
A JSON Encoding for X3D

Roy Walmsley

Web3D Consortium

roy.walmsley@ntlworld.com

Donald Brutzman

Naval Postgraduate School

brutzman@nps.edu

John Carlson

Web3D Consortium

john@carlsonsolutiondesign.com

Figure 1: Comparison of JSON (left) and XML (right) encoded bicycle model

Abstract

X3D is a royalty-free openly published standard for 3D graphics,
that has been ratified in a suite of ISO/IEC international standards.
This paper reports on the development of a new standard for a
JSON encoding.

The basic structures of the JSON language are summarized, and
the mapping of the X3D abstract definitions to these structures
detailed. The work on a JSON schema for validation of the X3D
content is described, including some comparisons of the
expressive power of the JSON and XML schemas which show
that the JSON schema validation of the JSON encoding offers
enhanced validation possibilities. Finally the early work on
different implementations of the new encoding is presented,
which confirm the overall success of the encoding.

Keywords: X3D, JSON, ISO/IEC standard, encoding

Concepts: • General and reference~Computing standards,
RFCs and guidelines • Computing methodologies~Virtual reality

1 Introduction

Extensible 3D (X3D) is a royalty-free open standard for 3D

graphics. A suite of international standards has been ratified by

the International Standards Association (ISO), the first ISO/IEC

standard being published in 2005. Active development is still

continuing, with further standards being prepared. This paper

reports on one of those, namely the introduction of a new fourth

encoding, based on the popular JSON language.

The remainder of this paper is structure as follows. Sections 2 and

3 give an overview of X3D and JSON respectively, including a

summary of the existing international standards for each. Section

4 details the JSON encoding, with comparisons to the existing

XML encoding. Section 5 describes the development and testing

processes used. Section 6 reports on validation and the generation

of a JSON schema. Section 7 introduces implementations that are

under development for the new encoding. Finally, section 8

concludes with a summary of further work.

2 X3D Overview

X3D is a royalty-free, open standard that defines both a file

format specification and run-time architecture to represent and

communicate 3D scenes, objects, events, behaviours and

environments. A suite of International Standards Organization

ratified standards has been developed and published. These

standards provide a system for the storage, retrieval and playback

of real time graphics content embedded in applications or web

pages, all within an open architecture to support a wide range of

domains and user scenarios.

X3D incorporates a modular design, with a rich set of

componentized features that can be tailored for use in engineering

and scientific visualization, CAD and architecture, geographical

information systems, medical visualization, training and

simulation, multimedia, entertainment, education, and more.

2.1 Architecture

Conceptually, an X3D application is a time-based 3D space that

contains both graphic and aural objects. These objects can be

loaded from predefined files in various formats and dynamically

modified, or even dynamically created, through a variety of

mechanisms.

Publication rights licensed to ACM. ACM acknowledges that this
contribution was authored or co-authored by an employee, contractor or
affiliate of the United States government. As such, the United States
Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government
purposes only.

Web3D '16, July 22 - 24, 2016, Anaheim, CA, USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-4428-9/16/07…$15.00
DOI: http://dx.doi.org/10.1145/2945292.2945304

http://dx.doi.org/10.1145/2945292.2945304

The X3D system architecture is shown in Figure 2. An

application, whether stand-alone or part of a web browser, for

example, requires a number of components. These include parsers

and loaders to read incoming files and/or streams, which may be

in different formats, a scene graph manager to handle the resulting

scene graph, including user defined prototypes, scripting engines

to handle scripts defined within the scene, and an event manager

to organize events that may arise both internally within the scene,

or externally by user interaction or external applications.

Figure 2: X3D architecture

2.2 ISO/IEC standards structure

The X3D suite of international standards is divided into three sets.

These are the abstract structures and API, encodings, and

language bindings. Daly and Brutzman [2000] present a detailed

review which is summarized here.

The abstract structures and API are specified in ISO/IEC 19775,

which has two parts, as follows:

 Extensible 3D (X3D) – Part 1: Architecture and base

components [2013]

 Extensible 3D (X3D) – Part 2: Scene access interface

(SAI) [2015]

Part 1 includes the definitions of 233 nodes as well as other

statements and operational principles, all in a file format

independent way. Part 2 covers the API to handle both internally

and externally generated interactions, independently of any

programming language.

The encodings set, ISO/IEC 19776, consists of three parts:

 Extensible 3D (X3D) Encodings – Part 1: Extensible

Markup Language (XML) encoding [2015]

 Extensible 3D (X3D) Encodings – Part 2: Classic

VRML encoding [2015]

 Extensible 3D (X3D) Encodings – Part 3: Compressed

binary encoding [2015]

Each of these standards maps the abstract objects defined in Part 1

of ISO/IEC 19775 to a specific X3D encoding using a particular

format.

The final set, language bindings, ISO/IEC 19777, consists of two

parts:

 Extensible 3D (X3D) language bindings – Part 1:

ECMAScript [2006]

 Extensible 3D (X3D) language bindings – Part 2: Java

[2006]

Each of these standards maps the language independent API

defined in Part 2 of ISO/IEC 19775 to a specific programming

language.

This paper describes a new JSON encoding that is being prepared

for submission as an additional part to ISO/IEC 19776.

3 JSON overview

JSON (JavaScript Object Notation) is an open standard

format, first specified and published by Douglas Crockford.

JSON is a lightweight, text-based, language-independent

data interchange format. It was derived from the

ECMAScript programming language, but is programming

language independent. There are JSON implementations in

many different programming languages.

3.1 JSON standards

The specification of JSON is covered in a number of

standards. The earliest was as a subset of JavaScript within

the ECMA-262 [2015] standard. This has now been

published as ISO/IEC 16262:2011 international standard. It

describes both the JSON lexical and JSON syntactic

grammars. There is also a separate ECMA-404 [2013]

standard.

JSON was also originally published as RFC4627, but this is

now obsolete and has been replaced by RFC7159 [BRAY

2014].

All these standards have identical grammars. The RFC

references the ECMA documents, but contains additional

material, such as security vulnerability considerations, for

internet usage.

3.2 JSON structure

JSON defines a small set of rules for the portable

representation of structured data. It uses human readable

text to transmit data objects consisting of attribute-value

pairs.

JSON has just two primary data structures: objects and

arrays.

 Objects: A collection of name/value pairs, where

the name of each pair should be unique within the

collection.

 Arrays: An ordered list of values, each of which

may be of any of the seven types.

JSON defines a value to be one of seven types. These are a

string, a number, an object, an array, true, false, or null.

The original web site [ANONYMOUS] provides a full

description of the grammar in both graphical and text

formats.

4 Encoding description

Aligning X3D scene graphs with the JSON data structures

described above was the guiding principle of the design

process. A further goal was that the JSON encoding should

be “round trippable”, i.e. starting from one encoding, say

XML, translating to JSON, and then translating back to the

original encoding should result in the original and resulting

XML encodings having identical functionality.

4.1 Nodes

The primary construct of a scene graph are the nodes. In

terms of the abstract specification 19775-1 these are any of

the 233 X3D nodes defined therein, all of which are

derived from the abstract type X3DNode. In the XML

encoding nodes are defined as XML elements. In the JSON

encoding nodes are defined as objects.

The name (i.e. node type) of a node in the XML encoding

is in the XML tag. In JSON the node name is the name

portion of the name/value pair. Taking an empty Group

node as an example, the XML encoding would be

<Group/>

In JSON this becomes

 “Group”: {}

The name is expressed as a JSON string, which is always

double quoted. The colon acts as the name value pair

separator. Finally the left and right curly braces denote an

object. Since the object is empty, all the attributes of the

Group object assume their default values.

4.2 Fields

The attributes of X3D nodes are known as fields. They can

be categorized in various ways, and the one of particular

interest here is whether the field contains simple values,

e.g. numbers or strings, or whether the fields hold

references to other nodes. In the discussion below the terms

for the two categories will be ‘value field’ and ‘node field’

respectively.

During development it became clear that it was necessary

to make it easy to distinguish the names of fields from the

names of nodes, since both appear as JSON strings. It was

decided to prepend a non-alphabetic character to field

names, using different characters for the two field

categories. This makes it easy for parsers, loaders and

validators to recognize the string as a field name, and

identify any errors in usage.

4.2.1 Value fields

Value fields in JSON are prepended with the ‘@’ symbol.

In XML the value field is encoded as an attribute of the

element node. On extending the previous empty Group

example to include the bboxSize field the XML encoding

would be:

 <Group bboxSize=’-1 -1 -1’/>

In JSON a field is encoded as a property of the object. The

corresponding JSON encoding for this extended example

becomes:

 “Group”: {

 “@bboxSize”: [-1, -1, -1]

}

Since this particular field has an array of three values, the

JSON encoding specifies the values in an array structure

which is delineated by the square brackets and uses the

comma to separate values.

4.2.2 Node fields

The distinguishing character for a node field is the ‘-’

symbol. In XML node fields are not directly specified as

attributes of the node, because their values are represented

as children elements. So, the containing node field has to

be separately specified using the ‘containerField’ attribute

of the child node, to indicate which field of the parent node

the child node belongs to. Extending the previous example

to include the ViewPoint node as the only value in the

children field of the Group node, the XML encoding

becomes:

<Group bboxSize=’-1 -1 -1’>

 <Viewpoint containerField=’children’/>

</Group>

In JSON this slightly unnatural approach is not necessary.

The node field is encoded, like a value field, as a property

of the containing object. The node representing the value is

then encoded as an object. So the equivalent JSON

encoding becomes:

“Group”: {

 “@bboxSize”: [-1, -1, -1],

 “-children”: [

 { “Viewpoint”: {}

 }

]

}

As the children field can hold multiple child nodes the

value(s) are encoded into an array. The JSON syntax

permits array elements to be any of the seven types. Child

nodes are therefore encoded as objects with the only object

property being the type of the node.

Had the node field been one which only accepted a single

node the node field would have been encoded as an object,

without requiring an array. This object would have had a

single property, whose name is the X3D node type. This

can be illustrated using the Appearance node, which has a

material field that accepts a single node. The JSON

encoding would be:

“Appearance”: {

 “-material”: {

 “Material”: {

 “diffuseColor”: [0.7,0.4,0.1]

 }

 }

}

The equivalent XML encoding would be:

<Appearance>

 <Material containerField=’material’

 diffuseColor=’0.7 0.4 0.1’/>

</Appearance>

4.3 Comments

In JSON there is no specific provision for comments,

unlike the other encoding formats. For example, in XML,

comments can be included anywhere, and take the form

<!—- This is a comment -->

JSON must encode comments using the standard structures.

This has been done using a name/value pair where the

name is “#comment” and the value is a string. The above

XML comment would be encoded in JSON as

“#comment”: “This is a comment”

The positioning of comments within a JSON encoding,

however, proved difficult. Consider the previous examples,

with two comments included. In XML this might be:

<Group bboxSize=’-1 -1 -1’>

 <!-- Before Viewpoint -->

 <Viewpoint containerField=’children’/>

 <!-- After Viewpoint -->

</Group>

A first attempt at an equivalent JSON encoding produces:

“Group”: {

 “@bboxSize”: [-1, -1, -1],

 “#comment”: “Before Viewpoint”,

 “-children”: [

 “Viewpoint”: {}

],

 “#comment”: “After Viewpoint”

}

The difficulty here is that, according to the JSON

specifications, property names of JSON objects should be

unique. The encoding was being designed to adhere to this

principle, so the listing above could not be used. This was

resolved by always placing comments in a “-children”

field. The “-children” field, being an array is permitted to

have multiple items with the same name. The encoding

therefore becomes:

“Group”: {

 “@bboxSize”: [-1, -1, -1],

 “-children”: [

 “#comment”: “Before Viewpoint”,

 “Viewpoint”: {},

 “#comment”: “After Viewpoint”

]

}

4.4 ROUTEs

X3D ROUTEs presented the same type of issues as

comments, and were resolved in a similar way. An X3D

ROUTE is encoded in XML as an element, similar to a

node. Multiple ROUTEs can appear together, anywhere

within a scene.

In JSON a ROUTE is encoded as an object, with the name

“ROUTE”, which has four properties “fromField”,

“fromNode”, “toField”, and “toNode”. Like comments,

ROUTEs are placed into the array value of a “-children”

field.

4.5 Embedded source code

X3D Script and shader nodes can contain embedded source

code. For XML these are encoded into a CDATA section.

There is no similar provision in JSON to the XML

CDATA. Therefore the encoding has to incorporate this

into the standard JSON structures.

This was accomplished in the JSON encoding by using a

name/value pair with the name “#sourceText” and the

value as an array of strings, one string for each line of the

CDATA text. The following short JSON encoding example

illustrates this.

"Script": {

 "@DEF":"myScript",

 "#sourceText":[

 "ecmascript:",

 "// Include source code here ",

 "function anySFBool (val, timestamp)",

 "{",

 "\tsomeMFInt32 = 0; ",

 "}"

]

}

5 Development and testing

5.1 Example archives

One of the principle assets available when designing the

encoding was the large examples archive held by the

Web3D Consortium. The total number of examples was in

excess of 3800. Their primary encoding is XML. They

cover virtually all the nodes in the X3D standards. The first

step was to automate the conversion of all of these

examples from XML to JSON.

5.2 Stylesheet conversion

The automatic conversion of an example from XML to

JSON was accomplished by using an XML to JSON

stylesheet converter, using XSL version 2.0. The stylesheet

was run in batch mode on every example in the archive.

After each conversion, the resultant JSON output file was

tested for conformance to JSON using JSLint, a well-

known JavaScript quality assessment tool [CROCKFORD

2008].

This process highlighted two JSON specific issues. The

first was character escaping in strings. XML and JSON

have different character escaping requirements.

Furthermore, in XML, CDATA sections require less

escaping than in non-CDATA sections. Care was needed to

ensure that XML character escaping was correctly

identified and that JSON character escaping was used when

required.

Source code or shader text were the most difficult to

correctly identify character escaping. In XML such text is

plain text within a CDATA section. However, on encoding

into JSON the text is encoded into a string, which is

delineated with double quotes. Any double quotes

occurring in the XML text, which don’t need to be escaped,

do need to be escaped in JSON. For example, consider the

following line extracted from a longer CDATA section in

XML:

sceneString=’<X3D version=”3.1”

profile=”interchange”>\n’ +

The only escaped character is the line feed character

towards the end. When this is converted to JSON, however,

the double quotes also need to be escaped. So the correct

JSON encoding is:

“sceneString=’<X3D version=\”3.1\”

profile=\”interchange\”>\n’ +”,

The second issue was number representation. JSON only

permits decimal numbers. In contrast, XML permits other

formats, such as hexadecimal. The stylesheet converter

must, therefore, ensure all numbers are decimal and convert

them to decimal if not.

6 Validation

6.1 Schema development

The next step in the development process was to validate

the resulting JSON encodings for consistency with the X3D

standards. This is accomplished in XML using multiple

techniques, with varying levels of expressive power. The

simplest available for X3D is the document type definition

(DTD). Then there is an XML schema, and finally, a

Schematron, which has the most comprehensive validation

capability.

For JSON, a schema was developed covering all X3D

nodes. Automated schema generation tools were

investigated but all were found to be unsuitable. The

schema was manually designed using a tool with a

graphical user interface. The final schema, which is over

17500 lines in length, can be viewed online or downloaded

from http://www.web3d.org/specifications/x3d-3.3-

JSONSchema.json.

Once complete, the schema was incorporated into the batch

conversion process as an additional test on each JSON file

produced.

The JSON schema was found to have more expressive

power than the corresponding XML schema. For example,

the JSON encoding separates child node content into the

individual containing fields, whereas the XML encoding

merges all the children into one group as child elements of

the node, irrespective of the field. The XML schema,

therefore, can only validate the combined child content,

and often cannot be as strict as theoretically desired. JSON,

on the other hand, can validate each individual node field’s

children. This enables stricter validation in JSON.

Another improvement in JSON validation concerns arrays.

In JSON the value of each individual item can be validated

independently. This is not the case with XML, where little

validation is usually possible.

6.2 Schema specifications

At the time of writing there are no specifications covering

JSON schema. Galiegue and Zyp [2013] submitted an IETF

internet draft. Although this expired on August 4
th

 2013, it

is still in regular use as the most recent draft. Independent

work is currently proceeding to update this.

7 Implementations

The final stage of the practical development was

http://www.web3d.org/specifications/x3d-3.3-JSONSchema.json
http://www.web3d.org/specifications/x3d-3.3-JSONSchema.json

implementations covering loading and display of JSON

encoded X3D scenes.

This stage also included document validation. This is

important to ensure that security vulnerabilities, such as

cross site scripting, are minimized, particularly when the

JSON document, once loaded, may be handed off to other

tools, e.g. rendering within an HTML document.

Validation becomes part of the pipeline of handling X3D

JSON.

For web browser testing two applications are available,

which support incorporating XML encoded X3D into an

HTML web page, are X3DOM and Cobweb. A JSON

loader has been successfully developed for these, albeit

with the restrictions of the two applications.

X3DOM, for example, does not support prototypes.

However, an additional JSON prototype expander is in

development to overcome this.

A second implementation in C++ is also under

development. This is a standalone application that can

already display XML encoded scenes. A loader for JSON

has been successfully added. Figure 1 shows the same

bicycle model encoded both as JSON and as XML, with

JSON on the left and XML on the right. The original XML

encoding was converted to JSON using the tools described

earlier.

8 Further work

Over the years four versions of X3D have been

standardized, with improvements and additions in the later

versions. There are XML schemas for each version. Work

is ongoing to automate the generation of JSON schemas for

each individual version, starting from the XML schemas,

using an XML encoded object model as an intermediate

step. Work is also continuing on all the implementations

mentioned above.

Drafting of a new encoding specification is in progress. On

completion it will be submitted to ISO/IEC for ratification

as part 5 of the IEC/ISO standard 19776.

Future work may also consider utilization of the Efficient

XML Interchange (EXI) for JSON, currently being drafted

by the W3C [2016], as a means for simultaneously

optimizing performance and the utilization of

computational resources.

References

ANONYMOUS. Introducing JSON. http://www.json.org/

BRAY, T. 2014. The JavaScript Object Notation (JSON) Data

Interchange Format. http://www.rfc-editor.org/rfc/rfc7159.txt

CROCKFORD, D. 2008. Javascript: The Good Parts. O’Reilly
Media.

DALY, L., AND BRUTZMAN, D. 2000. X3D: Extensible 3D Graphics
Standard. IEEE Signal Processing Magazine (Nov), 130-135.

ECMA-262 2015. ECMAScript 2015 Language Specification.
http://www.ecma-international.org/publications/standards/Ecma-
262.htm

ECMA-404 2013. The JSON Data Interchange Format.
http://www.ecma-international.org/publications/standards/Ecma-
404.htm

GALIEGUE, F. AND ZYP, K. 2013. JSON Schema: core definitions
and terminology draft-zyp-json-schema-04. Internet Engineering
Task Force Internet Draft.

ISO/IEC 19775-1:2013. Information Technology – Computer
graphics, image processing and environmental data representation
– Extensible 3D (X3D) – Part 1: Architecture and base
components

 ISO/IEC 19775-2:2015. Information Technology – Computer
graphics, image processing and environmental data representation
– Extensible 3D (X3D) – Part 2: Scene access interface (SAI)

ISO/IEC 19775-2:2015. Information Technology – Computer
graphics, image processing and environmental data representation
– Extensible 3D (X3D) – Part 2: Scene access interface (SAI)

ISO/IEC 19776-1:2015. Information Technology – Computer
graphics, image processing and environmental data representation
– Extensible 3D (X3D) encodings – Part 1: Extensible Markup
Language (XML) encoding

ISO/IEC 19776-2:2015. Information Technology – Computer
graphics, image processing and environmental data representation
– Extensible 3D (X3D) encodings – Part 2: Classic VRML
encoding

ISO/IEC 19776-3:2015. Information Technology – Computer
graphics, image processing and environmental data representation
– Extensible 3D (X3D) encodings – Part 3: Compressed binary
encoding

ISO/IEC 19777-1:2006. Information Technology – Computer
graphics and image processing – Extensible 3D (X3D) language
bindings – Part 1: ECMAScript

ISO/IEC 19777-2:2006. Information Technology – Computer
graphics and image processing – Extensible 3D (X3D) language
bindings – Part 2: Java

W3C. Efficient XML Interchange (EXI) for JSON. W3C First
Public Working Draft 28 January 2016.
http://www.w3.org/TR/exi-for-json

http://www.json.org/
http://www.rfc-editor.org/rfc/rfc7159.txt
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-404.htm
http://www.ecma-international.org/publications/standards/Ecma-404.htm
http://www.w3.org/TR/exi-for-json

