursion, which would cause a significant amount of CPU 
utilization if executed.

6.4. OrientationDamper and SFRotation
Similar to OrientationChasers, with the substitutions
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for a linear first-order filter can be written as:

)()( ABAto n −+=    α

Since α is in the range 0..1, this can be interpreted as going from 
one point A towards B by the relative amount α.

The slerp(.) function available in EcmaScript in X3D players 
does exactly this for SFRotations:

),(.)( α BslerpAto n =

Therefore the  OrientationDamper can be implemented using 
the slerp(.) function.



7. Comparing Chasers and Dampers
Chaser nodes and Damper nodes each address the same kind of 
problems, namly dynamically creating animations. Therefore their 
benefits and drawbacks should be contrasted.

Chaser  nodes  feature  a  finite  transition  time,  after  which  they 
come at rest completely. There is a clear point in time at which a 
transition has ended, and follow-on actions can be triggered. 

Their drawback is that their implementation is more complex than 
with Damper nodes, however, with nowadays computers this will 
not be a problem unless a huge number of instances are used in a 
scene.

Damper  nodes,  due  to  their  dynamic  equation  being  closer  to 
physical systems, create slightly more natural looking transitions.

Their  drawback  is  that  there  is  no  clear  end  of  an  animation, 
however, this contributes to aestetics. This makes it  difficult to 
trigger  follow-on  actions.  Tweaking  the  eps parameter  causes 
either a little jump noticable at the end of an animation, or the 
animation easing out for too long with no visual effect.

However,  due to  its  straight-forward implementation a  Damper 
node is very light-weight and user interface design, where many 
of its instances could be used, is a good application for Damper 
nodes.

8. Conclusion
In this work we outline the need for a flexible scheme to create 
animations  based  on  data  available  only  at  runtime  of  a  3D 
application. We develop a set of nodes, which we call  Follower 
nodes.  It  allows  content  creators  to  author  transitions  by  just 
indicating which new value a  certain  parameter  should assume 
and  how  much  time  the  transition  can  take  to  perform.  The 
animations generated are smooth and stable, even for orientations. 
Due to the easy application of the Follower nodes user interfaces 
can be made richer and conventional key frame based animations 
can  be  smoothed.  Proof  of  concept  is  given  through  an 
implementation using EcmaScript and a rich set of examples. The 
implementation has been described in principle.

We plan to implement the missing nodes of the proposed node set. 
We believe that Follower nodes are a general means of creating 
animations and could be useful as part of the X3D specification. 
Therefore we plan to implement them as native nodes  in our X3D 
player family  BS Contact. We also want to investigate second-
order filter, as they exhibit the behavior of physical systems like 
spring-mass-damper  combinations.  For  the  Chaser  nodes  we 
proposed to use a cosine based step response. A parameter could 
be added to switch to other step responses.
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