
ISO/IEC 19775-1 Edition 3 Index page

index.html[8/1/2020 9:58:48 AM]

ISO/IEC WD 19775-1:202x © Web3D Consortium — All rights reserved

Extensible 3D (X3D)

ISO/IEC 19775-1:20xx

This document is Edition 4 of ISO/IEC 19775-1, Extensible 3D (X3D). The full title of
the International Standard is: Information technology — Computer graphics, image
processing and environmental data representation — Extensible 3D (X3D).

Parts Description

 Part 1: Architecture and
base components

Part 1 contains the abstract functional specification for the
X3D framework, and definitions of the standardized
components and profiles.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Index page

X3D.html[8/1/2020 9:58:50 AM]

Extensible 3D (X3D)

ISO/IEC 19775-1:20xx

This document is Edition 4 of ISO/IEC 19775-1, Extensible 3D (X3D). The full title of
the International Standard is: Information technology — Computer graphics, image
processing and environmental data representation — Extensible 3D (X3D).

Parts Description

 Part 1: Architecture and
base components

Part 1 contains the abstract functional specification for the
X3D framework, and definitions of the standardized
components and profiles.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Contents

Architecture.html[8/1/2020 9:58:52 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

ISO/IEC 19775-1:2013 202x

This document is Edition 3 4 of ISO/IEC 19775-1, Extensible 3D (X3D). The full title of
this part of the International Standard is: Information technology — Computer graphics
and image processing Computer graphics, image processing and environmental data
representation — Extensible 3D (X3D) — Part 1: Architecture and base components.

Background Clauses Annexes

 Foreword 1 Scope 22 Environmental
sensor component

A Core profile

Introduction
 2 Normative

references
23 Navigation

component
B Interchange profile

 3 Definitions,
acronyms, and
abbreviations

24 Environmental
effects component

C Interactive profile

 4 Concepts 25 Geospatial
component

D MPEG-4 interactive
profile

 5 Field type
reference

26 Humanoid
Animation (HAnim)
component (H-Anim)

E Immersive profile

 6
Conformance

27 NURBS
component

F Full profile

 7 Core
component

28 Distributed
interactive simulation
(DIS) component

G Recommended
navigation behaviours

 8 Time
component

29 Scripting
component

H CADInterchange
profile

 9 Networking
component

30 Event utilities
component

I OpenGL shading
language (GLSL) binding

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Contents

Architecture.html[8/1/2020 9:58:52 AM]

10 Grouping
component

31 Programmable
shaders component

J Microsoft high level
shading language (HLSL)
binding

11 Rendering
component

32 CAD geometry
component

K nVidia Cg shading
language binding

12 Shape
component

33 Texturing3D
component

L MedicalInterchange
profile

13
Geometry3D
component

34 Cube map
environmental
texturing component

Z Version content

14
Geometry2D
component

35 Layering
component

Bibliography

15 Text
component

36 Layout
component

 Component index

16 Sound

component
37 Rigid body

physics component
 Profile index

17 Lighting

component
38 Picking sensor

component

 Node index Node,
abstract node type, and
abstract interface index

18 Texturing

component
39 Followers

component

19

Interpolation
component

40 Particle
systems component

20 Pointing

device sensor
component

41 Volume
rendering component

21 Key device

sensor
component

42 Projective
texture mapping
component

43 Annotation

component

The Foreword provides background on the standards process for X3D. The
Introduction describes the purpose, design criteria, and functional characteristics of
X3D. The following clauses define Part 1 of ISO/IEC 19775:

1. Scope defines the problem area that X3D addresses.
2. Normative references lists the normative standards referenced in this part of

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Contents

Architecture.html[8/1/2020 9:58:52 AM]

ISO/IEC 19775. (editorial updates to latest versions)
3. Definitions, acronyms, and abbreviations contains the glossary of terminology

used in this part of ISO/IEC 19775.
4. Concepts describes the workings of the X3D runtime system.
5. Field type reference describes the fundamental data types in X3D (expected

addition of HTML5 event-model and DEF/id relationships).
6. Conformance describes the conformance requirements for X3D implementations.
7. Core component provides a detailed specification of the Core component of X3D.
8. Time component provides a detailed specification of the Time component of X3D.
9. Networking component provides a detailed specification of the Networking

component of X3D (proposed changes to Inline content, security precautions).
10. Grouping component provides a detailed specification of the Grouping

component of X3D.
11. Rendering component provides a detailed specification of the Rendering

component of X3D.
12. Shape component provides a detailed specification of the Shape component of

X3D (proposed node PointProperties, expected node ExternalShape, Material
extensions for textures and their mapping, PhysicalMaterial, UnlitMaterial).

13. Geometry3D component provides a detailed specification of the Geometry3D
component of X3D.

14. Geometry2D component provides a detailed specification of the Geometry2D
component of X3D.

15. Text provides a detailed specification of the Text component of X3D.
16. Sound component provides a detailed specification of the Time component of

X3D audio generation, spatialized sound, and acoustic rendering.
17. Lighting component provides a detailed specification of the Lighting component

of X3D (lighting model rewritten, to account for Phong, physical and unlit models,
and to clarify texture sampling and Gouraud shading).

18. Texturing component provides a detailed specification of the Texturing
component of X3D (expected addition of ImageTextureAtlas, X3DSingleXxx
abstract types and mapping fields).

19. Interpolation component provides a detailed specification of the Interpolation
component of X3D.

20. Pointing device sensor component provides a detailed specification of the
Pointing device sensor component of X3D.

21. Key device sensor component provides a detailed specification of the Key
device sensor component of X3D.

22. Environmental sensor component provides a detailed specification of the
Environmental sensor component of X3D.

23. Navigation component provides a detailed specification of the Navigation
component of X3D.

24. Environmental effects component provides a detailed specification of the
Environmental effects component of X3D.

25. Geospatial component provides a detailed specification of the Geospatial
component of X3D.

26. Humanoid animation (H-Anim HAnim) component provides a detailed

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Contents

Architecture.html[8/1/2020 9:58:52 AM]

specification of the Humanoid animation (H-Anim) component of X3D, Humanoid
structure and motion animation.

27. NURBS component provides a detailed specification of the NURBS component of
X3D.

28. Distributed interactive simulation (DIS) component provides a detailed
specification of the DIS component of X3D.

29. Scripting component provides a detailed specification of the Scripting component
of X3D.

30. Event utilities component provides a detailed specification of the Event utilities
component of X3D.

31. Shader component provides a detailed specification of the Shader component of
X3D.

32. CAD geometry component provides a detailed specification of the CAD geometry
component of X3D.

33. Texturing3D component provides a detailed specification of the 3D texturing
component of X3D.

34. Environmental texturing component provides a detailed specification of the
environmental texturing component of X3D.

35. Layering component provides a detailed specification for organizing the content
of worlds into independent, overlapping layers.

36. Layout component provides a detailed specification for arranging content to
appear in specific regions of the display surface.

37. Rigid body physics component provides a detailed specification for applying
rigid body physics properties to content.

38. Picking sensor component provides a detailed specification for selecting items in
the content by user interaction.

39. Followers component provides a detailed specification for using follower
transitions.

40. Particle systems component provides a detailed specification for specifying and
using particle systems in X3D worlds.

41. Volume rendering component provides a detailed specification for the rendering
of volumetric data sets as part of X3D worlds.

42. Projective texture mapping component provides a detailed specification for
projecting textures onto geometry.

43. Annotation component provides a detailed specification on how to present
information that always faces the viewer (incomplete, not accepted).

There are several annexes included in the specification:

A. Core profile defines a minimal subset of X3D functionality that constitutes the
Core profile.

B. Interchange profile defines the proper subset of X3D functionality that
constitutes the Interchange profile.

C. Interactive profile defines the proper subset of X3D functionality that constitutes
the Interactive profile.

D. MPEG-4 interactive profile defines the proper subset of X3D functionality that
constitutes the MPEG-4 interactive profile.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Contents

Architecture.html[8/1/2020 9:58:52 AM]

E. Immersive profile defines the proper subset of X3D functionality that
corresponds to the base profile defined in ISO/IEC 14772-1.

F. Full profile defines the proper subset of X3D functionality that constitutes the Full
profile.

G. Recommended navigation behaviours specifies some recommended
behaviours that may be adopted by browser implementers.

H. CADInterchange profile defines the proper subset of X3D functionality that
constitutes the CADInterchange profile.

I. OpenGL shading language (GLSL) binding provides a mapping of
Programmable shader component functionality to the GLSL shading language.

J. Microsoft DirectX shading language (HLSL) binding provides a mapping of
Programmable shader component functionality to the HLSL shading language.

K. nVidia CG shading language binding provides a mapping of Programmable
shader component functionality to the Cg shading language.

L. MedicalInterchange profile defines the proper subset of X3D functionality that
constitutes the MedicalInterchange profile.

Z. Version content specifies which X3D functionality is in which version.

Bibliography lists the informative, non-standard topics referenced in this part of
ISO/IEC 19775.

Component index lists the available components defined in this part of ISO/IEC 19775
in alphabetical order with hyperlinks to their respective definitions.

Profile index lists the profiles defined in this part of ISO/IEC 19775 in alphabetical
order with hyperlinks to their respective definitions.

Node index Node, abstract node type, and abstract interface index lists the
nodes defined in this part of ISO/IEC 19775 in alphabetical order with hyperlinks to
their respective definitions.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Foreword

foreword.html[8/1/2020 9:58:54 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

Foreword

ISO (the International Organization for Standardization) and IEC (the International
Electrotechnical Commission) form the specialized system for worldwide
standardization. National bodies that are members of ISO and IEC participate in the
development of International Standards through technical committees established by
the respective organization to deal with particular fields of technical activity. ISO and
IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also
take part in the work. In the field of information technology, ISO and IEC have
established a joint technical committee, ISO/IEC JTC 1.

The procedures used to develop this document and those intended for its further
maintenance are described in the ISO/IEC Directives, Part 1. In particular the different
approval criteria needed for the different types of ISO documents should be noted. This
document was drafted in accordance with the editorial rules of the ISO/IEC Directives,
Part2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. ISO shall not be held responsible for identifying any or all
such patent rights. Details of any patent rights identified during the development of the
document will be in the Introduction and/or on the ISO list of patent declarations
received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users
and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to
conformity assessment, as well as information about ISO’s adherence to the World
Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the
following URL: www.iso.org/iso/foreword.html.

This document was prepared by Joint Technical Committee ISO/IEC JTC 1, Information
technology, Subcommittee 24, Computer graphics, image processing and environmental
data representation, in collaboration with The Web3D Consortium, Inc.
(http://www.web3d.org).

This fourth edition cancels and replaces the third edition (ISO 19775-1:2013), which
has been technically revised.

file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/www.iso.org/directives
file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/www.iso.org/patents
file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/www.iso.org/iso/foreword.html
http://www.web3d.org/

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Foreword

foreword.html[8/1/2020 9:58:54 AM]

A list of all parts in the ISO 19775 series can be found on the ISO website.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 1 Scope

scope.html[8/1/2020 9:58:55 AM]

Information technology —
Computer graphics, image processing and

environmental data representation —
Extensible 3D (X3D) —

Part 1: Architecture and base components

1 Scope

ISO/IEC 19775 Extensible 3D (X3D) defines a software system that integrates network-
enabled 3D graphics and multimedia. Conceptually, each X3D application is a 3D time-
based space that contains graphic and aural objects that can be dynamically modified
through a variety of mechanisms. This part of ISO/IEC 19775 defines the architecture
and base components of X3D.

The semantics of X3D describe an abstract functional behaviour of time-based,
interactive 3D, multimedia information. This part of ISO/IEC 19775 does not define
physical devices or any other implementation-dependent concepts (e.g., screen
resolution and input devices). This part of ISO/IEC 19775 is intended for a wide variety
of devices and applications, and provides wide latitude in interpretation and
implementation of the functionality. For example, this part of ISO/IEC 19775 does not
assume the existence of a mouse or 2D display device.

Each X3D application:

a. implicitly establishes a world coordinate space for all objects defined, as well as all
objects included by the application;

b. explicitly defines and composes a set of 3D and multimedia objects;
c. can specify hyperlinks to other files and applications;
d. can define programmatic or data-driven object behaviours;
e. can connect to external modules or applications via programming and scripting

languages;
f. explicitly declares its functional requirements by specifying a profile;
g. can declare additional functional requirements by specifying components.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 22 Environmental sensor component

environmentalSensor.html[8/1/2020 9:58:56 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

22 Environmental sensor component

 22.1 Introduction

22.1.1 Name

The name of this component is "EnvironmentalSensor". This name shall be used when
referring to this component in the COMPONENT statement (see 7.2.5.4 Component
statement).

22.1.2 Overview

This clause describes the Environmental Sensor component of this part of ISO/IEC
19775. Table 22.1 provides links to the major topics in this clause.

 Table 22.1 — Topics

22.1 Introduction
22.1.1 Name
22.1.2 Overview

22.2 Concepts
22.3 Abstract types

22.3.1 X3DEnvironmentalSensorNode
22.4 Node reference

22.4.1 ProximitySensor
22.4.2 TransformSensor
22.4.3 VisibilitySensor

22.5 Support levels

Table 22.1 — Topics
Table 22.2 — Environmental sensor component support levels

 22.2 Concepts

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 22 Environmental sensor component

environmentalSensor.html[8/1/2020 9:58:56 AM]

Environment sensors are nodes which emit events based on some event which occurs
within the environment, usually an interaction between two elements within the world.
Most environment sensors events occur because of an interaction between the viewer
and the world. However, an environment sensor event may also occur because of an
interaction between a non-manipulable piece of hardware (e.g., a clock) and the world,
between two objects in the world, or an event over the network.

Environmental sensors include:

Collision
ProximitySensor
TransformSensor
VisibilitySensor

The Collision grouping node detects when the user collides with objects in the virtual
world. Proximity, collision, and visibility sensors are each processed independently of
whether others exist or overlap. See 23 Navigation component for more information.

The ProximitySensor detects when the user navigates into a specified region in the
world.

The TransformSensor detects when for the target object specified enters, exits, or is
transformed within a specified rectangular parallelepiped.

The VisibilitySensor detects when a specific part of the world becomes visible to the
user.

When environmental sensors are inserted into the transformation hierarchy and before
the presentation is updated (i.e., read from file or created by a script), they shall
generate events indicating any conditions which the sensor is intended to detect. The
conditions for individual sensor types to generate these initial events are defined in the
individual node specifications in 22.4 Node reference.

 22.3 Abstract types

 22.3.1 X3DEnvironmentalSensorNode

X3DEnvironmentalSensorNode : X3DSensorNode {
 SFVec3f/d [in,out] center 0 0 0 (-∞,∞)
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFVec3f [in,out] size 0 0 0 (-∞,∞)
 SFTime [out] enterTime
 SFTime [out] exitTime
 SFBool [out] isActive
}

The X3DEnvironmentalSensorNode abstract node type is the base type for the
environmental sensor nodes ProximitySensor and VisibilitySensor.

 22.4 Node reference

 22.4.1 ProximitySensor

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 22 Environmental sensor component

environmentalSensor.html[8/1/2020 9:58:56 AM]

ProximitySensor : X3DEnvironmentalSensorNode {
 SFVec3f [in,out] center 0 0 0 (-∞,∞)
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFVec3f [in,out] size 0 0 0 [0,∞)
 SFTime [out] enterTime
 SFTime [out] exitTime
 SFVec3f [out] centerOfRotation_changed
 SFBool [out] isActive
 SFRotation [out] orientation_changed
 SFVec3f [out] position_changed
}

The ProximitySensor node generates events when the viewer enters, exits, and moves
within a region in space (defined by a box). A proximity sensor is enabled or disabled
by sending it an enabled event with a value of TRUE or FALSE. A disabled sensor does not
send events.

A ProximitySensor node generates isActive TRUE/FALSE events as the viewer enters and
exits the rectangular box defined by its center and size fields. Browsers shall interpolate
viewer positions and timestamp the isActive events with the exact time the viewer first
intersected the proximity region. The center field defines the centre point of the
proximity region in object space. The size field specifies a vector which defines the
width (x), height (y), and depth (z) of the box bounding the region. The components of
the size field shall be greater than or equal to zero. ProximitySensor nodes are affected
by the hierarchical transformations of their parents.

The enterTime event is generated whenever the isActive TRUE event is generated (user
enters the box), and exitTime events are generated whenever an isActive FALSE event is
generated (user exits the box).

The centerOfRotation_changed field sends events whenever the user is contained within
the proximity region and the center of rotation of the viewer for EXAMINE mode changes
with respect to the ProximitySensor node's coordinate system. This may result when
the bound Viewpoint nodes's center of rotation changes, when a new viewpoint is
bound, when the user changes the center of rotation through the browser's user
interface, or from changes to the ProximitySensor node's coordinate system.
centerOfRotation_changed events are only generated when the currently bound
NavigationInfo node includes LOOKAT navigation. For more information, see 23.3.1
X3DViewpointNode and 23.4.4. NavigationInfo.

The position_changed and orientation_changed fields send events whenever the user is
contained within the proximity region and the position and orientation of the viewer
changes with respect to the ProximitySensor node's coordinate system including enter
and exit times. The viewer movement may be a result of a variety of circumstances
resulting from browser navigation, ProximitySensor node's coordinate system changes,
or bound Viewpoint node's position or orientation changes.

Each ProximitySensor node behaves independently of all other ProximitySensor nodes.
Every enabled ProximitySensor node that is affected by the viewer's movement receives
and sends events, possibly resulting in multiple ProximitySensor nodes receiving and
sending events simultaneously. Unlike TouchSensor nodes, there is no notion of a
ProximitySensor node lower in the scene graph "grabbing" events.

Instanced (DEF/USE) ProximitySensor nodes use the union of all the boxes to check for
enter and exit. A multiply instanced ProximitySensor node will detect enter and exit for
all instances of the box and send enter/exit events appropriately. For non-overlapping

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 22 Environmental sensor component

environmentalSensor.html[8/1/2020 9:58:56 AM]

bounding boxes, position_changed and orientation_changed events are calculated
relative to the coordinate system associated with the bounding box in which the
proximity was detected. However, the results are undefined if the any of the boxes of a
multiply instanced ProximitySensor node overlap.

A ProximitySensor node that surrounds the entire world has an enterTime equal to the
time that the world was entered and can be used to start up animations or behaviours
as soon as a world is loaded. A ProximitySensor node with a box containing zero
volume (i.e., any size field element of 0.0) cannot generate events. This is equivalent to
setting the enabled field to FALSE.

A ProximitySensor read from an X3D file shall generate isActive TRUE, position_changed,
orientation_changed and enterTime events if the sensor is enabled and the viewer is
inside the proximity region or as soon as the ProximitySensor is enabled. A
ProximitySensor inserted into the transformation hierarchy shall generate isActive TRUE,
position_changed, orientation_changed and enterTime events if the sensor is enabled
and the viewer is inside the proximity region. A ProximitySensor removed from the
transformation hierarchy shall generate isActive FALSE, position_changed,
orientation_changed and exitTime events if the sensor is enabled and the viewer is
inside the proximity region.

22.4.2 TransformSensor
TransformSensor : X3DEnvironmentalSensorNode {
 SFVec3f [in,out] center 0 0 0 (-∞,∞)
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFVec3f [in,out] size 0 0 0 [0,∞)
 SFNode [in,out] targetObject NULL [X3DGroupingNode|X3DShapeNode]
 SFTime [out] enterTime
 SFTime [out] exitTime
 SFBool [out] isActive
 SFRotation [out] orientation_changed
 SFVec3f [out] position_changed
}

The TransformSensor node generates events when its target object enters, exits, and
moves within a region in space (defined by a box). The target object can be any valid
X3DShapeNode or X3DGroupingNode node. A TransformSensor is enabled or disabled
by sending it an enabled event with a value of TRUE or FALSE. A disabled sensor does not
send events.

A TransformSensor node generates isActive TRUE/FALSE events as the target object
enters and exits the rectangular box defined by its center and size fields. Browsers shall
timestamp the isActive events with the exact time the target object first intersected the
proximity region. The center field defines the centre point of the proximity region in
object space. The size field specifies a vector that defines the width (x), height (y), and
depth (z) of the box bounding the region. The components of the size field shall be
greater than or equal to zero. TransformSensor nodes are affected by the hierarchical
transformations of their parents.

The enterTime event is generated whenever the isActive TRUE event is generated
(target object enters the box), and exitTime events are generated whenever an isActive
FALSE event is generated (target object exits the box).

The position_changed and orientation_changed fields send events whenever the target
object is contained within the proximity region and the position and orientation of the

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 22 Environmental sensor component

environmentalSensor.html[8/1/2020 9:58:56 AM]

target object changes with respect to the TransformSensor node's coordinate system
including enter and exit times. The object movement may be a result of a variety of
circumstances resulting from the TransformSensor node's coordinate system changes,
changes to the target object's position or orientation, or changes to the coordinate
system of any of the ancestors or the target object.

Each TransformSensor node behaves independently of all other TransformSensor nodes.
Every enabled TransformSensor node that is affected by the target object's movement
receives and sends events, possibly resulting in multiple TransformSensor nodes
receiving and sending events simultaneously. Unlike TouchSensor nodes, there is no
notion of a TransformSensor node lower in the scene graph "grabbing" events.

Instanced (DEF/USE) TransformSensor nodes use the union of all the boxes to check for
enter and exit. A multiply instanced TransformSensor node will detect enter and exit for
all instances of the box and send enter/exit events appropriately. For non-overlapping
bounding boxes, position_changed and orientation_changed events are calculated
relative to the coordinate system associated with the bounding box in which the
proximity was detected. However, the results are undefined if the any of the boxes of a
multiply instanced TransformSensor node overlap.

A TransformSensor node with a box containing zero volume (i.e., any size field element
of 0.0) cannot generate events. This is equivalent to setting the enabled field to FALSE.

A TransformSensor read from an X3D file shall generate isActive TRUE,
position_changed, orientation_changed and enterTime events if the sensor is enabled
and the target object is inside the proximity region. A TransformSensor inserted into
the transformation hierarchy shall generate isActive TRUE, position_changed,
orientation_changed and enterTime events if the sensor is enabled and the target
object is inside the proximity region. A TransformSensor removed from the
transformation hierarchy shall generate isActive FALSE, position_changed,
orientation_changed and exitTime events if the sensor is enabled and the target object
is inside the proximity region.

 22.4.3 VisibilitySensor
VisibilitySensor : X3DEnvironmentalSensorNode {
 SFVec3f [in,out] center 0 0 0 (-∞,∞)
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFVec3f [in,out] size 0 0 0 [0,∞)
 SFTime [out] enterTime
 SFTime [out] exitTime
 SFBool [out] isActive
}

The VisibilitySensor node detects visibility changes of a rectangular box as the user
navigates the world. VisibilitySensor is typically used to detect when the user can see a
specific object or region in the scene in order to activate or deactivate some behaviour
or animation. The purpose is often to attract the attention of the user or to improve
performance. Intermediate occluding geometry between the current viewpoint and the
sensed volume has no effect on the behavior of the VisibilitySensor.

The enabled field enables and disables the VisibilitySensor node. If enabled is set to
FALSE, the VisibilitySensor node does not send events. If enabled is TRUE, the
VisibilitySensor node detects changes to the visibility status of the box specified and
sends events through the isActive field. A TRUE event is output to isActive when any

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 22 Environmental sensor component

environmentalSensor.html[8/1/2020 9:58:56 AM]

portion of the box impacts the rendered view. A FALSE event is sent when the box has
no effect on the view. Browsers shall guarantee that, if isActive is FALSE, the box has
absolutely no effect on the rendered view. Browsers may err liberally when isActive is
TRUE. For example, the box may affect the rendering.

The fields center and size specify the object space location of the box centre and the
extents of the box (i.e., width, height, and depth). The VisibilitySensor node's box is
affected by hierarchical transformations of its parents. The components of the size field
shall be greater than or equal to zero.

The enterTime event is generated whenever the isActive TRUE event is generated, and
exitTime events are generated whenever isActive FALSE events are generated. A
VisibilitySensor read from an X3D file shall generate isActive TRUE and enterTime events
if the sensor is enabled and the visibility box is visible. A VisibilitySensor inserted into
the transformation hierarchy shall generate isActive TRUE and enterTime events if the
sensor is enabled and the visibility box is visible. A VisibilitySensor removed from the
transformation hierarchy shall generate isActive FALSE and exitTime events if the sensor
is enabled and the visibility box is visible.

Each VisibilitySensor node behaves independently of all other VisibilitySensor nodes.
Every enabled VisibilitySensor node that is affected by the user's movement receives
and sends events, possibly resulting in multiple VisibilitySensor nodes receiving and
sending events simultaneously. Unlike TouchSensor nodes, there is no notion of a
VisibilitySensor node lower in the scene graph "grabbing" events. Multiply instanced
VisibilitySensor nodes (i.e., DEF/USE) use the union of all the boxes defined by their
instances. An instanced VisibilitySensor node shall detect visibility changes for all
instances of the box and send events appropriately.

 22.5 Support levels
The Environmental Sensor component provides two levels of support as specified in
Table 22.2. Level 1 is intended to enable automatic animations by supporting a
simplified ProximitySensor node. Level 2 provides full environment sensing support.

 Table 22.2 — Environmental sensor component support levels

Level Prerequisites Nodes Support

1

Core 1
Time 1
Grouping 1
Navigation 1

X3DEnvironmentSensorNode
(abstract) n/a

ProximitySensor

position_changed
optionally supported.
orientation_changed
optionally supported.

Core 1

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 22 Environmental sensor component

environmentalSensor.html[8/1/2020 9:58:56 AM]

2 Time 1
Grouping 1
Navigation 1

All Level 1 Environmental
Sensor nodes

All fields as
supported in Level 1.

ProximitySensor All fields fully
supported.

VisibilitySensor All fields fully
supported.

3

Core 1
Time 1
Grouping 1
Navigation 1

 All Level 2 Environmental
Sensor nodes

All fields as
supported in Level 2.

 TransformSensor All fields fully
supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex A Core profile

coreprofile.html[8/1/2020 9:58:57 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

Annex A

(normative)

Core profile

 A.1 General
This annex defines the X3D components which comprise the Core profile. This includes
not only the nodes which shall be supported but also which fields in the supported
nodes may be ignored.

This profile is targeted towards:

a. Absolute minimal file definitions required by X3D,
b. Building minimally defined scenes by explicitly specifying the component and levels

required, and
c. Allowing a broader range of implementations by eliminating some complexity of a

complete X3D implementation.

 A.2 Topics
Table A.1 provides links to the major topics in this annex.

 Table A.1 — Topics

A.1 General
A.2 Topics
A.3 Component support
A.4 Conformance criteria
A.5 Node set
A.6 Other limitations

Table A.1 — Topics
Table A.2 — Components and levels

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex A Core profile

coreprofile.html[8/1/2020 9:58:57 AM]

Table A.3 — Nodes for conforming to the Core profile
Table A.4 — Other limitations

 A.3 Component support
Table A.2 lists the components and their levels which shall be supported in the Core
profile. Tables A.2 and A.3 describe limitations on required support for nodes and fields
contained within these components.

Table A.2 — Components and levels

Component Level Reference

Core 1 7.5 Support levels

 A.4 Conformance criteria
Conformance to this profile shall include conformance criteria defined by the
specifications for those components and levels listed in Table A.2.

In Table A.3 and Table A.4, the first column defines the item for which conformance is
being defined. In some cases, general limits are defined but are later overridden in
specific cases by more restrictive limits. The second column defines the requirements
for a X3D file conforming to the Core profile; if a X3D file contains any items that
exceed these limits, it may not be possible for a X3D browser conforming to the Core
profile to successfully parse that X3D file. The third column defines the minimum
complexity for a X3D scene that a X3D browser conforming to the Core profile shall be
able to present to the user. Fields flagged as "not supported" may be supported by
browsers which conform to the Core profile. The word "ignore" in the minimum browser
support column refers only to the display of the item; in particular, set_ events to
ignored inputOutput fields shall still generate corresponding _changed events.

 A.5 Node set
Table A.3 lists the nodes which shall be supported in the Core profile and specifies any
fields in these nodes for which this profile requires less than full support.

Table A.3 — Nodes for conforming to the Core profile

Item X3D File Limit Minimum Browser Support

MetadataBoolean No restrictions. Full support.

MetadataDouble No restrictions. Full support.

MetadataFloat No restrictions. Full support.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex A Core profile

coreprofile.html[8/1/2020 9:58:57 AM]

MetadataInteger No restrictions. Full support.

MetadataSet No restrictions. Full support.

MetadataString No restrictions. Full support.

 A.6 Other limitations
Table A.4 specifies other aspects of X3D functionality which are supported by this
profile. Note that general items refer only to those specific nodes listed in Table A.3.

Table A.4 — Other limitations

Item X3D File Limit Minimum Browser Support

All groups 500 children. 500 children. bboxCenter and
bboxSize optionally supported.

All
interpolators 1000 key-value pairs. 1000 key-value pairs.

All lights 8 simultaneous lights. 8 simultaneous lights.

Names for
DEF/field 50 utf8 octets. 50 utf8 octets.

All url fields 10 URLs.

10 URLs. URN's optionally supported.
Support `http', `file', and `ftp'
protocols.
Support relative URLs where relevant.

SFBool No restrictions. Full support.

SFColor No restrictions. Full support.

SFColorRGBA No restrictions. Full support.

SFDouble Mp restrictions. Full support. Range ±1e±12.
Precision 1e-7.

SFFloat No restrictions. Full support.

SFImage 256 width. 256 height. 256 width. 256 height.

SFInt32 No restrictions. Full support.

SFNode No restrictions. Full support.

SFRotation No restrictions. Full support.

SFString 30,000 utf8 octets. 30,000 utf8 octets.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex A Core profile

coreprofile.html[8/1/2020 9:58:57 AM]

SFTime No restrictions. Full support.

SFVec2d 15,000 values. 15,000 values.

SFVec2f 15,000 values. 15,000 values.

SFVec3d 15,000 values. 15,000 values.

SFVec3f 15,000 values. 15,000 values.

MFColor 15,000 values. 15,000 values.

MFColorRGBA 15,000 values. 15,000 values.

MFDouble 1000 values. 1000 values.

MFFloat 1,000 values. 1,000 values.

MFInt32 20,000 values. 20,000 values.

MFNode 500 values. 500 values.

MFRotation 1,000 values. 1,000 values.

MFString 30,000 utf8 octets per
string, 10 strings.

30,000 utf8 octets per string, 10
strings.

MFTime 1,000 values. 1,000 values.

MFVec2d 15,000 values. 15,000 values.

MFVec2f 15,000 values. 15,000 values.

MFVec3d 15,000 values. 15,000 values.

MFVec3f 15,000 values. 15,000 values.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Introduction

introduction.html[8/1/2020 9:58:58 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

Introduction

 General
Extensible 3D (X3D) is a software standard for defining interactive web- and broadcast-
based 3D content integrated with multimedia. X3D is intended for use on a variety of
hardware devices and in a broad range of application areas such as engineering and
scientific visualization, multimedia presentations, entertainment and educational titles,
web pages, and shared virtual worlds. X3D is also intended to be a universal
interchange format for integrated 3D graphics and multimedia. X3D is the successor to
the Virtual Reality Modeling Language (VRML), the original ISO standard for web-based
3D graphics (ISO/IEC 14772). X3D improves upon VRML with new features, advanced
application programmer interfaces, additional data encoding formats, stricter
conformance, and a componentized architecture that allows for a modular approach to
supporting the standard.

This section provides a background to describes the design objectives behind the
development of X3D, and provides an overview of the features of X3D and a description
of the X3D specification process.

 Design objectives
X3D has been developed to meet a specific set of market and technical requirements.
To meet these requirements, X3D has adopted the following design objectives:

Separate the runtime architecture from the data encoding
Support a variety of encoding formats, including the Extensible Markup Language
(XML)
Add new graphical, behavioral behavioural and interactive objects
Provide alternative application programmer interfaces (APIs) into the 3D scene
Define subsets of the specification ("Profiles") that meet different market needs
Allow for the specification to be implemented at varying levels of service
Eliminate, where possible, unspecified or underspecified behaviors behaviours

 X3D features

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Introduction

introduction.html[8/1/2020 9:58:58 AM]

X3D has a rich set of features to support applications such as engineering and scientific
visualization, multimedia presentations, entertainment and educational titles, web
pages, and shared virtual worlds. The X3D feature set includes:

3D graphics - Polygonal geometry, parametric geometry, hierarchical
transformations, lighting, materials and Physically Based Rendering (PBR)
advanced materials and lighting for Physically Based Rendering (PBR), multi-
pass/multi-stage texture mapping
2D graphics - Text, 2D vector and planar shapes displayed within the 3D
transformation hierarchy
Animation - Timers and interpolator to drive continuous animations; humanoid
animation and morphing
Humanoid Animation - full-fidelity representations of human skeleton with
motion animation
Metadata - comprehensive inclusion of typed metadata sets
Spatialized audio and video - Audio generation and rendering, audiovisual
sources mapped onto geometry in the scene
User interaction - Mouse-based picking and dragging; keyboard input
Navigation - Cameras; user movement within the 3D scene; collision, proximity
and visibility detection
User-defined objects - Ability to extend built-in browser functionality by creating
user-defined data types
Scripting - Ability to dynamically change the scene via programming and scripting
languages
Networking - Ability to compose a single X3D scene out of assets located on a
network; hyperlinking of objects to other scenes or assets located on the World
Wide Web; improved control of loading, refresh rates and security
Physical simulation - Humanoid animation; geospatial datasets; integration with
Distributed Interactive Simulation (DIS) protocols
Geospatial positioning - Ability to accurately position X3D scene objects
geospatially.
CAD geometry – ability to represent CAD models mapped from CAD systems.
Layering – Ability to organize X3D scenes into rendering groups so that objects in
each layer can overlay objects in underlying layers.
Support for programmable shaders – Ability to replace the X3D lighting model
with custom shader programs.
Particle systems – Ability to generate systems of particles that can represent
fire, smoke, and other such effects.
Volume rendering – Ability to specify and render volumetric data sets, as used
within medical imaging, for example.

For a complete list of X3D features, consult the component descriptions in clauses 7
through 40 42 of this part of ISO/IEC 19775.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Introduction

introduction.html[8/1/2020 9:58:58 AM]

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 2 Normative references

references.html[8/1/2020 9:58:59 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

2 Normative references

The following documents are referred to in the text in such a way that some or all of
their content constitutes requirements of this document. For dated references, only the
edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

The Bibliography contains a list of informative documents and technology.

* * , version ,

Identifier Reference

I639
ISO 639, Codes for the representation of names of languages:

ISO 639-1:2002, Part 1: Alpha-2 code
ISO 639-2:1998, Part 2: Alpha-3 code.

I3166

ISO 3166, Codes for the representation of names of countries and their
subdivisions:

ISO 3166-1, Part 1: Country codes
ISO 3166-2, Part 2: Country subdivision code
ISO 3166-3, Part 3: Code for formerly used names of countries.

I8632

ISO/IEC 8632, Information technology — Computer graphics — Metafile for
the storage and transfer of picture description information:

ISO/IEC 8632-1:1999, Part 1: Functional specification
ISO/IEC 8632-3:1999, Part 3: Binary encoding
ISO/IEC 8632-4:1999, Part 4: Clear text encoding.

I8859-1 ISO/IEC 8859-1:1998, Information technology — 8-bit single-byte coded
graphic character sets — Part 1: Latin alphabet No. 1.

I9899 ISO/IEC 9899:1999, Programming languages — C.

I9973
ISO/IEC 9973:2006, Information technology — Computer graphics, image
processing and environmental representation — Procedures for registration
of items.

I10641
ISO/IEC 10641:1993, Information technology — Computer graphics and
image processing — Conformance testing of implementations of graphics
standards.

http://www.iso.org/
http://www.iso.org/
http://www.iso.org/
http://www.iso.org/
http://www.iso.org/
http://www.iso.org/
http://www.iso.org/

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 2 Normative references

references.html[8/1/2020 9:58:59 AM]

I10646 ISO/IEC 10646:2003, Information technology — Universal Multiple-Octet
Coded Character Set (UCS).

I11172-1
ISO/IEC 11172-1:1993, Information technology — Coding of moving
pictures and associated audio for digital storage media at up to about 1,5
Mbit/s — Part 1: Systems.

I14496-1 ISO/IEC 14496-1:2001, Coding of audio-visual objects — Part 1: Systems.

I14772-1
ISO/IEC 14772-1:1997, Information technology — Computer graphics and
image processing — The Virtual reality modeling language (VRML) — Part
1: Functional specification and UTF-8 encoding.

I15948 ISO/IEC 15948:2004, Information technology — Computer graphics — PNG
(Portable Network Graphics): Functional specification.

I16262 ISO/IEC 16262:2002, Information technology — ECMAScript language
specification.

I18026 ISO/IEC 18026:2006, Information technology — Spatial Reference Model
(SRM).

I19774
ISO/IEC 19774:2019 19774:2006, Information technology — Computer
graphics and image processing — Humanoid Animation (H-Anim) Parts 1
and 2.

I19775-2

ISO/IEC 19775-2, Information technology — Computer graphics and image
processing — Part 2: Scene access interface Information technology —
Computer graphics, image processing and environmental data
representation — Extensible 3D (X3D) — Part 2: Scene access interface
(SAI).

I19776

ISO/IEC 19776, Information technology — Computer graphics and image
processing Computer graphics, image processing and environmental data
representation — Extensible 3D (X3D) encodings.
 ISO/IEC 19776-1, Part 1: Extensible Markup Language (XML) encoding
 ISO/IEC 19776-2, Part 2: Classic VRML encoding
 ISO/IEC 19776-3, Part 3: Compressed binary encoding

I19777

ISO/IEC 19777, Information technology — Computer graphics and image
processing — Extensible 3D (X3D) language bindings
 ISO/IEC 19777-1, Part 1: ECMAScript
 ISO/IEC 19777-2, Part 2: Java

I80000

ISO 80000, Quantities and Units
 ISO 80000-1:2009, Part 1: General
 ISO 80000-2:2009, Part 2: Mathematical signs and symbols to be used in
the natural sciences and technology
 ISO 80000-3:2006, Part 3: Space and time
 ISO 80000-4:2006, Part 4: Mechanics
 ISO 80000-5:2007, Part 5: Thermodynamics
 ISO 80000-6:2008, Part 6: Electromagnetism
 ISO 80000-7:2008, Part 7: Light
 ISO 80000-8:2007, Part 8: Acoustics
 ISO 80000-9:2009, Part 9: Physical chemistry and molecular physics

http://www.iso.org/
http://www.iso.org/
http://www.iso.org/
http://www.iso.org/
http://www.iso.org/
http://www.iso.org/
http://www.iso.org/
http://www.iso.org/
http://www.iso.org/
http://www.iso.org/
http://www.iso.org/
http://www.iso.org/

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 2 Normative references

references.html[8/1/2020 9:58:59 AM]

 ISO 80000-10:2009, Part 10: Atomic and nuclear physics
 ISO 80000-11:2008, Part 11: Characteristic numbers
 ISO 80000-12:2009, Part 12: Solid state physics
 ISO 80000-13:2008, Part 13: Information science and technology
 ISO 80000-14:2008, Part 14: Telebiometrics related to human physiology

IEEE1278

IEEE Standard 1278.1-1995, Standard for Distributed Interactive
Simulation — Application Protocols, 1995.
IEEE Standard 1278.1a-1998, Supplement to Standard for Distributed
Interactive Simulation — Application Protocols, 1998.
IEEE Standard 1278.2-1995, Supplement to Standard for Distributed
Interactive Simulation — Communication Services and Profiles, 1995.
IEEE Standard 1278.3-1996, Recommended Practice for Distributed
Interactive Simulation — Exercise Management and Feedback, 1996.
IEEE Standard 1278.4-1997, Trial-Use Recommended Practice for
Distributed Interactive Simulation — Verification, Validation, and
Accreditation, 1997.

DICOM
The DICOM Standard, Digital Imaging and Communications in Medicine,
Rosslyn, VA, 2003.
https://www.nema.org

JAVA

The Java Language Specification, Third Edition by James Gosling, Bill Joy,
Guy Steele and Gilad Bracha, Addison Wesley, Reading Massachusetts,
2005, ISBN 0-321-24678-0.
The Java™ Virtual Machine Specification, Second Edition by Tim Lindhold
and Frank Yellin, Addison Wesley, Reading Massachusetts, 1999, ISBN 0-
201-43294-3.

JPEG

JPEG File Interchange Format, JFIF, Version 1.02, 1992.
http://www.w3.org/Graphics/JPEG/jfif.txt
ISO/IEC 10918-1:1994, Information technology — Digital compression and
coding of continuous-tone still images: Requirements and guidelines.

GLTF
GL Transmission Format (glTF) Specification, The Khronos Group, Version
2.0, 2017.
https://github.com/KhronosGroup/glTF/tree/master/specification/2.0

MIDI

Complete MIDI 1.0 Detailed Specification v96.1 (second edition), MIDI
Manufacturers Association,
P.O. Box 3173, La Habra, CA 90632-3173 USA, 2001.
http://www.midi.org

REG
ISO International Register of Graphical Items, Maintenance agencies and
registration authorities.
http://www.iso.org/iso/standards_development/maintenance_agencies.htm

RFC1738 IETF RFC 1738, Uniform Resource Locators (URL).

RFC1766 IETF RFC 1766, Tags for the Identification of Languages, Internet standards
track protocol.

RFC1808 IETF RFC 1808, Relative Uniform Resource Locators.

RFC1889 IETF RFC 1889, RTP: A Transport Protocol for Real-Time Applications.

http://standards.ieee.org/
http://standards.ieee.org/
http://standards.ieee.org/
http://standards.ieee.org/
http://standards.ieee.org/
https://www.nema.org/
http://www.w3.org/Graphics/JPEG/jfif.txt
http://www.iso.org/
https://github.com/KhronosGroup/glTF/tree/master/specification/2.0
http://www.midi.org/
http://www.iso.org/iso/standards_development/maintenance_agencies.htm
http://www.ietf.org/rfc/rfc1738.txt
http://www.ietf.org/rfc/rfc1766.txt
http://www.ietf.org/rfc/rfc1808.txt
http://www.ietf.org/rfc/rfc1889.txt

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 2 Normative references

references.html[8/1/2020 9:58:59 AM]

RFC2077 IETF RFC 2077, The Model Primary Content Type for Multipurpose Internet
Mail Extensions.

RFC2141 IETF RFC 2141, URN Syntax.

RFC2397 IETF RFC 2397, The "data" URL scheme.

RFC3066 IETF RFC 3066, Tags for the Identification of Languages.

RFC3541 IETF RFC 3541, A Uniform Resource Name (URN) Namespace for the
Web3D Consortium (Web3D).

RFC7231 IETF RFC 7231, Hypertext Transfer Protocol (HTTP/1.1): Semantics and
Content.

W3C-
HTML5

Hypertext Markup Language (HTML) 5.2, World Wide Web Consortium
(W3C) Recommendation, 14 December 2017.

W3C-
WebAudio

Web Audio API, World Wide Web Consortium (W3C) Candidate
Recommendation, 11 June 2020.

http://www.ietf.org/rfc/rfc2077.txt
http://www.ietf.org/rfc/rfc2141.txt
http://www.ietf.org/rfc/rfc2397.txt
http://www.ietf.org/rfc/rfc3066.txt
http://www.ietf.org/rfc/rfc3541.txt
http://www.ietf.org/rfc/rfc7231.txt
https://www.w3.org/TR/html52/
https://www.w3.org/TR/html52/

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 23 Navigation component

navigation.html[8/1/2020 9:59:01 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

23 Navigation component

 23.1 Introduction

23.1.1 Name

The name of this component is "Navigation". This name shall be used when referring to
this component in the COMPONENT statement (see 7.2.5.4 Component statement).

23.1.2 Overview

This clause describes the Navigation component of this part of ISO/IEC 19775. Table
23.1 provides links to the major topics in this clause.

 Table 23.1 — Topics

23.1 Introduction
23.1.1 Name
23.1.2 Overview

23.2 Concepts
23.2.1 An overview of navigation
23.2.2 Navigation paradigms
23.2.3 Viewing model
23.2.4 Collision detection and terrain following
23.2.5 Viewpoint list

23.3 Abstract types
23.3.1 X3DViewpointNode

23.4 Node reference
23.4.1 Billboard
23.4.2 Collision
23.4.3 LOD
23.4.4 NavigationInfo
23.4.5 OrthoViewpoint
23.4.6 Viewpoint
23.4.7 ViewpointGroup

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 23 Navigation component

navigation.html[8/1/2020 9:59:01 AM]

23.5 Support levels

Table 23.1 — Topics
Table 23.2 — Navigation component support levels

 23.2 Concepts

23.2.1 An overview of navigation

Navigation is the capability of users to interact with the X3D browser using one or more
input devices to affect the view it presents. Navigation support is not required for all
profiles.

Every X3D scene can be thought of as containing a viewpoint from which the objects in
the scene are presented to the viewer. Navigation permits the user to change the
position and orientation of the viewpoint with respect to the remainder of the scene
thereby enabling the user to move through the scene and examine objects in the scene.

The NavigationInfo node (see 23.4.4 NavigationInfo) specifies the characteristics of the
desired navigation behaviour, but the exact user interface is browser-dependent. Nodes
derived from X3DViewpointNode (see 23.3.1 X3DViewpointNode) specify key locations
and orientations in the world to which the user may be moved via SAI services or
browser-specific user interfaces.

 23.2.2 Navigation paradigms

The browser may allow the user to modify the location and orientation of the viewer in
the virtual world using a navigation paradigm. Many different navigation paradigms are
possible, depending on the nature of the virtual world and the task the user wishes to
perform. For instance, a walking paradigm would be appropriate in an architectural
walkthrough application, while a flying paradigm might be better in an application
exploring interstellar space. Examination is another common use for X3D, where the
scene contains one or more objects which the user wishes to view from many angles
and distances.

The NavigationInfo node has a type field that specifies the navigation paradigm for this
world. The actual user interface provided to accomplish this navigation is browser-
dependent. See 23.4.4 NavigationInfo, for details.

 23.2.3 Viewing model

The browser controls the location and orientation of the viewer in the world, based on
input from the user (using the browser-provided navigation paradigm) and the motion
of the currently bound X3DViewpointNode node (and its coordinate system). The X3D
author can place any number of viewpoints in the world at important places from which
the user might wish to view the world. Each viewpoint is described by an
X3DViewpointNode node. Viewpoint nodes exist in their parent's coordinate system, and
both the viewpoint and the coordinate system may be changed to affect the view of the
world presented by the browser. Only one viewpoint is bound at a time. A detailed

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 23 Navigation component

navigation.html[8/1/2020 9:59:01 AM]

description of how X3DViewpointNode nodes operate is described in 7.2.2 Bindable
children nodes and 23.3.1 X3DViewpointNode.

Navigation is performed relative to the viewpoint's location and does not affect the
location and orientation values of an X3DViewpointNode node. The location of the
viewer may be determined with a ProximitySensor node (see 22.4.1 ProximitySensor).

This part of ISO/IEC 19775 specifies two node types derived from X3DViewpointNode.
The Viewpoint node specifies a perspective viewpoint while the OrthoViewpoint node
specifies an orthographic viewpoint.

 23.2.4 Collision detection and terrain following

In profiles in which collision detection is required, the NavigationInfo types of WALK, FLY,
and NONE shall strictly support collision detection between the user's avatar and other
objects in the scene by prohibiting navigation and/or adjusting the position of the
viewpoint. However, the NavigationInfo types ANY and EXAMINE may temporarily disable
collision detection during navigation, but shall not disable collision detection during the
normal execution of the world. See 23.4.4 NavigationInfo, for details on the various
navigation types.

Collision nodes can be used to generate events when viewer and objects collide, and
can be used to designate that certain objects should be treated as not being subject to
collision detection and should not be recognized as terrain for navigation modes that
require terrain following to be supported. Browser support for inter-object collision is
not specified.

NavigationInfo nodes can be used to specify certain parameters often used by browser
navigation paradigms. The size and shape of the viewer's avatar determines how close
the avatar may be to an object before a collision is considered to take place. These
parameters can also be used to implement terrain following by keeping the avatar a
certain distance above the ground. They can additionally be used to determine how
short an object must be for the viewer to automatically step up onto it instead of
colliding with it.

23.2.5 Viewpoint list

The viewpoint list is an optional browser-provided feature that lists currently available
viewpoints for user information and selection.

Viewpoints are listed in the order corresponding to the extended scene graph. Thus
viewpoints contained in Inline nodes and nodes that are instances of prototypes are
loaded in the order defined by the scene, even if load time delays are different from
scene-specified order. This has no effect on specification-defined eligibility for first
bound viewpoint. Viewpoints that are removed from the scene are no longer eligible for
the viewpoint list.

Selecting a viewpoint from a viewpoint list will first unbind the current viewpoint before
binding the selected viewpoint. When retainUserOffsets is FALSE, the viewer is returned
to the originally defined viewpoint position/orientation after local navigation. Such a
return to the defined viewpoint can occur either by reselection of current viewpoint from

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 23 Navigation component

navigation.html[8/1/2020 9:59:01 AM]

the viewpoint list, or else by using the PgUp key (as defined in Annex G.2 Select from
multiple viewpoints).

 23.3 Abstract types

23.3.1 X3DViewpointNode
X3DViewpointNode : X3DBindableNode {
 SFBool [in] set_bind
 SFVec3f/d [in,out] centerOfRotation 0 0 0 (-∞,∞)
 SFString [in,out] description ""
 SFFloat [in,out] farClippingPlane -1 -1 or (0,∞)
 SFBool [in,out] jump TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFNode [in,out] navigationInfo NULL [NavigationInfo]
 SFFloat [in,out] nearClippingPlane -1 -1 or (0,∞)
 SFRotation [in,out] orientation 0 0 1 0 (-∞,∞)
 SFVec3f/d [in,out] position 0 0 10 (-∞,∞)
 SFBool [in,out] retainUserOffsets FALSE
 SFBool [in out] viewAll FALSE
 SFTime [out] bindTime
 SFBool [out] isBound
}

A node of node type X3DViewpointNode defines a specific location in the local
coordinate system from which the user may view the scene. X3DViewpointNode nodes
are bindable children nodes (see 7.2.2 Bindable children nodes) and thus there exists
an X3DViewpointNode stack in the browser in which the top-most X3DViewpointNode
node on the stack is the currently active X3DViewpointNode node. If a TRUE value is sent
to the set_bind field of an X3DViewpointNode node, it is moved to the top of the
X3DViewpointNode node stack and activated. When an X3DViewpointNode node is at
the top of the stack, the user's view is conceptually re-parented as a child of the
X3DViewpointNode node. All subsequent changes to the X3DViewpointNode node's
coordinate system change the user's view (e.g., changes to any ancestor
transformation nodes or to the X3DViewpointNode node's position or orientation fields).
Sending a set_bind FALSE event removes the X3DViewpointNode node from the stack
and produces isBound FALSE and bindTime events. If the popped X3DViewpointNode
node is at the top of the X3DViewpointNode stack, the user's view is re-parented to the
next entry in the stack. More details on binding stacks can be found in 7.2.2 Bindable
children nodes. When an X3DViewpointNode node is moved to the top of the stack, the
existing top of stack X3DViewpointNode node sends an isBound FALSE event and is
pushed down the stack.

An author can automatically move the user's view through the world by binding the
user to either an X3DViewpointNode node and then animating either the
X3DViewpointNode node or the transformations above it. Browsers shall allow the user
view to be navigated relative to the coordinate system defined by the
X3DViewpointNode node (and the transformations above it) even if the
X3DViewpointNode node or its ancestors' transformations are being animated.

The bindTime field sends the time at which the X3DViewpointNode node is bound or
unbound. This can happen:

a. during loading;
b. when a set_bind event is sent to the X3DViewpointNode node;
c. when the browser binds to the X3DViewpointNode node through its user interface

described below.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 23 Navigation component

navigation.html[8/1/2020 9:59:01 AM]

The position and orientation fields of the X3DViewpointNode node specify relative
locations in the local coordinate system. Position is relative to the coordinate system's
origin (0,0,0), while orientation specifies a rotation relative to the default orientation. In
the default position and orientation, the viewer is on the Z-axis looking down the −Z-
axis toward the origin with +X to the right and +Y straight up. X3DViewpointNode
nodes are affected by the transformation hierarchy.

Navigation types (see 23.4.4 NavigationInfo) that require a definition of a down vector
(e.g., terrain following) shall use the negative Y-axis of the coordinate system of the
currently bound X3DViewpointNode node. Likewise, navigation types that require a
definition of an up vector shall use the positive Y-axis of the coordinate system of the
currently bound X3DViewpointNode node. The orientation field of the
X3DViewpointNode node does not affect the definition of the down or up vectors. This
allows the author to separate the viewing direction from the gravity direction.

The jump field specifies whether the user's view "jumps" to the position and orientation
of a bound X3DViewpointNode node or remains unchanged. This jump is instantaneous
and discontinuous in that no collisions are performed and no ProximitySensor nodes are
checked in between the starting and ending jump points. If the user's position before
the jump is inside a ProximitySensor the exitTime of that sensor shall send the same
timestamp as the bind field. Similarly, if the user's position after the jump is inside a
ProximitySensor the enterTime of that sensor shall send the same timestamp as the
bind field. Regardless of the value of jump at bind time, the relative viewing
transformation between the user's view and the current X3DViewpointNode node shall
be stored with the current X3DViewpointNode node for later use when un-jumping
(i.e., popping the X3DViewpointNode binding stack from an X3DViewpointNode node
with jump TRUE). The following summarizes the bind stack rules (see 7.2.2 Bindable
children nodes) with additional rules regarding X3DViewpointNode nodes (displayed in
boldface type):

d. During read, the first encountered X3DViewpointNode node is bound by pushing it
to the top of the X3DViewpointNode node stack. If an X3DViewpointNode node
name is specified in the URL that is being read, this named X3DViewpointNode
node is considered to be the first encountered X3DViewpointNode node. Nodes
contained within Inline nodes (see 9.4.2 Inline), within the strings passed to the
Browser.createX3DFromString() method, or within files passed to the
Browser.createX3DFromURL() method (see 2.[I19775-2]) are not candidates for
the first encountered X3DViewpointNode node. The first node within a prototype
instance is a valid candidate for the first encountered X3DViewpointNode node.
The first encountered X3DViewpointNode node sends an isBound TRUE event.

e. When a set_bind TRUE event is received by an X3DViewpointNode node,
1. If it is not on the top of the stack: The relative transformation from the

current top of stack X3DViewpointNode node to the user's view is
stored with the current top of stack X3DViewpointNode node. The
current top of stack node sends an isBound FALSE event. The new node is
moved to the top of the stack and becomes the currently bound
X3DViewpointNode node. The new X3DViewpointNode node (top of stack)
sends an isBound TRUE event. If jump is TRUE for the new
X3DViewpointNode node, the user's view is instantaneously "jumped"
to match the values in the position and orientation fields of the new
X3DViewpointNode node.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 23 Navigation component

navigation.html[8/1/2020 9:59:01 AM]

2. If the node is already at the top of the stack, this event has no affect.
f. When a set_bind FALSE event is received by an X3DViewpointNode node in the

stack, it is removed from the stack. If it was on the top of the stack,
1. it sends an isBound FALSE event,
2. the next node in the stack becomes the currently bound X3DViewpointNode

node (i.e., pop) and issues an isBound TRUE event,
3. if its jump field value is TRUE, the user's view is instantaneously

"jumped" to the position and orientation of the next
X3DViewpointNode node in the stack with the stored relative
transformation of this next X3DViewpointNode node applied.

g. If a set_bind FALSE event is received by a node not in the stack, the event is
ignored and isBound events are not sent.

h. When a node replaces another node at the top of the stack, the isBound TRUE and
FALSE events from the two nodes are sent simultaneously (i.e., with identical
timestamps).

i. If a bound node is deleted, it behaves as if it received a set_bind FALSE event (see
c. above).

The jump field may change after an X3DViewpointNode node is bound. The rules
described above still apply. If jump was TRUE when the X3DViewpointNode node is
bound, but changed to FALSE before the set_bind FALSE is sent, the X3DViewpointNode
node does not un-jump during unbind. If jump was FALSE when the X3DViewpointNode
node is bound, but changed to TRUE before the set_bind FALSE is sent, the
X3DViewpointNode node does perform the un-jump during unbind.

Note that there are two other mechanisms that result in the binding of a new
X3DViewpointNode:

j. An Anchor node's url field specifies a "#X3DViewpointNodeName".
k. A script invokes the loadURL() method and the URL argument specifies a

"#X3DViewpointNodeName".

Both of these mechanisms override the jump field value of the specified
X3DViewpointNode node (#X3DViewpointNodeName) and assume that jump is TRUE
when binding to the new X3DViewpointNode. The behaviour of the viewer transition to
the newly bound X3DViewpointNode depends on the currently bound NavigationInfo
node's type field value (see 23.4.4 NavigationInfo).

The fieldOfView field specifies a preferred minimum viewing angle from this
X3DViewpointNode in angle base units. A small field of view roughly corresponds to a
telephoto lens; a large field of view roughly corresponds to a wide-angle lens. The field
of view shall be greater than zero and smaller than π. The value of fieldOfView
represents the minimum viewing angle in any direction axis perpendicular to the view.
For example, a browser with a rectangular viewing projection shall have the following
relationship:

 display width tan(FOVhorizontal/2)
 -------------- = -------------------
 display height tan(FOVvertical/2)

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 23 Navigation component

navigation.html[8/1/2020 9:59:01 AM]

where the smaller of display width or display height determines which angle equals the
fieldOfView (the larger angle is computed using the relationship described above). The
larger angle shall not exceed π and may force the smaller angle to be less than
fieldOfView in order to sustain the aspect ratio.

The description field specifies a textual description of the X3DViewpointNode node. This
may be used by browser-specific user interfaces. If an X3DViewpointNode's description
field is empty it is recommended that the browser not present this X3DViewpointNode
in its browser-specific user interface.

The centerOfRotation field specifies a center about which to rotate the user's eyepoint
when in EXAMINE mode. If the browser does not provide the ability to spin around the
object in EXAMINE mode, or LOOKAT is not in the list of allowed navigation modes, this field
shall be ignored. For additional information, see 23.4.4 NavigationInfo and 22.4.1
ProximitySensor.

The URL syntax ".../scene.wrl#X3DViewpointNodeName" specifies the user's initial view when
loading "scene.wrl" to be the first X3DViewpointNode node in the X3D file that appears
as DEF X3DViewpointNodeName X3DViewpointNode {...}. This overrides the first
X3DViewpointNode node in the X3D file as the initial user view, and a set_bind TRUE
message is sent to the X3DViewpointNode node named "X3DViewpointNodeName". If
the X3DViewpointNode node named "X3DViewpointNodeName" is not found, the
browser shall use the first X3DViewpointNode node in the X3D file (i.e., the normal
default behaviour). The URL syntax "#X3DViewpointNodeName" (i.e., no file name) specifies
an X3DViewpointNode within the existing X3D file. If this URL is loaded (e.g., Anchor
node's url field or loadURL() method is invoked by a Script node), the X3DViewpointNode
node named "X3DViewpointNodeName" is bound (a set_bind TRUE event is sent to this
X3DViewpointNode node).

The retainUserOffsets field indicates whether a viewpoint needs to retain (TRUE) or reset
to zero (FALSE) any prior user navigation offsets from defined viewpoint position,
orientation. When an node of type X3DViewpointNode is bound, user navigation offsets
are reinitialized if the associated retainUserOffsets is TRUE.

The navigationInfo field defines a dedicated NavigationInfo node for this
X3DViewpointNode. The specified NavigationInfo node receives a set_bind TRUE event at
the time when the parent node is bound and receives a set_bind FALSE at the time when
the parent node is unbound.

If specified and positive, the values specified for nearClippingPlane and farClippingPlane
define the near and far clipping plane distances when the X3DViewpointNode is bound.
Otherwise these values are defined by the bound NavigationInfo node, including when
the X3DViewpointNode is unbound.

If nearClippingPlane is defined, it shall be less than the defined farClippingPlane (if
provided) or the corresponding visibilityLimit value defined by NavigationInfo. If
farClippingPlane is defined, it shall be greater than the defined nearClippingPlane (if
provided) or the corresponding value defined by NavigationInfo.

A default value of -1 for nearClippingPlane or farClippingPlane means that the field has
no effect on currently active view-frustum boundaries.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 23 Navigation component

navigation.html[8/1/2020 9:59:01 AM]

Each type of viewpoint defines the specific actions associated with the viewAll field.

 23.4 Node reference

 23.4.1 Billboard
Billboard : X3DGroupingNode {
 MFNode [in] addChildren [X3DChildNode]
 MFNode [in] removeChildren [X3DChildNode]
 SFVec3f [in,out] axisOfRotation 0 1 0 (-∞,∞)
 MFNode [in,out] children [] [X3DChildNode]
 SFBool [in out] bboxDisplay FALSE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [in out] visible TRUE
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or −1 −1 −1
}

The Billboard node is a grouping node that transforms the coordinate system of its
children so that the local Z-axis of the children turns to point at the viewer within the
limitations of its rotational axis.

The axisOfRotation field specifies which axis to use to perform the rotation. This axis is
defined in the local coordinate system.

When the axisOfRotation field is not (0, 0, 0), the following steps describe how to rotate
the billboard to face the viewer:

a. Compute the vector from the Billboard node's origin to the viewer's position. This
vector is called the billboard-to-viewer vector.

b. Compute the plane defined by the axisOfRotation and the billboard-to-viewer
vector.

c. Rotate the local Z-axis of the billboard into the plane from b., pivoting around the
axisOfRotation.

When the axisOfRotation field is set to (0, 0, 0), the special case of viewer-alignment is
indicated. In this case, the object rotates to keep the billboard's local Y-axis parallel
with the Y-axis of the viewer. This special case is distinguished by setting the
axisOfRotation to (0, 0, 0). The following steps describe how to align the billboard's Y-
axis to the Y-axis of the viewer:

d. Compute the billboard-to-viewer vector.
e. Rotate the Z-axis of the billboard to be collinear with the billboard-to-viewer vector

and pointing towards the viewer's position.
f. Rotate the Y-axis of the billboard to be parallel and oriented in the same direction

as the Y-axis of the viewer.

If the axisOfRotation and the billboard-to-viewer line are coincident, the plane cannot
be established and the resulting rotation of the billboard is undefined. For example, if
the axisOfRotation is set to (0,1,0) (Y-axis) and the viewer flies over the billboard and
peers directly down the Y-axis, the results are undefined.

Multiple instances of Billboard nodes (DEF/USE) operate as expected: each instance
rotates in its unique coordinate system to face the viewer.

10.2.1 Grouping and children node types provides a description of the children,

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 23 Navigation component

navigation.html[8/1/2020 9:59:01 AM]

addChildren, and removeChildren fields.

The bboxCenter and bboxSize fields specify a bounding box that encloses the Billboard
node's children. This is a hint that may be used for optimization purposes. The results
are undefined if the specified bounding box is smaller than the actual bounding box of
the children at any time. A default bboxSize value, (-1, -1, -1), implies that the
bounding box is not specified and if needed shall be calculated by the browser. A
description of the bboxCenter and bboxSize fields is contained in 10.2.2 Bounding
boxes.

 23.4.2 Collision
Collision : X3DGroupingNode, X3DSensorNode {
 MFNode [in] addChildren [X3DChildNode]
 MFNode [in] removeChildren [X3DChildNode]
 MFNode [in,out] children [] [X3DChildNode]
 SFBool [in out] bboxDisplay FALSE
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [in out] visible TRUE
 SFTime [out] collideTime
 SFBool [out] isActive
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or −1 −1 −1
 SFNode [] proxy NULL [X3DChildNode]
}

The Collision node is a grouping node that specifies the collision detection properties for
its children (and their descendants), specifies surrogate objects that replace its children
during collision detection, and sends events signalling that a collision has occurred
between the avatar and the Collision node's geometry or surrogate. By default, all
geometric nodes in the scene are collidable with the viewer except IndexedLineSet and
PointSet. Browsers shall detect geometric collisions between the avatar (see 23.3.4
NavigationInfo) and the scene's geometry and prevent the avatar from "entering" the
geometry. See 23.2.4 Collision detection and terrain following for general information
on collision detection.

If there are no Collision nodes specified in a X3D file, browsers shall detect collisions
between the avatar and all objects during navigation.

10.2.1 Grouping and children node types contains a description of the children,
addChildren, and removeChildren fields.

The Collision node's enabled field enables and disables collision detection as well as
terrain following when the navigation type requires it. If enabled is set to FALSE, the
children and all descendants of the Collision node shall not be checked for collision or
terrain, even though they are drawn. This includes any descendent Collision nodes that
have enabled set to TRUE (i.e., setting enabled to FALSE turns collision off for every child
node below it).

The value of the isActive field indicates the current state of the Collision node. An
isActive TRUE event is generated when a collision occurs. An isActive FALSE event is
generated when a collision no longer occurs.

Collision nodes with the enabled field set to TRUE detect the nearest collision with their
descendent geometry (or proxies). When the nearest collision is detected, the collided
Collision node sends the time of the collision through its collideTime field. If a Collision
node contains a child, descendant, or proxy (see below) that is a Collision node, and

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 23 Navigation component

navigation.html[8/1/2020 9:59:01 AM]

both Collision nodes detect that a collision has occurred, both send a collideTime event
at the same time. A collideTime event shall be generated if the avatar is colliding with
collidable geometry when the Collision node is read from a X3D file or inserted into the
transformation hierarchy.

The bboxCenter and bboxSize fields specify a bounding box that encloses the Collision
node's children. This is a hint that may be used for optimization purposes. The results
are undefined if the specified bounding box is smaller than the actual bounding box of
the children at any time. A default bboxSize value, (-1, -1, -1), implies that the
bounding box is not specified and if needed shall be calculated by the browser. More
details on the bboxCenter and bboxSize fields can be found in 10.2.2 Bounding boxes..

The collision proxy, defined in the proxy field, is any legal children node as described in
10.2.1 Grouping and children node types that is used as a substitute for the Collision
node's children during collision detection. The proxy is used strictly for collision
detection; it is not drawn.

If the value of the enabled field is TRUE and the proxy field is non-NULL, the proxy field
defines the scene on which collision detection is performed. If the proxy value is NULL,
collision detection is performed against the children of the Collision node.

If proxy is specified, any descendent children of the Collision node are ignored during
collision detection. If children is empty, enabled is TRUE, and proxy is specified, collision
detection is performed against the proxy but nothing is displayed. In this manner,
invisible collision objects may be supported.

The collideTime field generates an event specifying the time when the avatar
(see 23.3.4 NavigationInfo) makes contact with the collidable children or proxy of the
Collision node. An ideal implementation computes the exact time of collision.
Implementations may approximate the ideal by sampling the positions of collidable
objects and the user. The NavigationInfo node contains additional information for
parameters that control the avatar size.

 23.4.3 LOD
LOD : X3DGroupingNode {
 MFNode [in] addChildren [X3DChildNode]
 MFNode [in] removeChildren [X3DChildNode]
 MFNode [in,out] children [] [X3DChildNode]
 SFBool [in out] bboxDisplay FALSE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [in out] visible TRUE
 SFInt32 [out] level_changed
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or −1 −1 −1
 SFVec3f [] center 0 0 0 (-∞,∞)
 SFBool [] forceTransitions FALSE
 MFFloat [] range [] [0,∞) or -1
}

The LOD node specifies various levels of detail or complexity for a given object, and
provides hints allowing browsers to automatically choose the appropriate version of the
object based on the distance from the user. The children field contains a list of nodes
that represent the same object or objects at varying levels of detail, ordered from
highest level of detail to the lowest level of detail.

The range field specifies the ideal distances at which to switch between the levels. The
forceTransitions field specifies whether browsers are allowed to disregard level

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 23 Navigation component

navigation.html[8/1/2020 9:59:01 AM]

distances in order to provide better performance. A forceTransitions value of TRUE
specifies that every transition should be performed regardless of any internal
optimizations that might be available. A forceTransitions value of FALSE specifies that
browsers are allowed to disregard level distances in order to provide better
performance.

10.2.1 Grouping and children node types contains details on the types of nodes that are
legal values for children.

The center field is a translation offset in the local coordinate system that specifies the
centre of the LOD node for distance calculations.

The number of nodes in the children field shall exceed the number of values in the
range field by one (i.e., N+1 children nodes for N range values). The range field
contains monotonic increasing values that shall be greater than zero. In order to
calculate which level to display, first the distance is calculated from the viewer's
location, transformed into the local coordinate system of the LOD node (including any
scaling transformations), to the center point of the LOD node. Then, the LOD node
evaluates the step function L(d) to choose a level for a given value of d (where d is the
distance from the viewer position to the centre of the LOD node).

Let n ranges, R0, R1, R2, ..., Rn-1, partition the domain (0, +infinity) into n+1
subintervals given by (0, R0), [R0, R1)... , [Rn-1, +infinity). Also, let n levels L0, L1, L2,
..., Ln-1 be the values of the step function L(d). The level, L(d), for a given distance d is
defined as follows:

 L(d) = L0, if d < R0,
 = Li+1, if Ri ≤ d < Ri+1, for −1 < i < n−1,
 = Ln−1, if d ≥ Rn−1.

The L(d)th node of the children field is that which is displayed. The L(d)th node of the
children field (denoted by Li in the equation above) is that which is displayed. When
L(d) is activated for display, the LOD node generates a level_changed event with value
i where the value of i identifies which value of L was activated for display.

Specifying too few levels will result in the last level being used repeatedly for the lowest
levels of detail. If more levels than ranges are specified, the extra levels are ignored.
An empty range field is an exception to this rule. This case is a hint to the browser that
it may choose a level automatically to maintain a constant display rate. Each value in
the range field shall be greater than the previous value.

LOD nodes are evaluated top-down in the scene graph. Only the descendants of the
currently selected children node are rendered. All nodes under an LOD node continue to
receive and send events regardless of which LOD node's level is active.

EXAMPLE If an active TimeSensor node is contained within an inactive level of an LOD node, the TimeSensor
node sends events regardless of the LOD node's state.

The bboxCenter and bboxSize fields specify a bounding box that encloses the LOD
node's children. This is a hint that may be used for optimization purposes. The results
are undefined if the specified bounding box is smaller than the actual bounding box of

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 23 Navigation component

navigation.html[8/1/2020 9:59:01 AM]

the child with the largest bounding box at any time. A default bboxSize value, (−1, −1,
−1), implies that the bounding box is not specified and, if needed, is calculated by the
browser. A description of the bboxCenter and bboxSize fields is contained in 10.2.2
Bounding boxes.

 23.4.4 NavigationInfo
NavigationInfo : X3DBindableNode {
 SFBool [in] set_bind
 MFFloat [in,out] avatarSize [0.25 1.6 0.75] [0,∞)
 SFBool [in,out] headlight TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFFloat [in,out] speed 1.0 [0,∞)
 SFTime [in,out] transitionTime 1.0 [0, ∞)
 MFString [in,out] transitionType ["LINEAR"] ["TELEPORT","LINEAR",
 "ANIMATE",...]
 MFString [in,out] type ["EXAMINE" "ANY"] ["ANY","WALK","EXAMINE","FLY",
 "LOOKAT","NONE","EXPLORE",...]
 SFFloat [in,out] visibilityLimit 0.0 [0,∞)
 SFTime [out] bindTime
 SFBool [out] isBound
 SFBool [out] transitionComplete
}

The NavigationInfo node contains information describing the physical characteristics of
the viewer's avatar and viewing model. NavigationInfo node is a bindable node (see
7.2.2 Bindable children nodes). Whenever the current X3DViewpointNode node
changes, the current NavigationInfo node shall be re-parented to it by the browser.
Whenever the current NavigationInfo node changes, the new NavigationInfo node shall
be re-parented to the current Viewpoint node by the browser.

If a TRUE value is sent to the set_bind field of a NavigationInfo node, the node is pushed
onto the top of the NavigationInfo node stack. When a NavigationInfo node is bound,
the browser uses the fields of the NavigationInfo node to set the navigation controls of
its user interface and the NavigationInfo node is conceptually re-parented under the
currently bound X3DViewpointNode node. All subsequent scaling changes to the current
X3DViewpointNode node's coordinate system automatically change aspects (see below)
of the NavigationInfo node values used in the browser (e.g., scale changes to any
ancestors' transformations). A FALSE value sent to set_bind pops the NavigationInfo
node from the stack, results in an isBound FALSE event, and pops to the next entry in
the stack which shall be re-parented to the current X3DViewpointNode node. 7.2.2
Bindable children nodes has more details on binding stacks.

The type field specifies an ordered list of navigation paradigms that specify a
combination of navigation types and the initial navigation type. The navigation type of
the currently bound NavigationInfo node determines the user interface capabilities of
the browser. For example, if the currently bound NavigationInfo node's type is "WALK",
the browser shall present a "WALK" navigation user interface paradigm (see below for
description of WALK). Browsers shall recognize at least the following navigation types:
"ANY", "WALK", "EXAMINE", "FLY", "LOOKAT", and "NONE" with support as specified in Table 23.2.

If "ANY" does not appear in the type field list of the currently bound NavigationInfo, the
browser's navigation user interface shall be restricted to the recognized navigation
types specified in the list. In this case, browsers shall not present a user interface that
allows the navigation type to be changed to a type not specified in the list. However, if
any one of the values in the type field are "ANY", the browser may provide any type of
navigation interface, and allow the user to change the navigation type dynamically.
Furthermore, the first recognized type in the list shall be the initial navigation type
presented by the browser's user interface.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 23 Navigation component

navigation.html[8/1/2020 9:59:01 AM]

"ANY" navigation specifies that the browser may choose the navigation paradigm that
best suits the content and provide a user interface to allow the user to change the
navigation paradigm dynamically. The results are undefined if the currently bound
NavigationInfo's type value is "ANY" and Viewpoint transitions (see 23.3.5 Viewpoint) are
triggered by the Anchor node (see 9.4.1 Anchor) or the loadURL() scripting method (see
Part 2 of ISO/IEC 19775).

"WALK" navigation is used for exploring a virtual world on foot or in a vehicle that rests
on or hovers above the ground. It is strongly recommended that WALK navigation define
the up vector in the +Y direction and provide some form of terrain following and gravity
in order to produce a walking or driving experience. If the bound NavigationInfo's type
is "WALK", the browser shall strictly support collision detection (see 23.3.2 Collision).

"FLY" navigation is similar to WALK except that terrain following and gravity may be
disabled or ignored. There shall still be some notion of "up" however. If the bound
NavigationInfo's type is "FLY", the browser shall strictly support collision detection (see
23.3.2 Collision).

"LOOKAT" navigation is used to explore a scene by navigating to a particular object.
Selecting an object with "LOOKAT":

a. Moves the viewpoint directly to some convenient viewing distance from the
bounding box center of the selected object, with the viewpoint orientation set to
aim the view at the approximate centre of the object;

b. Sets the center of rotation in the currently bound Viewpoint node to the
approximate centre of the selected object.

"EXAMINE" navigation is used for viewing individual objects. "EXAMINE" shall provide the
ability to orbit or spin the user's eyepoint about the center of rotation in response to
user actions. The center of rotation for moving the viewpoint around the object and
determining the viewpoint orientation is specified in the currently bound
X3DViewpointNode node (see 23.3.1 X3DViewpoinNode). The browser shall strictly
support collision detection (see 23.4.2 Collision) and shall trigger exit and enter events
throughout EXAMINE operations.

"LOOKAT" navigation in combination with "EXAMINE" is used to explore a scene by
navigating to a particular object, then being able to conveniently navigate in order to
examine the object from different orientations. If content specifies both "LOOKAT" and
"EXAMINE" types, any "LOOKAT" operations shall change the center of rotation for
subsequent "EXAMINE" operations.

"NONE" navigation disables and removes all browser-specific navigation user interface
forcing the user to navigate using only mechanisms provided in the scene, such as
Anchor nodes or scripts that include loadURL(). "NONE" has an effect only when it is the
first supported navigation type. If "NONE" is not the first supported navigation type, it
has no effect.

"EXPLORE" navigation is used to provide consistent keystroke navigation for both
geospatial and Cartesian modes. When "EXPLORE" mode is active:

a. Dragging left and right while holding the left button down causes viewpoint

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 23 Navigation component

navigation.html[8/1/2020 9:59:01 AM]

rotation about a vertical axis that passes through the point of rotation. This vertical
axis is always perpendicular to the viewpoint vector. Motion in the left direction
rotates the viewpoint clockwise (as viewed from the top) about the vertical axis.
Rotation is tied to the motion of the pointing device; there is no damping or delay.

b. Dragging the up and down while holding the left button down causes rotation
about a horizontal axis that passes through the point of rotation. Motion in the up
direction rotates the viewpoint clockwise (as viewed from the right) about the
horizontal axis. Rotation is tied to the motion of the pointing device; there is no
damping or delay.

c. Holding the Ctrl key (or other key that may be user-selectable) down modifies the
left button down drag movement such that up and down (Y-axis) movement
causes the viewpoint to zoom toward and from the point of rotation. Left and right
motion while Ctrl is held down has no effect. Shift and Ctrl (or other keys that may
be user-selectable) held at the same time also enables zoom but disables
TouchSensors.

d. Holding the Alt key (or other key that may be user-selectable) modifies the
movement such that motion of the pointing device while the left button is held
down is translated into a pan of the viewpoint in a plane passing through the
viewpoint perpendicular to the vector pointing to the point of rotation. Shift and Alt
(or other keys that may be user-selectable) held at the same time also enables
pan but disables TouchSensors.

e. The point of rotation can be set by holding the Shift key (or other key that may be
user-selectable) while pointing at an object and clicking the left button. To provide
feedback that the point has been selected, the viewpoint shall zoom about twenty
percent of the distance toward that point.

f. If the pointer is positioned over a TouchSensor, the pointer icon shall change its
appearance to indicate that a left click will activate the TouchSensor.

g. Holding the Shift key (or other key that may be user-selectable) overrides any
TouchSensor that the pointer may be over and forces the pointing device to
function as the viewpoint navigation tool; i.e., drag operations cause rotation, click
operations cause center of rotation point selection.

Whether user-selectable alternatives to the Shift, Ctrl, and/or Alt are provided is
browser-dependent. If provided, the method by which such alternatives are specified is
also browser-dependent.

If the NavigationInfo type is "WALK", "FLY", "EXAMINE", or "NONE" or a combination of these
types (i.e., "ANY" is not in the list), X3DViewpointNode transitions (see 23.3.1
X3DViewpointNode) triggered by the Anchor node (see 9.4.1 Anchor) or the
loadURL()scripting method (see Part 2 of ISO/IEC 19775) shall be implemented as a
jump from the old X3DViewpointNode to the new X3DViewpointNode with transition
effects that shall not trigger events besides the exit and enter events caused by the
jump.

Browsers may create browser-specific navigation type extensions. It is recommended
that extended type names include a unique suffix (e.g., HELICOPTER_mydomain.com)
to prevent conflicts. X3DViewpointNode transitions (see 23.3.5 Viewpoint) triggered by
the Anchor node (see 9.4.1 Anchor) or the loadURL()scripting method (see Part 2 of
ISO/IEC 19775) are undefined for extended navigation types. If none of the types are
recognized by the browser, the default "ANY" is used. These strings values are case

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 23 Navigation component

navigation.html[8/1/2020 9:59:01 AM]

sensitive ("any" is not equal to "ANY").

The transitionType field specifies an ordered list of paradigms that determine the
manner in which the browser moves the viewer when a new Viewpoint node is bound.
Browsers shall recognize and support at least the following transition types: "TELEPORT",
"LINEAR", and "ANIMATE". For value "TELEPORT", the transition shall be immediate without
any intervening positions. For value "LINEAR", the browser shall perform a linear
interpolation of the position and orientation values. For value "ANIMATE", the browser
shall perform a browser-specific animation effect. If all values are unrecognized or the
field is empty, the default value of "LINEAR" shall be used. This field applies to any
transitions between positions and orientations including Viewpoint bindings and "LOOKAT"
navigation type.

The transitionTime field specifies the duration of any viewpoint transition. The transition
starts when the next Viewpoint node is bound. The duration of the transition depends
on the value of the transitionType field. If transitionType is "TELEPORT", the transition is
instantaneous and completes at the same time it starts. A transition type of "LINEAR"
indicates that the transition lasts the number of seconds specified by the first value in
the transitionTime field. If transitionType is "ANIMATE", transitionTime provides browser-
dependent parameters to the browsers viewpoint animation engine. When a transition
completes, a transitionComplete event is signaled.

The speed field specifies the rate at which the viewer travels through a scene in speed
base units. Since browsers may provide mechanisms to travel faster or slower, this field
specifies the default, average speed of the viewer when the NavigationInfo node is
bound. If the NavigationInfo type is "EXAMINE", speed shall not affect the viewer's
rotational speed. Scaling in the transformation hierarchy of the currently bound
Viewpoint node (see above) scales the speed; parent translation and rotation
transformations have no effect on speed. Speed shall be non-negative. Zero speed
indicates that the avatar's position is stationary, but its orientation and field of view
may still change. If the navigation type is "NONE", the speed field has no effect.

The avatarSize field specifies the user's physical dimensions in the world for the
purpose of collision detection and terrain following. It is a multi-value field allowing
several dimensions to be specified. The first value shall be the allowable distance
between the user's position and any collision geometry (as specified by a Collision node
) before a collision is detected. The second shall be the height above the terrain at
which the browser shall maintain the viewer. The third shall be the height of the tallest
object over which the viewer can move. This allows staircases to be built with
dimensions that can be ascended by viewers in all browsers. The transformation
hierarchy of the currently bound Viewpoint node scales the avatarSize. Translations and
rotations have no effect on avatarSize.

For purposes of terrain following, the browser maintains a notion of the down direction
(down vector), since gravity is applied in the direction of the down vector. This down
vector shall be along the negative Y-axis in the local coordinate system of the currently
bound X3DViewpointNode node (i.e., the accumulation of the X3DViewpointNode node's
ancestors' transformations, not including the X3DViewpointNode node's orientation
field).

Geometry beyond the visibilityLimit may not be rendered. A value of 0.0 indicates an
infinite visibilityLimit. The visibilityLimit field is restricted to be greater than or equal to

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 23 Navigation component

navigation.html[8/1/2020 9:59:01 AM]

zero.

The speed, avatarSize and visibilityLimit values are all scaled by the transformation
being applied to the currently bound X3DViewpointNode node. If there is no currently
bound X3DViewpointNode node, the values are interpreted in the world coordinate
system. This allows these values to be automatically adjusted when binding to a
X3DViewpointNode node that has a scaling transformation applied to it without
requiring a new NavigationInfo node to be bound as well. The results are undefined if
the scale applied to the X3DViewpointNode node is non-uniform.

The headlight field specifies whether a browser shall turn on a headlight. A headlight is
a directional light that always points in the direction the user is looking. Setting this
field to TRUE allows the browser to provide a headlight, possibly with user interface
controls to turn it on and off. Scenes that enlist precomputed lighting (EXAMPLE
 radiosity solutions) can turn the headlight off. The headlight shall have intensity = 1,
color = (1 1 1), ambientIntensity = 0.0, and direction = (0 0 −1).

It is recommended that the near clipping plane be set to one-half of the collision radius
as specified in the avatarSize field (setting the near plane to this value prevents
excessive clipping of objects just above the collision volume, and also provides a region
inside the collision volume for content authors to include geometry intended to remain
fixed relative to the viewer). Such geometry shall not be occluded by geometry outside
of the collision volume.

23.4.5 OrthoViewpoint
OrthoViewpoint : X3DViewpointNode {
 SFBool [in] set_bind
 SFVec3f [in,out] centerOfRotation 0 0 0 (-∞,∞)
 SFString [in,out] description ""
 SFFloat [in,out] farClippingPlane -1 -1 or (0,∞)
 MFFloat [in,out] fieldOfView -1, -1, 1, 1 (-∞,∞)
 SFBool [in,out] jump TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFNode [in,out] navigationInfo NULL [NavigationInfo]
 SFFloat [in,out] nearClippingPlane -1 -1 or (0,∞)
 SFRotation [in,out] orientation 0 0 1 0 [-1,1],(-∞,∞)
 SFVec3f [in,out] position 0 0 10 (-∞,∞)
 SFBool [in,out] retainUserOffsets FALSE
 SFBool [in out] viewAll FALSE
 SFTime [out] bindTime
 SFBool [out] isBound
}

The OrthoViewpoint node defines a viewpoint that provides an orthographic view of the
scene. An orthographic view is one in which all projectors are parallel to the projector
from centerOfRotation to position.

The fieldOfView field specifies minimum and maximum extents of the view in units of
the local coordinate system. A small field of view roughly corresponds to a telephoto
lens; a large field of view roughly corresponds to a wide-angle lens. The minimum an
maximum values in each direction of the field of view shall have the relationship
minimum < maximum. The value of fieldOfView represents the minimum viewing
extent in any direction axis perpendicular to the view.

A browser with a rectangular viewing projection has the following relationship:

display width (maximum_x - minimum_x)
-------------- = -----------------------
display height (maximum_y - minimum_y)

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 23 Navigation component

navigation.html[8/1/2020 9:59:01 AM]

When the viewAll field is set to TRUE or a viewpoint is bound with viewAll field TRUE, the
current view is modified to change the centerOfRotation field to match center of
bounding box for entire visible scene, and the orientation field is modified to aim at that
point. Zoom in or out until outside the bounding box for all models. Finally, the
fieldOfView field is modified to encompass the visibility of all geometry in the bounding
box for the entire scene. If the current view is within a model, any intervening
geometry does not block the change in position. No collision detection or proximity
sensing occurs when zooming. If needed, near and far clipping planes shall be adjusted
to allow viewing the entire scene. When the value of the viewAll field is changed from
TRUE to FALSE, no change in the current view occurs.

23.4.6 Viewpoint
Viewpoint : X3DViewpointNode {
 SFBool [in] set_bind
 SFVec3f [in,out] centerOfRotation 0 0 0 (-∞,∞)
 SFString [in,out] description ""
 SFFloat [in,out] farClippingPlane -1 -1 or (0,∞)
 SFFloat [in,out] fieldOfView π/4 (0,π)
 SFBool [in,out] jump TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFNode [in,out] navigationInfo NULL [NavigationInfo]
 SFFloat [in,out] nearClippingPlane -1 -1 or (0,∞)
 SFRotation [in,out] orientation 0 0 1 0 [-1,1],(-∞,∞)
 SFVec3f [in,out] position 0 0 10 (-∞,∞)
 SFBool [in,out] retainUserOffsets FALSE
 SFBool [in out] viewAll FALSE
 SFTime [out] bindTime
 SFBool [out] isBound
}

The Viewpoint node defines a viewpoint that provides a perspective view of the scene. A
perspective view is one in which all projectors coalesce at position.

The fieldOfView field specifies a preferred minimum viewing angle from this viewpoint in
angle base units. A small field of view roughly corresponds to a telephoto lens; a large
field of view roughly corresponds to a wide-angle lens. The field of view shall be greater
than zero and smaller than π. The value of fieldOfView represents the minimum viewing
angle in any direction axis perpendicular to the view.

A browser with a rectangular viewing projection has the following relationship:

display width tan(FOVhorizontal/2)
-------------- = -------------------
display height tan(FOVvertical/2)

where the smaller of display width or display height determines which angle equals the
fieldOfView (the larger angle is computed using the relationship described above). The
larger angle shall not exceed π and may force the smaller angle to be less than
fieldOfView in order to sustain the aspect ratio.

When the viewAll field is set to TRUE or a viewpoint is bound with viewAll field TRUE, the
current view is modified to change the centerOfRotation field to match center of
bounding box for entire visible scene, and the orientation field is modified to aim at that
point. Finally, zoom position in or out until the bounding box containing the entire scene
is fully within the current viewing window. If the current view is within a model, any
intervening geometry does not block the change in position. No collision detection or
proximity sensing occurs when zooming. If needed, near and far clipping planes shall be
adjusted to allow viewing the entire scene. When the value of the viewAll field is
changed from TRUE to FALSE, no change in the current view occurs.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 23 Navigation component

navigation.html[8/1/2020 9:59:01 AM]

23.4.7 ViewpointGroup
ViewpointGroup : X3DChildNode {
 SFVec3f [in,out] center 0 0 0 (-∞,∞)
 MFNode [in,out] children NULL [X3DViewpointNode | ViewpointGroup]
 SFString [in,out] description ""
 SFBool [in,out] displayed TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [in,out] retainUserOffsets FALSE
 SFVec3f [in,out] size 0 0 0 (-∞,∞)
}

The ViewpointGroup node is used to control display of viewpoints on the viewpoint list.
Use of ViewpointGroup allows a viewpoint list to have a tree structure, similar to a
bookmark list.

The children field is a sequence of nodes of type X3DViewpointNode.

The description field provides a simple description or navigation hint to be displayed for
this ViewpointGroup.

The displayed field determines whether this ViewpointGroup is displayed in the current
viewpoint list.

The center and size fields are defined identically as the corresponding ProximitySensor
definitions. The center field provides a position offset from origin of local coordinate
system. The size field provides the size of a proximity box within which the
ViewpointGroup is usable and displayed on the viewpoint list. A size field of 0 0 0
specifies that the ViewpointGroup is always usable and displayable.

The retainUserOffsets field specifies whether the user is returned to the originally
defined viewpoint position/orientation after local navigation (see 23.2.5 Viewpoint list).

 23.5 Support levels
The Navigation component provides two levels of support as specified in Table 23.2.

Table 23.2— Navigation component support levels

Level Prerequisites Nodes Support

1 Core 1

 X3DViewpointNode n/a

NavigationInfo

avatarSize optionally
supported.
speed optionally supported.
type support for at least "ANY",
"FLY", "EXAMINE", and "NONE".
visibilityLimit optionally
supported.

fieldOfView optionally
supported.
description optionally

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 23 Navigation component

navigation.html[8/1/2020 9:59:01 AM]

Viewpoint supported.
retainUserOffsets optionally
supported.
All other fields fully supported.

2

Core 1
Grouping 1
Shape 1
Environmental
sensor 2

All Level 1
Navigation nodes All fields fully supported.

 NavigationInfo

type support for at least "ANY",
"FLY", "EXAMINE", "WALK", "LOOKAT",
and "NONE".
All other fields fully supported.

 Billboard All fields fully supported.

Collision All fields fully supported.

LOD All fields fully supported.

 3

Core 1
Grouping 1
Shape 1
Environmental
sensor 2

All Level 2
Navigation nodes All fields fully supported.

 OrthoViewpoint All fields fully supported.

 ViewpointGroup All fields fully supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex B Interchange profile

interchange.html[8/1/2020 9:59:04 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

Annex B

(normative)

Interchange profile

 B.1 General
This annex defines the X3D components that comprise the Interchange profile. This
includes not only the nodes that shall be supported but also which fields in the
supported nodes may be ignored.

This profile is targeted towards:

Exchange of geometry and animations between authoring systems,
Possible implementation in a low-footprint engine requiring no interaction
(EXAMPLE an applet or small browser plug-in),
Addressing the limitations of software renders not capable of dealing with all
details of the full X3D lighting model, and
Allowing a broader range of implementations by eliminating some complexity of a
complete X3D implementation.

 B.2 Topics
Table B.1 provides links to the major topics in this annex.

 Table B.1 — Topics

B.1 General
B.2 Topics in this annex
B.3 Component support
B.4 Conformance criteria
B.5 Node set
B.6 Other limitations

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex B Interchange profile

interchange.html[8/1/2020 9:59:04 AM]

Table B.1 — Topics
Table B.2 — Components and levels
Table B.3 — Nodes for conforming to the Interchange profile
Table B.4 — Other limitations

 B.3 Component support
Table B.2 lists the components and their levels which shall be supported in the
Interchange profile. Tables B.2 and B.3 describe limitations on required support for
nodes and fields contained within these components.

Table B.2 — Components and levels

Component Level Reference

Core 1 7.5 Support levels

Time 1 8.5 Support levels

Networking 1 9.5 Support levels

Grouping 1 10.5 Support levels

Rendering 3 11.5 Support levels

Shape 1 12.5 Support levels

Geometry3D 2 13.4 Support levels

Lighting 1 17.5 Support levels

Texturing 2 18.5 Support levels

Interpolation 2 19.5 Support levels

Navigation 1 23.4 Support levels

Environmental effects 1 24.5 Support levels

 B.4 Conformance criteria
Conformance to this profile shall include conformance criteria defined by the
specifications for those components and levels listed in Table B.2.

In Tables B.3 and B.4, the first column defines the item for which conformance is being
defined. In some cases, general limits are defined but are later overridden in specific
cases by more restrictive limits. The second column defines the requirements for a X3D
file conforming to the Interchange profile; if a X3D file contains any items that exceed
these limits, it may not be possible for a X3D browser conforming to the Interchange

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex B Interchange profile

interchange.html[8/1/2020 9:59:04 AM]

profile to successfully parse that X3D file. The third column defines the minimum
complexity for a X3D scene that a X3D browser conforming to the Interchange profile
shall be able to present to the user. Fields flagged as "not supported" may be supported
by browsers which conform to the Interchange profile. The word "ignore" in the
minimum browser support column refers only to the display of the item; in particular,
set_ events to ignored inputOutput fields shall still generate corresponding _changed
events.

 B.5 Node set
Table B.3 lists the nodes which shall be supported in the Interchange profile and
specifies any fields in these nodes for which this profile requires less than full support.

Table B.3 — Nodes for conforming to the Interchange profile

Item X3D File
Limit Minimum Browser Support

Appearance No
restrictions.

textureTransform optionally
supported.
lineProperties not supported.
fillProperties not supported.

Background No
restrictions.

groundAngle and groundColor
optionally supported. backURL,
frontURL, leftURL, rightURL,
topURL optionally supported.
skyAngle optionally supported.
One skyColor.

Box No
restrictions. Full support.

Color 15,000
colours. 15,000 colours.

ColorInterpolator
Restrictions
as for all
interpolators.

Full support except as for all
interpolators.

ColorRGBA 15,000
colours.

15,000 colours. Alpha component
optionally supported.

Cone No
restrictions. Full support.

Coordinate 65,535
points 65,535 points.

CoordinateInterpolator

15,000
coordinates
per
keyValue. 15,000 coordinates per keyValue.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex B Interchange profile

interchange.html[8/1/2020 9:59:04 AM]

Restrictions
as for all
interpolators.

Support as for all interpolators.

Cylinder No
restrictions. Full support.

DirectionalLight No
restrictions.

Not scoped by parent Group or
Transform.

Group
Restrictions
as for all
groups.

addChildren optionally supported.
removeChildren optionally
supported. Otherwise as for all
groups.

ImageTexture

JPEG (2.
[JPEG]) and
PNG (2.
[I15948])
format.

JPEG (2.[JPEG]) and PNG (2.
[I15948]) format.

IndexedFaceSet

10 vertices
per face.
5000 faces.
Less than
65,535
indices.

ccw optionally supported.
set_colorIndex optionally
supported. set_normalIndex
optionally supported. normal
optionally supported. Only convex
indexed face sets supported.
Hence, convex optionally
supported. For creaseAngle, only 0
and π radians supported (or the
equivalent if a different angle base
unit has been specified). 10
vertices per face. 5000 faces.
65,535 indices in any index field.

Face list shall be well-defined as
follows:

1. Each face is terminated with
-1, including the last face in
the array.

2. Each face contains at least
three non-coincident
vertices.

3. A given coordIndex is not
repeated in a face.

4. The vertices of a face shall
define a planar polygon.

5. The vertices of a face shall
not define a self-intersecting
polygon.

15,000 total
vertices.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex B Interchange profile

interchange.html[8/1/2020 9:59:04 AM]

IndexedLineSet 15,000
indices in
any index
field.

15,000 total vertices. 15,000
indices in any index field.

IndexedTriangleFanSet

5,000 total
faces.
15,000
indices in
any index
field.

5,000 total faces. 15,000 indices in
any index field.

IndexedTriangleSet

5,000 total
faces.
15,000
indices in
any index
field.

5,000 total faces. 15,000 indices in
any index field.

IndexedTriangleStripSet

5,000 total
faces.
15,000
indices in
any index
field.

5,000 total faces. 15,000 indices in
any index field.

LineSet 15,000 total
vertices. 15,000 total vertices.

Material No
restrictions.

ambientIntensity optionally
supported. shininess optionally
supported. specularColor
optionally supported. A Material
with emissiveColor not equal to
(0,0,0), diffuseColor equal to
(0,0,0) is an unlit material. One-
bit transparency; transparency
values ≥ 0.5 transparent.

MetadataBoolean No
restrictions. Full support.

MetadataDouble No
restrictions. Full support.

MetadataFloat No
restrictions. Full support.

MetadataInteger No
restrictions. Full support.

MetadataSet No
restrictions. Full support.

MetadataString No Full support.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex B Interchange profile

interchange.html[8/1/2020 9:59:04 AM]

restrictions.

MultiTexture No
restrictions.

At least one texture displayed per
node with any number specified.

Full support.

MultiTextureCoordinate 15,000
coordinates. 15,000 coordinates.

MultiTextureTransform No
restrictions.

At least one texture displayed per
node with any number specified.

Full support.

NavigationInfo No
restrictions.

avatarSize optionally supported.
speed optionally supported. type
optionally supported. visibilityLimit
optionally supported.

Normal 15,000
normals 15,000 normals.

NormalInterpolator 15,000
normals 15,000 normals.

OrientationInterpolator
Restrictions
as for all
interpolators.

Full support except as for all
interpolators.

PixelTexture 512 width.
512 height.

512 width. 512 height. Display
fully transparent and fully opaque
pixels.

PointSet 5,000 points. 5000 points.

PositionInterpolator
Restrictions
as for all
interpolators.

Full support except as for all
interpolators.

ScalarInterpolator
Restrictions
as for all
interpolators.

Full support except as for all
interpolators.

Shape No
restrictions. Full support.

Sphere No
restrictions. Full support.

TextureCoordinate 65,535
coordinates. 65,535 coordinates.

No

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex B Interchange profile

interchange.html[8/1/2020 9:59:04 AM]

TextureCoordinateGenerator restrictions. Full support.

TextureTransform No
restrictions. Full support.

TimeSensor No
restrictions.

pause, optionally supported.
isPaused, optionally supported.
resumeTime, optionally supported.

Transform
Restrictions
as for all
groups.

addChildren optionally supported.
removeChildren optionally
supported. Otherwise, full support
except as for all groups.

TriangleFanSet

5,000
triangles per
fan. 15,000
total
triangles.

5,000 triangles per fan. 15,000
total triangles.

TriangleSet 15,000
triangles 15,000 triangles.

TriangleStripSet

5,000
triangles per
strip. 15,000
total
triangles

5,000 triangles per strip. 15,000
total triangles.

Viewpoint No
restrictions.

fieldOfView optionally supported.
description optionally supported.

WorldInfo No
restrictions. info, title Ignored.

 B.6 Other limitations
Table B.4 specifies other aspects of X3D functionality which are supported by this
profile. Note that general items refer only to those specific nodes listed in Table B.3.

Table B.4 — Other limitations

Item X3D File Limit Minimum Browser Support

All groups 500 children. 500 children. Ignore bboxCenter
and bboxSize.

All
interpolators 1000 key-value pairs. 1000 key-value pairs.

All lights 8 simultaneous lights. 8 simultaneous lights.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex B Interchange profile

interchange.html[8/1/2020 9:59:04 AM]

Names for
DEF/field 50 utf8 octets. 50 utf8 octets.

All url fields 10 URLs.

10 URLs. URN's ignored.
Support `http', `file', and `ftp'
protocols.
Support relative URLs where
relevant.

SFBool No restrictions. Full support.

SFColor No restrictions. Full support.

SFColorRGBA No restrictions. Full support.

SFDouble Mp restrictions. Full support. Range ±1e±12.
Precision 1e-7.

SFFloat No restrictions. Full support.

SFImage 512 width. 512 height. 512 width. 512 height.

SFInt32 No restrictions. Full support.

SFNode No restrictions. Full support.

SFRotation No restrictions. Full support.

SFString 30,000 utf8 octets. 30,000 utf8 octets.

SFTime No restrictions. Full support.

SFVec2d 15,000 values. 15,000 values.

SFVec2f 15,000 values. 15,000 values.

SFVec3d 15,000 values. 15,000 values.

SFVec3f 15,000 values. 15,000 values.

MFColor 15,000 values. 15,000 values.

MFColorRGBA 15,000 values. 15,000 values.

MFDouble 1000 values. 1000 values.

MFFloat 1,000 values. 1,000 values.

MFInt32 20,000 values. 20,000 values.

MFNode 500 values. 500 values.

MFRotation 1,000 values. 1,000 values.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex B Interchange profile

interchange.html[8/1/2020 9:59:04 AM]

MFString 30,000 utf8 octets per
string, 10 strings.

30,000 utf8 octets per string, 10
strings.

MFTime 1,000 values. 1,000 values.

MFVec2d 15,000 values. 15,000 values.

MFVec2f 15,000 values. 15,000 values.

MFVec3d 15,000 values. 15,000 values.

MFVec3f 15,000 values. 15,000 values.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 3 Definitions, acronyms, and abbreviations

glossary.html[8/1/2020 9:59:06 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

3 Definitions, acronyms, and abbreviations

 3.1 Definitions
For the purposes of this part of ISO/IEC 19775, the following definitions apply.

3.1.1
activate
cause a sensor node to generate an "isActive" event

3.1.2
ancestor
node which is an antecedent of another node in the transformation hierarchy

3.1.3
author
person or agent that creates X3D files

3.1.4
authoring tool
See generator.

3.1.5
avatar
abstract representation of the user in an X3D world

3.1.6
bearing
straight line passing through the pointer location in the direction of the pointer

3.1.7
bindable node
node that may have many instances in a scene graph but only one instance may be
active at any instant of time

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 3 Definitions, acronyms, and abbreviations

glossary.html[8/1/2020 9:59:06 AM]

3.1.8
browser
computer program that interprets X3D files, presents their content to a user on a
display device, and allows the user to interact with worlds defined by X3D files by
means of a user interface

3.1.9
browser extension
nodes defined using the prototyping mechanism that are understood only by certain
browsers

3.1.10
built-in node
node of a type explicitly defined in this part of ISO/IEC 19775

3.1.11
callback
function defined in a scripting language to which events are passed

3.1.12
child
instance of a children node

3.1.13
children node
one of a set of node types, instances of which can be collected in a group to share
specific properties dependent on the type of the grouping node

3.1.14
client system
computer system, attached to a network, that relies on another computer (the server)
for essential processing functions

3.1.15
collision proxy
node used as a substitute for all of a Collision node's children during collision detection

3.1.16
colour model
characterization of a colour space in terms of explicit parameters

3.1.17
culling
process of identifying objects or parts of objects which do not need to be processed

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 3 Definitions, acronyms, and abbreviations

glossary.html[8/1/2020 9:59:06 AM]

further by the browser in order to produce the desired view of a world

3.1.18
descendant
node which descends from another node in the transformation hierarchy (a children
node)

3.1.19
display device
graphics device on which X3D worlds may be rendered

3.1.20
drag sensor
pointing device sensor that causes events to be generated in response to sensor-
dependent pointer motions

3.1.21
environmental sensor
sensor node that generates events based on the location of the viewpoint in the world
or in relation to objects in the world

3.1.22
event
message sent from one node to another as defined by a route

3.1.23
event cascade
sequence of events initiated by a script or sensor event and propagated from node to
node along one or more routes all of which are considered to have occurred
simultaneously

3.1.24
execution model
rules governing how events are processed by browsers and scripts

3.1.25
external prototype
prototype defined in an external file and referenced by a URL

3.1.26
field
property or attribute of a node

3.1.27
field name

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 3 Definitions, acronyms, and abbreviations

glossary.html[8/1/2020 9:59:06 AM]

identifier of a field

3.1.28
frame
single rendering of a world on a display device or a single time-step in a simulation

3.1.29
generator
computer program which creates X3D files

3.1.30
geometric property node
node defining the properties of a specific geometry node

3.1.31
geometry node
node containing mathematical descriptions of points, lines, surfaces, text strings and
solids

3.1.32
grab
receive events from activated pointing devices

3.1.33
grouping node
one of a set of node types which include a list of nodes, referred to as its children nodes

3.1.34
host application
client application with which the browser communicates using the SAI

3.1.35
image
two-dimensional (2D) rectangular array of pixel values

3.1.36
immersive
creating the illusion of being inside a computer-generated scene

3.1.37
in-lining
mechanism by which one X3D file is hierarchically included in another

3.1.38

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 3 Definitions, acronyms, and abbreviations

glossary.html[8/1/2020 9:59:06 AM]

instance
the node created by an instantiation

3.1.39
instantiation
the creation of a node based on its node type

3.1.40
interpolator node
node that defines a piece-wise linear interpolation

3.1.41
intranet
private network that uses the same protocols and standards as the Internet

3.1.42
level of detail
amount of detail or complexity which is displayed at any particular time for any
particular object

3.1.43
line terminator
linefeed character (0x0A) and/or carriage return character (0x0D)

3.1.44
loop
sequence of events which would result in a specific event generator sending more than
one event with the same timestamp

3.1.45
multimedia
integrated presentation, typically on a computer, of content of various types, such as
computer graphics, audio, and video

3.1.46
network
set of interconnected computers

3.1.47
node
fundamental component of a scene graph

3.1.48
node type
characteristic of each node that describes, in general, its particular semantics

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 3 Definitions, acronyms, and abbreviations

glossary.html[8/1/2020 9:59:06 AM]

3.1.49
object
collection of data and procedures, packaged according to the rules and syntax defined
in this part of ISO/IEC 19775
Note: This term is usually synonymous with node.

3.1.50
order of preference
order (specified by the user) in which a list of field values is processed by the browser

3.1.51
panorama
background texture that is placed behind all geometry in the scene and in front of the
ground and sky

3.1.52
parent
node which is an instance of a grouping node

3.1.53
pixel
one element of an image specified as a matrix of colour elements

3.1.54
pointer
location and direction in the virtual world defined by the pointing device with which the
user is currently interacting with the virtual world

3.1.55
pointing device
hardware device connected to the user's computer by which the user directly controls
the location and direction of the pointer

3.1.56
pointing device sensor
sensor node that generates events based on user actions, such as pointing device
motions or button activations

3.1.57
polyline
piecewise linear curve

3.1.58
profile

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 3 Definitions, acronyms, and abbreviations

glossary.html[8/1/2020 9:59:06 AM]

named collection of criteria for functionality and conformance that defines an
implementable subset of a standard

3.1.59
prototype
definition of a new node type in terms of the nodes defined in this part of ISO/IEC
19775

3.1.60
prototyping
mechanism for extending the set of node types from within a X3D file

3.1.61
route
connection between a node generating an event and a node receiving the event

3.1.62
scene graph
ordered collection of grouping nodes and other nodes

3.1.63
script
set of procedural functions normally executed as part of an event cascade

3.1.64
scripting
process of creating or referring to a script

3.1.65
scripting language
system of syntactical and semantic constructs used to define and automate procedures
and processes on a computer

3.1.66
sensor node
node that enables the user to interact with the world in the scene graph hierarchy

3.1.67
separator character
UTF-8 character used to separate syntactical entities in an X3D file

3.1.68
sibling
node which shares a parent with other nodes

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 3 Definitions, acronyms, and abbreviations

glossary.html[8/1/2020 9:59:06 AM]

3.1.69
simulation tick
smallest time unit capable of being identified in a digital simulation of analog time

3.1.70
special group node
grouping node that exhibits special behaviour (e.g., Switch or LOD)

3.1.71
texel
pixel in an image used as a texture

3.1.72
texture
image used to create visual appearance effects when applied to geometry nodes

3.1.73
texture coordinates
set of coordinates used to map a texture to geometry

3.1.74
time
monotonically increasing value generated by a node

3.1.75
timestamp
that part of an event that describes the time the event occurred and that caused the
message to be sent

3.1.76
transformation hierarchy
subset of the scene graph consisting of nodes that have well-defined coordinate
systems

3.1.77
transparency chunk
section of a PNG file containing transparency information (derived from ISO/IEC 15948)

3.1.78
traverse
process the nodes in a scene graph in the correct order

3.1.79
user

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 3 Definitions, acronyms, and abbreviations

glossary.html[8/1/2020 9:59:06 AM]

person or agent who uses and interacts with X3D files by means of a browser

3.1.80
viewer
location, direction, and viewing angle in a virtual world that determines the portion of
the virtual world presented by the browser to the user

3.1.81
virtual world
See world.

3.1.82
white space
one or more consecutive occurrences of a separator character

3.1.83
world
collection of one or more X3D files and other multimedia content that, when interpreted
by an X3D browser, presents an interactive experience to the user consistent with the
author's intent

3.1.84
world coordinate space
coordinate system in which each X3D world is defined

3.1.85
X3D browser
See browser.

3.1.86
X3D document server
computer program that locates and transmits X3D files and supporting files in response
to requests from browsers

3.1.87
X3D file
set of X3D nodes and statements as defined in this part of ISO/IEC 19775

3.1.88
XY plane
plane perpendicular to the Z-axis that passes through the point Z = 0.0

3.1.89
YZ plane
plane perpendicular to the X-axis that passes through the point X = 0.0

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 3 Definitions, acronyms, and abbreviations

glossary.html[8/1/2020 9:59:06 AM]

3.1.90
ZX plane
plane perpendicular to the Y-axis that passes through the point Y = 0.0

 3.2 Acronyms and abbreviations
For the purposes of this part of ISO/IEC 19775, the following expansion of acronyms
and abbreviations apply:

3.2.1
CAD
Computer-Assisted Design

3.2.2
HSV
Hue, Saturation, and Value colour model

[FOLEY]

3.2.3
JPEG
Joint Photographic Experts Group

[ISO/IEC 10918-1]

3.2.4
MIDI
Musical Instrument Digital Interface. A standard for digital music representation

[MIDI]

3.2.5
MIME
Multipurpose Internet Mail Extension

[IETF RFC2077]

3.2.6
MPEG
Moving Picture Experts Group

[ISO/IEC 11172-1]

3.2.7
PNG
Portable Network Graphics. A specification for representing two-dimensional images in
files

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 3 Definitions, acronyms, and abbreviations

glossary.html[8/1/2020 9:59:06 AM]

[ISO/IEC 15948]

3.2.8
RGB
Red, Green, and Blue colour model

[FOLEY]

3.2.9
RURL
Relative Uniform Resource Locator

[IETF RFC1808]

3.2.10
SAI
Scene Access Interface

[ISO/IEC 19775-2]

3.2.11
UCS
Universal multiple-octet coded Character Set

[ISO/IEC 10646]

3.2.12
URI
Universal Resource Identifier

[IETF RFC1630]

3.2.13
URL
Uniform Resource Locator

[IETF RFC1738]

3.2.14
URN
Universal Resource Name

[IETF RFC2141]

3.2.15
UTF-8
variable-length 8-bit Universal multiple-octet coded character set Transformation
Format

[ISO/IEC 10646]

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 3 Definitions, acronyms, and abbreviations

glossary.html[8/1/2020 9:59:06 AM]

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 24 Environmental effects componenent

environmentalEffects.html[8/1/2020 9:59:08 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

24 Environmental effects component

 24.1 Introduction

24.1.1 Name

The name of this component is "EnvironmentalEffects". This name shall be used when
referring to this component in the COMPONENT statement (see 7.2.5.4 Component
statement).

24.1.2 Overview

This clause describes the Environmental Effects component of this part of ISO/IEC
19775. Nodes in this component support the creation of realistic environmental effects
such as panoramic backgrounds and fog. Table 24.1 provides links to the major topics
in this clause.

 Table 24.1 — Topics

24.1 Introduction
24.1.1 Name
24.1.2 Overview

24.2 Concepts
24.2.1 Backgrounds
24.2.2 Fog semantics

24.2.2.1 Overview
24.2.2.2 Global fog semantics
24.2.2.3 Local fog semantics
24.2.2.4 Local and bindable fog interaction
24.2.2.5 Fog colour calculation

24.3 Abstract types
24.3.1 X3DBackgroundNode
24.3.2 X3DFogObject

24.4 Node reference
24.4.1 Background

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 24 Environmental effects componenent

environmentalEffects.html[8/1/2020 9:59:08 AM]

24.4.2 Fog
24.4.3 FogCoordinate
24.4.4 LocalFog
24.4.5 TextureBackground

24.5 Support levels

Figure 24.1 — X3DBackgroundNode field relationships

Table 24.1 — Topics
Table 24.2 — Environmental effects component support levels

 24.2 Concepts

24.2.1 Backgrounds

Background nodes are used to specify a colour backdrop that simulates ground and sky,
as well as a background texture, or panorama, that is placed behind all geometry in the
scene and in front of the ground and sky. Background nodes are specified in the local
coordinate system and are affected by the accumulated rotation of their ancestors as
described below. X3D supports two kinds of background nodes: a simple background
node that contains a set of url fields for specifying static image files that compose the
backdrop (see 24.4.1 Background), and a complex background node containing
arbitrary X3DTexture nodes that compose the backdrop (see 24.4.3
TextureBackground). Both types of background node descend from the baseabstract
node type X3DBackgroundNode. Applications should use the Background node for
simplicity, and the TextureBackground node for more flexibility and additional features.

Background nodes are bindable nodes as described in 7.2.2 Bindable children nodes.
There exists a Background stack, in which the top-most X3DBackgroundNode node on
the stack is the currently active X3DBackgroundNode. To move an X3DBackgroundNode
node to the top of the stack, a TRUE value is sent to the set_bind field. Once active, the
X3DBackgroundNode node is then bound to the browser's view. A FALSE value sent to
set_bind removes the X3DBackgroundNode from the stack and unbinds it from the
browser's view. .

The backdrop is conceptually a partial sphere (the ground) enclosed inside of a full
sphere (the sky) in the local coordinate system with the viewer placed at the centre of
the spheres. Both spheres have infinite radius and each is painted with concentric
circles of interpolated colour perpendicular to the local Y-axis of the sphere. The
X3DBackgroundNode node is subject to the accumulated rotations of its ancestors'
transformations. Scaling and translation transformations are ignored. The sky sphere is
always slightly farther away from the viewer than the ground partial sphere causing the
ground to appear in front of the sky where they overlap.

The skyColor field specifies the colour of the sky at various angles on the sky sphere.
Angles for skyColor are specified in angle base units. The following assumes that the
angle base units are radians. The equivalent values apply if an angle base unit other
than radians is specified.The first value of the skyColor field specifies the colour of the
sky at 0.0 radians representing the zenith (i.e., straight up from the viewer). The

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 24 Environmental effects componenent

environmentalEffects.html[8/1/2020 9:59:08 AM]

skyAngle field specifies the angles from the zenith in which concentric circles of colour
appear. The zenith of the sphere is implicitly defined to be 0.0 radians, the natural
horizon is at π/2 radians, and the nadir (i.e., straight down from the viewer) is at π
radians. skyAngle is restricted to non-decreasing values in the range [0.0, π]. There
shall be one more skyColor value than there are skyAngle values. The first colour value
is the colour at the zenith, which is not specified in the skyAngle field. If the last
skyAngle is less than π, then the colour band between the last skyAngle and the nadir is
clamped to the last skyColor. The sky colour is linearly interpolated between the
specified skyColor values.

The groundColor field specifies the colour of the ground at the various angles on the
ground partial sphere. Angles for groundColor are specified in angle base units. The
following assumes that the angle base units are radians. The equivalent values apply if
an angle base unit other than radians is specified. The first value of the groundColor
field specifies the colour of the ground at 0.0 radians representing the nadir
(i.e., straight down from the user). The groundAngle field specifies the angles from the
nadir that the concentric circles of colour appear. The nadir of the sphere is implicitly
defined at 0.0 radians. groundAngle is restricted to non-decreasing values in the range
[0.0, π/2]. There shall be one more groundColor value than there are groundAngle
values. The first colour value is for the nadir which is not specified in the groundAngle
field. If the last groundAngle is less than π/2, the region between the last groundAngle
and the equator is non-existant. The ground colour is linearly interpolated between the
specified groundColor values.

The back, bottom, front, left, right, and top fields specify a set of images that define a
background panorama between the ground/sky backdrop and the scene's geometry.
The panorama consists of six images, each of which is mapped onto a face of an
infinitely large cube contained within the backdrop spheres and centred in the local
coordinate system. The images are applied individually to each face of the cube. On the
front, back, right, and left faces of the cube, when viewed from the origin looking down
the negative Z-axis with the Y-axis as the view up direction, each image is mapped onto
the corresponding face with the same orientation as if the image were displayed
normally in 2D (back to back face, front to front face, left to left face, and right to right
face). On the top face of the cube, when viewed from the origin looking along the +Y-
axis with the +Z-axis as the view up direction, the top image is mapped onto the face
with the same orientation as if the image were displayed normally in 2D. On the bottom
face of the box, when viewed from the origin along the negative Y-axis with the
negative Z-axis as the view up direction, the bottom image is mapped onto the face
with the same orientation as if the image were displayed normally in 2D.

Figure 24.1 illustrates the X3DBackgroundNode node backdrop and background
textures.

Alpha values in the panorama images (i.e., two or four component images) specify that
the panorama is semi-transparent or transparent in regions, allowing earlier rendered
layers or the groundColor and skyColor to be visible.

See 18 Texturing component for a general description of texture maps.

Often, the bottom and top images will not be specified, to allow sky and ground to
show. The other four images may depict surrounding mountains or other distant
scenery.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 24 Environmental effects componenent

environmentalEffects.html[8/1/2020 9:59:08 AM]

Figure 24.1 — X3DBackgroundNode field relationships

Panorama images may be one component (greyscale), two component (greyscale plus
alpha), three component (full RGB colour), or four-component (full RGB colour plus
alpha).

Ground colours, sky colours, and panoramic images do not translate with respect to the
viewer, though they do rotate with respect to the viewer. That is, the viewer can never
get any closer to the background, but can turn to examine all sides of the panorama
cube, and can look up and down to see the concentric rings of ground and sky (if
visible).

X3DBackgroundNode nodes are not affected by X3DFogObject nodes. Therefore, if a
X3DBackgroundNode node is active (i.e., bound) while an X3DFogObject node is active,
the X3DBackgroundNode node will be displayed with no fogging effects. It is the
author's responsibility to set the X3DBackgroundNode values to match the
X3DFogObject node values (EXAMPLE ground colours fade to fog colour with distance and
panorama images tinted with fog colour). X3DBackgroundNode nodes are not affected
by light sources.

24.2.2 Fog semantics

24.2.2.1 Overview

This part of ISO/IEC 19775 supports two types of fog: global and local.

24.2.2.2 Global fog semantics

Global fog applies to the entire world and is specified using a Fog node. Global fog
blends the colours of all objects with the fog colour based on distance from the object
to the camera. The further the distance the greater the amount of fog colour.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 24 Environmental effects componenent

environmentalEffects.html[8/1/2020 9:59:08 AM]

24.2.2.3 Local fog semantics

Local fog applies only within the same transformation hierarchy that contains the
LocalFog node. This limits the effect of the fog to subsets of the world and supports the
creation of realistic effects such as a smoke-filled room inside a larger building that is
not smoke-filled. If a local fog and a global fog are both defined and active, the lighting
contribution from the local fog shall be used instead of the global effect.

Local fog effects shall not affect nodes derived from X3DBackgroundNode.

24.2.2.4 Local and bindable fog interaction

If a global Fog node is bound and a LocalFog node is enabled, the LocalFog node shall
have precedence over the globally bound Fog node in determining the fog colour
contribution to the lighting equations defined in 17 Lighting component.

24.2.2.5 Fog colour calculation

During the traversal of the scene graph, if more than one LocalFog node is encountered
in the path from the root to a given renderable leaf node, only the contribution of the
LocalFog instance closest to the leaf node shall be used. All other fog values shall be
ignored.

 24.3 Abstract types

 24.3.1 X3DBackgroundNode
X3DBackgroundNode : X3DBindableNode {
 SFBool [in] set_bind
 MFFloat [in,out] groundAngle [] [0,π/2]
 MFColor [in,out] groundColor [] [0,1]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFFloat [in,out] skyAngle [] [0,π]
 MFColor [in,out] skyColor 0 0 0 [0,1]
 SFFloat [in,out] transparency 0 [0,1]
 SFTime [out] bindTime
 SFBool [out] isBound
}

X3DBackgroundNode is the abstract type from which all backgrounds inherit.
X3DBackgroundNode is a bindable node that, when bound, defines the panoramic
background for the scene. For complete information on backgrounds, see 24.2.1
Backgrounds.

24.3.2 X3DFogObject
X3DFogObject {
 SFColor [in,out] color 1 1 1 [0,1]
 SFString [in,out] fogType "LINEAR" ["LINEAR"|"EXPONENTIAL"]
 SFFloat [in,out] visibilityRange 0 [0,-∞)
}

X3DFogObject is the abstract typeinterface that describes a node that influences the
lighting equation through the use of fog semantics. It defines the basic colour and
rendering effects that influence the lighting equations as described in 17 Lighting
component.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 24 Environmental effects componenent

environmentalEffects.html[8/1/2020 9:59:08 AM]

 24.4 Node reference

 24.4.1 Background
Background : X3DBackgroundNode {
 SFBool [in] set_bind
 MFFloat [in,out] groundAngle [] [0,π/2]
 MFColor [in,out] groundColor [] [0,1]
 MFString [in,out] backUrl [] [URI]
 MFString [in,out] bottomUrl [] [URI]
 MFString [in,out] frontUrl [] [URI]
 MFString [in,out] leftUrl [] [URI]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFString [in,out] rightUrl [] [URI]
 MFString [in,out] topUrl [] [URI]
 MFFloat [in,out] skyAngle [] [0,π]
 MFColor [in,out] skyColor 0 0 0 [0,1]
 SFFloat [in,out] transparency 0 [0,1]
 SFTime [out] bindTime
 SFBool [out] isBound
}

A background node that uses six static images to compose the backdrop. The common
fields of the Background node are described in 24.2 Concepts. For the backUrl,
bottomUrl, frontUrl, leftUrl, rightUrl, topUrl fields, browsers shall support the JPEG (see
2.[JPEG]) and PNG (see ISO/IEC 15948) image file formats, and in addition, may
support any other image format (EXAMPLE CGM) that can be rendered into a 2D image.
Support for the GIF (see [GIF]) format is recommended (including transparency) . More
detail on the url fields can be found in 9.2.1 URLs.

 24.4.2 Fog
Fog : X3DBindableNode, X3DFogObject {
 SFBool [in] set_bind
 SFColor [in,out] color 1 1 1 [0,1]
 SFString [in,out] fogType "LINEAR" ["LINEAR"|"EXPONENTIAL"]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFFloat [in,out] visibilityRange 0 [0,∞)
 SFTime [out] bindTime
 SFBool [out] isBound
}

The Fog node provides a way to simulate atmospheric effects by blending objects with
the colour specified by the color field based on the distances of the various objects from
the viewer. The distances are calculated in the coordinate space of the Fog node. The
visibilityRange specifies the distance in length base units (in the local coordinate
system) at which objects are totally obscured by the fog. Objects located outside the
visibilityRange from the viewer are drawn with a constant colour of color. Objects very
close to the viewer are blended very little with the fog color. A visibilityRange of 0.0
disables the Fog node. The visibilityRange is affected by the scaling transformations of
the Fog node's parents; translations and rotations have no affect on visibilityRange.
Values of the visibilityRange field shall be in the range [0,∞).

Since Fog nodes are bindable children nodes (see 7.2.2 Bindable children nodes), a Fog
node stack exists, in which the top-most Fog node on the stack is currently active. To
push a Fog node onto the top of the stack, a TRUE value is sent to the set_bind field.
Once active, the Fog node is bound to the browser view. A FALSE value sent to set_bind,
pops the Fog node from the stack and unbinds it from the browser viewer. More details
on the Fog node stack can be found in 7.2.2 Bindable children nodes.

The fogType field controls how much of the fog colour is blended with the object as a
function of distance. If fogType is "LINEAR", the amount of blending is a linear function of

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 24 Environmental effects componenent

environmentalEffects.html[8/1/2020 9:59:08 AM]

the distance, resulting in a depth cueing effect. If fogType is "EXPONENTIAL," an
exponential increase in blending is used, resulting in a more natural fog appearance.

The effect of fog on lighting calculations is described in 17 Lighting component.

24.4.3 FogCoordinate
FogCoordinate : X3DGeometricPropertyNode {
 MFFloat [in,out] depth [] [0,1]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

This node defines a set of explicit fog depths on a per-vertex basis. This depth value
shall be applied per-vertex and used to replace the automatically generated depth. Fog
coordinates take precedence over implicitly generated depths; specifying fog
coordinates will result in the implicit depth (specified by the visibilityRange field of a
node derived from X3DFogObject) being ignored. Details on lighting equations can be
found in 17.2.2 Lighting model.

One depth value per vertex shall be supplied. If the user does not provide a sufficient
number of depth values, the last value defined shall be replicated for any further
vertices. If too many depth values are supplied, the excess depth values shall be
ignored.

24.4.4 LocalFog
LocalFog : X3DChildNode, X3DFogObject {
 SFColor [in,out] color 1 1 1 [0,1]
 SFBool [in,out] enabled TRUE
 SFString [in,out] fogType "LINEAR" ["LINEAR"|"EXPONENTIAL"]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFFloat [in,out] visibilityRange 0 [0,-∞)
}

The LocalFog node provides a way to simulate atmospheric effects by blending objects
with the colour specified by the color field based on the distances of the various objects
from the viewer. The distances are calculated in the coordinate space of the LocalFog
node. The visibilityRange field specifies the distance in metres (in the local coordinate
system) at which objects are totally obscured by the fog. Objects located outside the
visibilityRange from the viewer are drawn with a constant colour of color. Objects very
close to the viewer are blended very little with the fog color. A visibilityRange of 0.0
disables the LocalFog node. The visibilityRange is affected by the scaling
transformations of the LocalFog node’s parents; translations and rotations have no
affect on visibilityRange.

The fogType field controls how much of the fog colour is blended with the object as a
function of distance. If fogType is "LINEAR", the amount of blending is a linear function of
the distance, resulting in a depth cueing effect. If fogType is "EXPONENTIAL", an
exponential increase in blending is used, resulting in a more natural fog appearance.

The effect of fog on lighting calculations is described in 17 Lighting component.

 24.4.5 TextureBackground
TextureBackground : X3DBackgroundNode {
 SFBool [in] set_bind
 MFFloat [in,out] groundAngle [] [0,π/2]
 MFColor [in,out] groundColor [] [0,1]

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 24 Environmental effects componenent

environmentalEffects.html[8/1/2020 9:59:08 AM]

 SFNode [in,out] backTexture NULL [X3DTexture2DNode,MultiTexture]
 SFNode [in,out] bottomTexture NULL [X3DTexture2DNode,MultiTexture]
 SFNode [in,out] frontTexture NULL [X3DTexture2DNode,MultiTexture]
 SFNode [in,out] leftTexture NULL [X3DTexture2DNode,MultiTexture]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFNode [in,out] rightTexture NULL [X3DTexture2DNode,MultiTexture]
 SFNode [in,out] topTexture NULL [X3DTexture2DNode,MultiTexture]
 MFFloat [in,out] skyAngle [] [0,π]
 MFColor [in,out] skyColor 0 0 0 [0,1]
 SFFloat [in,out] transparency 0 [0,1]
 SFTime [out] bindTime
 SFBool [out] isBound
}

The TextureBackground node uses six individual texture nodes to compose the
backdrop. Unlike the Background node, which only supports static image formats
referenced by URL fields, the contents of the TextureBackground node can be arbitrary
texture types, including ImageTexture, PixelTexture, MovieTexture and MultiTexture.
The common fields of the TextureBackground node are described in 24.2 Concepts.

TextureBackground supports the creation of rich backgrounds with animation. It also
allows the world author to attach load sensors (see 9.4.3 LoadSensor) to the node's
texture fields to receive notification of when elements of the background are loaded.

TextureBackground supports a transparency value that allows the scene to overlay
other elements in an application. A transparency value of zero specifies that the
background is fully opaque obscuring all content in the underlying window. A
transparency value of one specifies that the background specified by the
TextureBackground node is fully transparent causing the TextureBackground to not be
visible so that all underlying content appears as the background. The value of the
transparency field is applied to the skyColor and groundColor by first converting the
transparency value to an alpha value using the formula:

alpha = (1 - transparency)

The alpha value is then multiplied against the components of the skyColor and
groundColor (including the alpha component, if provided) to obtain the color that is
applied to the underlying window content. The transparency value is not applied to the
six texture fields. Transparency of these fields can be achieved by using alpha values
within their images.

For the backTexture, bottomTexture, frontTexture, leftTexture, rightTexture, topTexture
fields, browsers shall support any X3DTexture node types supported in the currently
supported profile.

 24.5 Support levels
The Environmental Effects component provides three levels of support as specified in
Table 24.2. Level 1 is intended to support simple backgrounds for lightweight profiles.
Level 2 provides additional environmental effects, including full background features,
fog, and limited texture backgrounds. Level 3 provides full support for texture
backgrounds.

 Table 24.2 — Environmental effects component support levels

Level Prerequisites Nodes/Features Support

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 24 Environmental effects componenent

environmentalEffects.html[8/1/2020 9:59:08 AM]

1
Core 1
Time 1
Grouping 1

X3DBackgroundNode
(abstract) n/a

Background

groundAngle and
groundColor optionally
supported. backURL,
frontURL, leftURL, rightURL,
topURL optionally supported.
skyAngle optionally
supported. One skyColor.

2
Core 1
Time 1
Grouping 1

All Level 1
Environmental
Effects nodes

All fields fully supported.

Fog All fields fully supported.

3
Core 1
Time 1
Grouping 1

All Level 2
Environmental
Effects nodes

All fields fully supported.

TextureBackground All fields fully supported.

4
Core 1
Time 1
Grouping 1

All Level 3
Environmental
Effects nodes

All fields fully supported.

FogCoordinate All fields fully supported.

 LocalFog All fields fully supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex C Interactive profile

interactive.html[8/1/2020 9:59:10 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

Annex C

(normative)

Interactive profile

 C.1 General
This annex defines the X3D components that comprise the Interactive profile. This
includes not only the nodes that shall be supported but also which fields in the
supported nodes may be ignored.

This profile is targeted towards:

implementing a lightweight playback engine that supports rich graphics and
interactivity,
possible implementation in a low-footprint engine requiring limited navigation and
environmental sensor control (EXAMPLE an applet or small browser plug-in), and
allowing a broader range of implementations by eliminating some complexity of a
complete X3D implementation.

 C.2 Topics
Table C.1 provides links to the major topics in this annex.

Table C.1 — Topics

C.1 General
C.2 Topics
C.3 Component support
C.4 Conformance criteria
C.5 Node set
C.6 Other limitations

Table C.1 — Topics

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex C Interactive profile

interactive.html[8/1/2020 9:59:10 AM]

Table C.2 — Components and levels
Table C.3 — Nodes for conforming to the Interactive profile
Table C.4 — Other limitations

 C.3 Component support
Table C.2 lists the components and their levels which shall be supported in the
Interactive profile. Tables C.2 and C.3 describe limitations on required support for
nodes and fields contained within these components.

Table C.2 — Components and levels

Component Level Reference

Core 1 7.5 Support levels

Time 1 8.5 Support levels

Networking 2 9.5 Support levels

Grouping 2 10.5 Support levels

Rendering 3 11.5 Support levels

Shape 1 12.5 Support levels

Geometry3D 3 13.4 Support levels

Lighting 2 17.5 Support levels

Texturing 2 18.5 Support levels

Interpolation 2 19.5 Support levels

Pointing device sensor 1 20.5 Support levels

Key device sensor 1 21.5 Support levels

Environmental sensor 1 22.5 Support levels

Navigation 1 23.4 Support levels

Environmental effects 1 24.5 Support levels

Event utilities 1 30.5 Support levels

 C.4 Conformance criteria
Conformance to this profile shall include conformance criteria defined by the

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex C Interactive profile

interactive.html[8/1/2020 9:59:10 AM]

specifications for those components and levels listed in Table C.2.

In Tables C.3 and C.4, the first column defines the item for which conformance is being
defined. In some cases, general limits are defined but are later overridden in specific
cases by more restrictive limits. The second column defines the requirements for a X3D
file conforming to the Interactive profile; if a X3D file contains any items that exceed
these limits, it may not be possible for a X3D browser conforming to the Interactive
profile to successfully parse that X3D file. The third column defines the minimum
complexity for a X3D scene that a X3D browser conforming to the Interactive profile
shall be able to present to the user. Fields flagged as "not supported" may be supported
by browsers which conform to the Interactive profile. The word "ignore" in the minimum
browser support column refers only to the display of the item; in particular, set_ events
to ignored inputOutput fields shall still generate corresponding _changed events.

 C.5 Node set
Table C.3 lists the nodes which shall be supported in the Interactive profile and
specifies any fields in these nodes for which this profile requires less than full support.

Table C.3 — Nodes for conforming to the Interactive profile

Item X3D File
Limit Minimum Browser Support

Anchor No
restrictions. Full support.

Appearance No
restrictions.

textureTransform optionally
supported.
lineProperties not supported.
fillProperties not supported.

Background No
restrictions.

groundAngle and groundColor
optionally supported. backURL,
frontURL, leftURL, rightURL,
topURL optionally supported.
skyAngle optionally supported.
One skyColor.

BooleanFilter No
restrictions. Full support.

BooleanSequencer No
restrictions. Full support.

BooleanToggle No
restrictions. Full support.

BooleanTrigger No
restrictions. Full support.

Box No Full support.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex C Interactive profile

interactive.html[8/1/2020 9:59:10 AM]

restrictions.

Color 15,000
colours. 15,000 colours.

ColorInterpolator
Restrictions
as for all
interpolators.

Full support as for all interpolators.

ColorRGBA 15,000
colours.

15,000 colours. Alpha component
optionally supported.

Cone No
restrictions. Full support.

Coordinate 65,535
points 65,535 points.

CoordinateInterpolator

15,000
coordinates
per
keyValue.
Restrictions
as for all
interpolators.

15,000 coordinates per keyValue.
Support as for all interpolators.

Cylinder No
restrictions. Full support.

CylinderSensor No
restrictions. Full support.

DirectionalLight No
restrictions.

Not scoped by parent Group or
Transform.

ElevationGrid No
restrictions. ccw optionally supported.

Group
Restrictions
as for all
groups.

Support as for all groups.

ImageTexture

JPEG (2.
[JPEG]) and
PNG (2.
[I15948])
format.

JPEG (2.[JPEG]) and PNG (2.
[I15948]) format.

10 vertices per face. 5000 faces.
65,535 indices in any index field.

ccw optionally supported.
set_colorIndex optionally
supported. set_normalIndex
optionally supported. normal

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex C Interactive profile

interactive.html[8/1/2020 9:59:10 AM]

IndexedFaceSet

10 vertices
per face.
5000 faces.
Less than
65,535
indices.

optionally supported. Only convex
indexed face sets supported.
Hence, convex optionally
supported. For creaseAngle, only 0
and π radians supported.
normalIndex optionally supported.

Face list shall be well-defined as
follows:

1. Each face is terminated with
-1, including the last face in
the array.

2. Each face contains at least
three non-coincident
vertices.

3. A given coordIndex is not
repeated in a face.

4. The vertices of a face shall
define a planar polygon.

5. The vertices of a face shall
not define a self-intersecting
polygon.

IndexedLineSet

15,000 total
vertices.
15,000
indices in
any index
field.

15,000 total vertices. 15,000
indices in any index field.
set_colorIndex optionally
supported. set_coordIndex
optionally supported.

IndexedTriangleFanSet

5,000 total
faces.
15,000
indices in
any index
field.

Full support.

IndexedTriangleSet

5,000 total
faces.
15,000
indices in
any index
field.

Full support.

IndexedTriangleStripSet

5,000 total
faces.
15,000
indices in
any index
field.

Full support.

Inline No All fields fully supported except

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex C Interactive profile

interactive.html[8/1/2020 9:59:10 AM]

restrictions. load which is optionally supported.

IntegerSequencer No
restrictions. Full support.

IntegerTrigger No
restrictions. Full support.

KeySensor No
restrictions. Full support.

LineSet 15,000 total
vertices. 15,000 total vertices.

Material No
restrictions.

ambientIntensity optionally
supported. shininess optionally
supported. specularColor
optionally supported. A Material
with emissiveColor not equal to
(0,0,0), diffuseColor equal to
(0,0,0) is an unlit material. One-
bit transparency; transparency
values ≥ 0.5 transparent.

MetadataBoolean No
restrictions. Full support.

MetadataDouble No
restrictions. Full support.

MetadataFloat No
restrictions. Full support.

MetadataInteger No
restrictions. Full support.

MetadataSet No
restrictions. Full support.

MetadataString No
restrictions. Full support.

MultiTexture No
restrictions.

At least two textures displayed per
node with any number specified.

Full support.

MultiTextureCoordinate 15,000
coordinates. 15,000 coordinates.

MultiTextureTransform No
restrictions.

At least two textures displayed per
node with any number specified.

Full support.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex C Interactive profile

interactive.html[8/1/2020 9:59:10 AM]

NavigationInfo No
restrictions.

avatarSize optionally supported.
speed optionally supported.
visibilityLimit optionally supported.
For type, only "ANY", "FLY",
"EXAMINE", and "LOOKAT" modes
supported.

Normal 15,000
normals 15,000 normals.

NormalInterpolator 15,000
normals

15,000 normals except as for all
interpolators.

OrientationInterpolator
Restrictions
as for all
interpolators.

Full support except as for all
interpolators.

PixelTexture 512 width.
512 height.

512 width. 512 height. Display
fully transparent and fully opaque
pixels.

PlaneSensor No
restrictions. Full support.

PointLight No
restrictions.

radius optionally supported. Linear
attenuation.

PointSet 5000 points. 5000 points.

PositionInterpolator
Restrictions
as for all
interpolators.

Full support except as for all
interpolators.

ProximitySensor No
restrictions.

position_changed optionally
supported. orientation_changed
optionally supported.

ScalarInterpolator
Restrictions
as for all
interpolators.

Full support except as for all
interpolators.

Shape No
restrictions. Full support.

Sphere No
restrictions. Full support.

SphereSensor No
restrictions. Full support.

SpotLight No restriction
beamWidth optionally supported.
radius optionally supported. Linear
attenuation.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex C Interactive profile

interactive.html[8/1/2020 9:59:10 AM]

StringSensor No
restrictions. Full support.

Switch No
restrictions Full support.

TextureCoordinate 15,000
coordinates. 15,000 coordinates.

TextureCoordinateGenerator No
restrictions. Full support.

TextureTransform No
restrictions. Full support.

TimeSensor No
restrictions.

pause optionally supported.
isPaused optionally supported.
resumeTime optionally supported.

TimeTrigger No
restrictions. Full support.

TouchSensor No
restrictions. Full support.

Transform
Restrictions
as for all
groups.

Full support except as for all
groups.

TriangleFanSet

5,000
triangles per
fan. 15,000
total
triangles.

Full support.

TriangleSet 15,000
triangles. Full support.

TriangleStripSet

5,000
triangles per
strip. 15,000
total
triangles.

Full support.

Viewpoint No
restrictions.

fieldOfView optionally supported.
description optionally supported.
retainUserOffsets optionally
supported.
All other fields fully supported.

VisibilitySensor No
restrictions. Always visible.

WorldInfo No
restrictions. Full support.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex C Interactive profile

interactive.html[8/1/2020 9:59:10 AM]

 C.6 Other limitations
Table C.4 specifies other aspects of X3D functionality which are supported by this
profile. Note that general items refer only to those specific nodes listed in Table C.3.

Table C.4 — Other limitations

Item X3D File Limit Minimum Browser Support

All groups 500 children. 500 children. Ignore bboxCenter
and bboxSize.

All
interpolators 1000 key-value pairs. 1000 key-value pairs.

All lights 8 simultaneous lights. 8 simultaneous lights.

Names for
DEF/field 50 utf8 octets. 50 utf8 octets.

All url fields 10 URLs.

10 URLs. URN's ignored.
Support `http', `file', and `ftp'
protocols.
Support relative URLs where
relevant.

SFBool No restrictions. Full support.

SFColor No restrictions. Full support.

SFColorRGBA No restrictions. Full support.

SFDouble Mp restrictions. Full support. Range ±1e±12.
Precision 1e-7.

SFFloat No restrictions. Full support.

SFImage 512 width. 512 height. 512 width. 512 height.

SFInt32 No restrictions. Full support.

SFNode No restrictions. Full support.

SFRotation No restrictions. Full support.

SFString 30,000 utf8 octets. 30,000 utf8 octets.

SFTime No restrictions. Full support.

SFVec2d 15,000 values. 15,000 values.

SFVec2f 15,000 values. 15,000 values.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex C Interactive profile

interactive.html[8/1/2020 9:59:10 AM]

SFVec3d 15,000 values. 15,000 values.

SFVec3f 15,000 values. 15,000 values.

MFColor 15,000 values. 15,000 values.

MFColorRGBA 15,000 values. 15,000 values.

MFDouble 1000 values. 1000 values.

MFFloat 1,000 values. 1,000 values.

MFInt32 20,000 values. 20,000 values.

MFNode 500 values. 500 values.

MFRotation 1,000 values. 1,000 values.

MFString 30,000 utf8 octets per
string, 10 strings.

30,000 utf8 octets per string, 10
strings.

MFTime 1,000 values. 1,000 values.

MFVec2d 15,000 values. 15,000 values.

MFVec2f 15,000 values. 15,000 values.

MFVec3d 15,000 values. 15,000 values.

MFVec3f 15,000 values. 15,000 values.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

concepts.html[8/1/2020 9:59:12 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

4 Concepts
Editors note: multiple sections in the Concepts clause will receive additions and
modifications to describe how X3D models are included and interact with external
surfaces such as HTML5/DOM Web-page presentations. Current focus is on open-source
implementation and evaluation using X3DOM and X_ITE.

 4.1 General

4.1.1 Topics in this clause

This clause describes the X3D core concepts, including how X3D scenes are authored
and played back, the run-time semantics of the X3D scene, modularization through
components and profiles, conformance via support levels, data encoding semantics,
programmatic access, and networking considerations.

Table 4.1 provides links to the major topics in this clause.

 Table 4.1 — Topics

4.1 General
4.1.1 Topics in this clause
4.1.2 Overview
4.1.3 Conventions used

4.2 Authoring and playback
4.2.1 X3D browsers
4.2.2 X3D generators
4.2.3 X3D loaders

4.3 The scene graph
4.3.1 Overview
4.3.2 Root nodes
4.3.3 Scene graph hierarchy
4.3.4 Descendant and ancestor nodes
4.3.5 Transformation hierarchy
4.3.6 Standard units and coordinate system

https://www.x3dom.org/
http://create3000.de/x_ite/getting-started

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

concepts.html[8/1/2020 9:59:12 AM]

4.3.7 Behaviour graph
4.4 Run-time environment

4.4.1 Overview
4.4.2 Object model

4.4.2.1 Overview
4.4.2.2 Field semantics
4.4.2.3 Interface hierarchy
4.4.2.4 Modifying objects

4.4.2.4.1 Routes
4.4.2.4.2 Modifying objects via programmatic access

4.4.2.5 Object life cycle
4.4.3 DEF/USE semantics
4.4.4 Prototype semantics

4.4.4.1 Introduction
4.4.4.2 PROTO interface declaration semantics
4.4.4.3 PROTO definition semantics
4.4.4.4 Prototype scoping rules

4.4.5 External prototype semantics
4.4.5.1 Introduction
4.4.5.2 EXTERNPROTO interface semantics
4.4.5.3 EXTERNPROTO URL semantics

4.4.6 Import/Export semantics
4.4.7 Run-time name scope
4.4.8 Event model

4.4.8.1 Events
4.4.8.2 Routes
4.4.8.3 Execution model
4.4.8.4 Loops
4.4.8.5 Fan-in and fan-out
4.4.8.6 Internal/external event passing

4.5 Components
4.5.1 Overview
4.5.2 Defining components
4.5.3 Base components

4.6 Profiles
4.6.1 Overview
4.6.2 Defining profiles
4.6.3 Relationship between profiles and components

4.7 Support levels
4.8 Data encodings
4.9 Scene access interface (SAI)
4.10 Component and profile registration

Figure 4.1 — X3D Architecture
Figure 4.2 — Interface hierarchy
Figure 4.3 — Conceptual execution model

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

concepts.html[8/1/2020 9:59:12 AM]

Table 4.1 — Topics
Table 4.2 — Standard units
Table 4.3 — Derived units
Table 4.4 — Rules for mapping PROTOTYPE declarations to node instances
Table 4.5 — Example support level table

 4.1.2 Overview

Conceptually, each X3D application is a 3D time-based space that contains graphic and
aural objects that can be loaded over a network and dynamically modified through a
variety of mechanisms. The semantics of X3D describe an abstract functional behaviour
of time-based, interactive 3D, multimedia information. X3D does not define physical
devices or any other implementation-dependent concepts (e.g., screen resolution and
input devices). X3D is intended for a wide variety of devices and applications, and
provides wide latitude in interpretation and implementation of the functionality. For
example, X3D does not assume the existence of a mouse or 2D display device.

Each X3D application:

a. implicitly establishes a world coordinate space for all objects defined, as well as all
objects included by the application;

b. explicitly defines and composes a set of 2D, 3D and multimedia objects;
c. can specify hyperlinks to other files and applications;
d. can define object behaviours;
e. can connect to external modules or applications via programming and scripting

languages.

The X3D system architecture is shown in Figure 4.1.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

concepts.html[8/1/2020 9:59:12 AM]

Figure 4.1 — X3D architecture

The abstract structure of the sequence of statements that form an X3D world is
specified in 7.2.5 Abstract X3D structure.

 4.1.3 Conventions used

The following conventions are used throughout this part of ISO/IEC 19775:

Italics are used for field names, and are also used when new terms are introduced and
equation variables are referenced.

A fixed-space font is used for URL addresses and source code examples.

Node type names are appropriately capitalized (e.g., "The Billboard node is a grouping
node..."). However, the concept of the node is often referred to in lower case in order
to refer to the semantics of the node, not the node itself (e.g., "To rotate the
billboard...").

The form "0xhh" expresses a byte as a hexadecimal number representing the bit
configuration for that byte.

Throughout this part of ISO/IEC 19775, references to International Standards cite the
number of the standard and hyperlinks to the reference in 2 Normative references.
References to portions of this International Standard consist of the clause or subclause
number followed by the title of the clause or subclause. The text consisting of the
number and title is hyperlinked to the referenced material. References to external
documents that are not International Standards are denoted using the "x.[ABCD]"
notation, where "x" denotes in which clause the reference is described and "[ABCD]" is

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

concepts.html[8/1/2020 9:59:12 AM]

an abbreviation of the reference title. For the Bibliography, the "x." is omitted.

In addition, the first reference to a node or node type in a subclause will be hyperlinked
to the definition of that node or node type.

EXAMPLE "2.[ABCD]" refers to a reference described in 2 Normative references and [ABCD] refers to a reference
described in the Bibliography.

 4.2 Authoring and playback

 4.2.1 X3D browsers

The interpretation, execution, and presentation of X3D files occurs using a mechanism
known as a browser, which displays the shapes and sounds in the scene graph. This
presentation is known as a virtual world and is navigated in the browser by a human or
mechanical entity, known as a user. The world is displayed as if experienced from a
particular location; that position and orientation in the world is known as the viewer.
The browser may provide navigation paradigms (such as walking or flying) that enable
the user to move the viewer through the virtual world.

In addition to navigation, the browser provides a limited mechanism allowing the user
to interact with the world through sensor nodes in the scene graph hierarchy. Sensors
respond to user interaction with geometric objects in the world, the movement of the
user through the world, or the passage of time. Additionally, the X3D Scene Access
Interface (SAI) defined in Part 2 of this International Standard provides mechanisms for
getting user input, and for getting and setting the current viewpoint. To provide
navigation capabilities, a viewer may use the SAI to provide the user with the ability to
navigate. Additionally, authors may use scripting or programming languages with
bindings to the SAI to implement their own navigation algorithms. Other profiles may
specify navigation capabilities as a requirement of the viewer; implementations of such
viewers will typically do so by making use of the SAI.

The visual presentation of geometric objects in an X3D world follows a conceptual
model designed to resemble the physical characteristics of light. The X3D lighting model
describes how appearance properties and lights in the world are combined to produce
displayed colours (see 17 Lighting component for details).

 4.2.2 X3D generators

A generator is a human or computerized creator of X3D files. It is the responsibility of
the generator to ensure the correctness of the X3D file and the availability of supporting
assets (e.g., images, audio clips, other X3D files) referenced therein. It is also the
responsibility of the generator to insure that the functionality represented in the X3D
file is correctly stated in the profile, component and level information in the header
statement of the file.

4.2.3 X3D loaders

A loader is a program responsible for loading X3D content but does not apply any run-
time execution to the content. Geometry is presented as though time has not run,

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

concepts.html[8/1/2020 9:59:12 AM]

although the loader is free to load textures and other remotely defined content. A time
zero loader is typically found in modelling tools that intend to construct or modify
existing X3D content without evaluating the run-time aspects of the specification.

A second form of loader may load files and allow run-time execution of content, but it
does so as part of a larger user interface and 3D graphics rendering engine. Such
loaders might be used to load individual models such as trees in a game environment,
but the run-time evaluation of the X3D content is dependent on the external
application, and is not self contained in the same fashion as an X3D browser.

 4.3 The scene graph

4.3.1 Overview

The basic unit of the X3D run-time environment is the scene graph. This structure
contains all the objects in the system and their relationships. Relationships are
contained along several axes of the scene graph. The transformation hierarchy
describes the spatial relationship of rendering objects. The behavior graph describes the
connections between fields and the flow of events through the system. Each scene
graph may also interact with external surfaces such as HTML5/DOM Web-page
presentations.

 4.3.2 Root nodes

An X3D file contains zero or more root nodes. The root nodes for an X3D file are those
nodes defined by the node statements or USE statements that are not contained in
other node or PROTO statements. Root nodes shall be children nodes as specified in 10
Grouping component or the LayerSet node as specified in 35.4.2 LayerSet.

X3D4 goals related to HTML5/DOM:

Usage of either X3D or X3DCanvas capabilities for style, other HTML attributes
url (or src) field to simply refer to an X3D model to load (see current X_ITE
approach)
specifying that multiple encodings are allowed
whether or not multiple distinct scenes can be loaded at once, or require separate
declarations

 4.3.3 Scene graph hierarchy

An X3D scene graph is a directed acyclic graph. Nodes can contain specific fields with
one or more children nodes which participate in the hierarchy. These may, in turn,
contain nodes (or instances of nodes). This hierarchy of nodes is called the scene
graph. Each arc in the graph from A to B means that node A has a field whose value
directly contains node B. See [FOLEY] for details on hierarchical scene graphs.

 4.3.4 Descendant and ancestor nodes

The descendants of a node are all of the nodes in its fields, as well as all of those nodes'

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

concepts.html[8/1/2020 9:59:12 AM]

descendants. The ancestors of a node are all of the nodes that have the node as a
descendant.

 4.3.5 Transformation hierarchy

The transformation hierarchy includes all of the root nodes and root node descendants
that are considered to have one or more particular locations in the virtual world. X3D
includes the notion of local coordinate systems, defined in terms of transformations
from ancestor coordinate systems. The coordinate system in which the root nodes are
displayed is called the world coordinate system.

An X3D browser's task is to present an X3D file to the user; it does this by presenting
the transformation hierarchy to the user. The transformation hierarchy describes the
directly perceptible parts of the virtual world.

Some nodes, such as sensors and environmental nodes, are in the scene graph but not
affected by the transformation hierarchy. These include CoordinateInterpolator, Script,
TimeSensor, and WorldInfo.

Some nodes, such as Switch or LOD, contain a list of children, of which at most one is
traversed during rendering. However, for the purposes of computing scene position, all
children of these nodes are considered to be part of the transformation hierarchy,
whether they are traversed during rendering or not. For instance, a Viewpoint node
which is a child of a Switch whose whichChoice field is set to -1 (indicating that none of
its children should be traversed during rendering) still uses the local coordinate space of
the Switch to determine its position in the scene.

The transformation hierarchy shall be a directed acyclic graph; a node in the
transformation hierarchy that is its own ancestor is considered invalid and shall be
ignored. The following is an example of a node in the scene graph that is its own
ancestor:

DEF T Transform {
 children [
 Shape { ... }
 USE T
]
}

 4.3.6 Standard units and coordinate system

ISO/IEC 19775 defines the initial base unit of measure of the world coordinate system
to be metres. However, the world coordinate units may be modified by specifying a
different length unit using the UNIT statement. All other coordinate systems are then
built from transformations based upon the specified world coordinate system. Other
measurements used in this International Standard have their own initial base units.

Table 4.2 lists the initial base units for ISO/IEC 19775, including the reference for each
unit in ISO 80000.

 Table 4.2 — Standard units

Category Initial base
unit Reference

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

concepts.html[8/1/2020 9:59:12 AM]

angle radian ISO 80000-3:2006 item 3-5.a

force newton ISO 80000-4:2006 item 4-9.a and item 4-9.1

length metre ISO 80000-3:2006 item 3-1.a

mass kilogram ISO 80000-4:2006 item 4-1.a

The initial base units for the entire hierarchy of an X3D world may be changed to
another default base unit by using one or more UNIT statements as specified in 7 Core
component. In this International Standard, the initial base units of measure are
assumed. Any ranges specified in initial base units apply to their equivalent limits in the
specified default base unit. The browser shall convert the default base unit to initial
base units as necessary for correct processing.

The base unit of time is seconds and cannot be changed.

Additional units, called derived units are used in this International Standard. A derived
unit depends on the current base units. The value for a derived unit can be calculated
using the appropriate formula from Table 4.3:

Table 4.3 — Derived units

Category Initial base
unit Reference

acceleration length/second2 ISO 80000-3:2006 item 3-9.a

angular_velocity
angular_rate angle/second ISO 80000-3:2006 item 3-10.a

area length2 ISO 80000-3:2006 item 3-3.a

speed length/second ISO 80000-3:2006 item 3-8.a and
item 3-8.1

volume length3 ISO 80000-3:2006 item 3-4.a

The standard colour space used by this International Standard is RGB where each
colour component has the range [0.,1.].

ISO/IEC 19775 uses a Cartesian, right-handed, three-dimensional coordinate system.
By default, the viewer is on the Z-axis looking down the -Z-axis toward the origin with
+X to the right and +Y straight up. A modelling transformation (see the Transform node
definition in 10 Grouping component and the Billboard node definition in 23 Navigation
component) or viewing transformation (see the X3DViewpointNode node type definition
in 23 Navigation component can be used to alter this default projection.

 4.3.7 Behaviour graph

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

concepts.html[8/1/2020 9:59:12 AM]

The event model of X3D allows the declaration of connections between fields (routes)
and a model for the propagation of events along those connections. The behavior graph
is the collection of these field connections. It can be changed dynamically by rerouting,
adding or breaking connections. Events are injected into the system and propagate
through the behavior graph in a well defined order.

Fields can only be routed to other fields with the same data type, unless a component
supports an extension to this rule.

 4.4 Run-time environment

 4.4.1 Overview

The X3D run-time environment maintains the current state of the scene graph, renders
the scene as needed, receives input from a variety of sources (Sensors) and performs
changes to the scene graph in response to instructions from the behavioral system. The
X3D run-time environment manages the life cycle of objects, including built-in and
user-defined objects and programmatic scripts. The run-time environment coordinates
the processing of Events, the primary means of generating behaviors in X3D. The run-
time environment also manages interoperation between the X3D browser and host
application for file delivery, hyperlinking, page integration and external programmatic
access.

The run-time environment manages objects. X3D supports several types of built-in
objects that contain generally useful functionality in the run-time environment. There
are built-in objects to represent data structures such as an SFVec3f 3D vector value,
nodes such as geometry (e.g., Cylinder), and ROUTEs between nodes. Each node
contains zero or more fields that define storage for data values, and/or zero or more
events for sending messages to/from the object. Nodes are instantiated by declaring
them in a file or by using procedural code at run-time. The author may create new node
types using the prototyping mechanism (see 4.4.4 Prototype semantics). These nodes
become part of the run-time environment and behave exactly like built-in nodes. New
nodes can be created declaratively by including a prototype declaration in a file, by
including an external prototype referencing a prototype declaration in a separate
location, or by using a native prototype declaration provided by the run-time
environment itself. PROTOs may only be used to create other nodes, not fields or
routes.

Events are the primary means of generating behaviors in the X3D run-time
environment. Events are used throughout X3D: driving time-based animations;
handling object picking; detecting user movement and collision; changing the scene
graph hierarchy. The run-time environment manages the propagation of events through
the system and order of evaluation according to a well-defined set of rules.

An author of X3D content can control the creation and management of scenes,
rendering and behavior, and loading of media assets. The loading and incorporation of
authored extensions, which can be written in X3D or an external language, can also be
controlled. The ability to make content-defined extensions is provided in profiles that
support the Prototyping mechanism.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

concepts.html[8/1/2020 9:59:12 AM]

 4.4.2 Object model

 4.4.2.1 Overview

The X3D system is made up of abstract individual entities called objects. This part of
ISO/IEC 19775 defines a functional specification for each object type but does not
dictate implementation. A compliant implementation of an object shall behave according
to its functional specification as provided in 5 Field type reference, clauses 7 through 40
describing components, Part 2 of ISO/IEC 19775 or additional parts of this standard
that define object, field or node types. An X3D author arranges objects in the scene
graph using one of the declarative X3D encodings described in ISO/IEC 19776 or other
future encoding formats, or at run time using built-in scripting (if the supported profile
provides it) or some other form of programmatic access to the scene graph (see Part 2
of ISO/IEC 19775).

Objects representing lightweight concepts such as data storage and operations on data
of that type are called fields and are derived from the X3DField object. Objects
representing more complete spatial or temporal processing concepts are called nodes
and are derived from the X3DNode object. Nodes contain one or more fields that hold
data values or send or receive events for that node.

Some nodes implement additional functionality by inheritance of interfaces that
represent common properties or functionality, such as bounding boxes for visual objects
and grouping nodes or a specification that a particular object represents metadata. In
addition, X3D defines object types for accessing scene graph information not stored in
fields or nodes, such as ROUTEs, PROTO declarations, Component/Profile information
and world metadata.

A field may contain either a single value of the given type or an array of such types.
Throughout this document, a field type containing a single value is said to be of the
given type and is prefixed by the characters SF (e.g., field a is of type SFVec3f), while a
field containing an array has its type prefixed by the characters MF (e.g., field b is of
type MFVec3f). A field may contain a reference to one or more nodes by using the
SFNode and MFNode field types.

Each object has the following common characteristics:

a. A type name. Examples include SFVec3f, MFColor, SFFloat, Group, Background,
or SpotLight.

b. An implementation. The implementation of each object defines how it reacts to
changes in its property values, what other property values it alters as a result of
these changes, and how it effects the state of the run-time environment. This part
of ISO/IEC 19775 defines the functional semantics of built-in nodes (i.e., nodes
with implementations that are provided by the X3D browser).

An object derived from X3DNode has the following additional characteristics:

d. Zero or more field values. Field values are stored in the X3D file along with the
nodes or fields, and encode the state of the virtual world.

e. Zero or more events that it can receive and send. Each node may receive
events to its fields which will result in some change to the node's state. Each node

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

concepts.html[8/1/2020 9:59:12 AM]

may also generate events from its fields to report changes in the node's state.
Events generated from one node can be connected to fields of other nodes to
propagate these changes. This is done using the ROUTE statement in the file or
through an SAI service reference.

f. A name. Nodes can be named using either the DEF statement in the file or at run-
time through an SAI service call. This is used by other statements to reference a
specific instantiation of a node. It is also be used to locate a specific named node
within the scene hierarchy.

Node implementations can come from two sources, built-in nodes and prototypes. Built-
in nodes are nodes that are available to the author as specified by the applicable profile
and/or component declarations. Different components define different sets of built-in
nodes.

Additionally, X3D supports content extensions using prototypes. Prototypes are objects
that the author creates using PROTO or EXTERNPROTO statements. These objects are
written in the same declarative notation used to describe nodes in the scene graph.
They add new object types to the system which are only available for the lifetime of the
session into which they are loaded. Some profiles may not include support of these
extension capabilities. The semantics of prototypes are discussed in 4.4.4, Prototype
semantics, and 4.4.5, External prototype semantics.

Both prototypes and built-in nodes are available for instantiation using similar
mechanisms. An object can be instantiated declaratively or at run-time using the SAI
services specified in Part 2 of ISO/IEC 19775. All prototypes inherit from the base node
type X3DPrototypeInstance.

 4.4.2.2 Field semantics

Fields define the persistent state of nodes, and values which nodes may send or receive
in the form of events. X3D supports four types of access to a node's fields:

a. initializeOnly access, which allows content to supply an initial value for the field but
does not allow subsequent changes to its value;

b. inputOnly access, which means that the node may receive an event to change the
value of its field, but does not allow the field's value to be read;

c. outputOnly access, which means that the node may send an event when its value
changes, but does not allow the field's value to be written; and

d. inputOutput access, which allows full access to the field: content may supply an
initial value for the field, the node may receive an event to change the value of its
field, and the node may send an event when its value changes.

An inputOutput field can receive events like an inputOnly field, can generate events like
an outputOnly field, and can be stored in X3D files like an initializeOnly field. An
inputOutput field named zzz can be referred to as 'set_zzz' and treated as an inputOnly,
and can be referred to as 'zzz_changed' and treated as an outputOnly field. Within
ISO/IEC 19775, fields with inputOutput access or inputOnly access are collectively
referred to as input fields, fields with inputOutput access or outputOnly access are
collectively referred to as output fields, and the events these fields receive and send are
called input events and output events, respectively.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

concepts.html[8/1/2020 9:59:12 AM]

The initial value of an inputOutput field is its value in the X3D file, or the default value
for the node in which it is contained, if a value is not specified. When an inputOutput
field receives an event it shall generate an event with the same value and timestamp.
The following sources, in precedence order, shall be used to determine the initial value
of the inputOutput field:

e. the user-defined value in the instantiation (if one is specified);
f. the default value for that field as specified in the node or prototype definition.

The recommendations for naming initializeOnly fields, inputOutput fields, outputOnly
fields, and inputOnly fields for built-in nodes are as follows:

g. All names containing multiple words start with a lower case letter, and the first
letter of all subsequent words is capitalized (e.g., addChildren), with the exception
of set_ and _changed, as described below.

h. It is recommended that all inputOnly fields have the prefix “set_”, with the
exception of the addChildren and removeChildren fields.

i. Certain inputOnly fields and outputOnly fields of type SFTime do not use the "set_"
prefix or "_changed" suffix.

j. It is recommended that all other outputOnly fields have the suffix “_changed”
appended, with the exception of outputOnly fields of type SFBool.

4.4.2.3 Interface hierarchy

Most object types derive some of their interfaces and functionality from other object
types in the system. These are known as its supertypes, and an object is said to be
derived from these supertypes. Likewise, these supertypes may derive their capabilities
from other object types, forming a chain all the way to a small number of base types
from which all the others are ultimately derived. The graph describing the relationship
between all object types in the system is called the interface hierarchy. In this part of
ISO/IEC 19775, the object hierarchy specifies conceptual relationships between objects
but does not necessarily dictate actual implementation.

Figure 4.2 depicts the object hierarchy for object types defined in this part of ISO/IEC
19775 for all versions. A specification of which object types are available for which
versions may be found in Annex L Version content.

NOTE Not all object types are supported in certain component levels, profiles or versions; refer to the individual
component and profile specifications in this part of ISO/IEC 19775 for details.

X3DField -+------------- X3DArrayField -+
 +- SFBool +- MFBool
 +- SFColor +- MFColor
 +- SFColorRGBA +- MFColorRGBA
 +- SFDouble +- MFDouble
 +- SFFloat +- MFFloat
 +- SFImage +- MFImage
 +- SFInt32 +- MFInt32
 +- SFMatrix3d +- MFMatrix3d
 +- SFMatrix3f +- MFMatrix3f
 +- SFMatrix4d +- MFMatrix4d
 +- SFMatrix4f +- MFMatrix4f
 +- SFNode +- MFNode
 +- SFRotation +- MFRotation
 +- SFString +- MFString
 +- SFTime +- MFTime
 +- SFVec2d +- MFVec2d
 +- SFVec2f +- MFVec2f
 +- SFVec3d +- MFVec3d
 +- SFVec3f +- MFVec3f

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

concepts.html[8/1/2020 9:59:12 AM]

 +- SFVec4d +- MFVec4d
 +- SFVec4f +- MFVec4f

 X3DBoundedObject

 X3DFogObject

 X3DPickableObject

 X3DProgrammableShaderObject

 X3DMetadataObject

 X3DUrlObject

 X3DNode
 |
 +- Contact
 +- Contour2D
 +- EaseInEaseOut
 +- GeoOrigin (deprecated)
 +- LayerSet
 +- MetadataBoolean (X3DMetadataObject)*
 +- MetadataDouble (X3DMetadataObject)*
 +- MetadataFloat (X3DMetadataObject)*
 +- MetadataInteger (X3DMetadataObject)*
 +- MetadataSet (X3DMetadataObject)*
 +- MetadataString (X3DMetadataObject)*
 +- NurbsTextureCoordinate
 +- RigidBody
 +- ShaderPart (X3DUrlObject)*
 +- ShaderProgram (X3DUrlObject, X3DProgrammableShaderObject)*
 +- TextureProperties
 |
 +- X3DAppearanceNode -+- Appearance
 |
 +- X3DAppearanceChildNode -+- AcousticProperties
 | +- FillProperties
 | +- LineProperties
 | +- PointProperties
 | |
 | +- X3DMaterialNode -+- X3DOneSidedMaterialNode -+- Material
 | | | +- PhysicalMaterial
 | | | +- UnlitMaterial
 | | +- TwoSidedMaterial (deprecated)

 | +- X3DMaterialNode -+- Material
 | | +- TwoSidedMaterial
 | |
 | +- X3DShaderNode -+- ComposedShader (X3DProgrammableShaderObject)*
 | | +- PackagedShader (X3DUrlObject,
X3DProgrammableShaderObject)*
 | | +- ProgramShader
 | |
 | +- X3DTextureNode -+- MultiTexture
 | | |
 | | + X3DSingleTextureNode -+- X3DEnvironmentTextureNode -
+- ComposedCubeMapTexture
 | | |
+- GeneratedCubeMapTexture
 | | |
+- ImageCubeMapTexture (X3DUrlObject)*
 | | |
 | | +- X3DTexture2DNode -+-
ImageTexture (X3DUrlObject)*
 | | | +-
MovieTexture (X3DSoundSourceNode, X3DUrlObject)*
 | | | +-
PixelTexture
 | | |
 | | +- X3DTexture3DNode -+-
ComposedTexture3D
 | | +-
ImageTexture3D (X3DUrlObject)*
 | | +-
PixelTexture3D

 | | +- X3DEnvironmentTextureNode -
+- ComposedCubeMapTexture
 | | |
+- GeneratedCubeMapTexture
 | | |
+- ImageCubeMapTexture (X3DUrlObject)*
 | | |
 | | +- X3DTexture2DNode -+-
ImageTexture (X3DUrlObject)*
 | | | +-
MovieTexture (X3DSoundSourceNode, X3DUrlObject)*
 | | | +-
PixelTexture
 | | |
 | | +- X3DTexture3DNode -+-
ComposedTexture3D
 | | +-
ImageTexture3D (X3DUrlObject)*
 | | +-
PixelTexture3D

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

concepts.html[8/1/2020 9:59:12 AM]

 | |
 | +- X3DTextureTransformNode +- MultiTextureTransform
 | +- X3DSingleTextureTransformNode -+-
TextureTransform
 | +-
TextureTransformMatrix3D
 | +-
TextureTransform3D

 | +-
TextureTransform
 | +-
TextureTransformMatrix3D
 | +-
TextureTransform3D

 |
 |
 +- X3DFontStyleNode -+- FontStyle
 | +- ScreenFontStyle
 |
 +- X3DGeometryNode -+- Arc2D
 | +- ArcClose2D
 | +- Box
 | +- Circle2D
 | +- Cone
 | +- Cylinder
 | +- Disk2D
 | +- ElevationGrid
 | +- Extrusion
 | +- GeoElevationGrid
 | +- IndexedLineSet
 | +- LineSet
 | +- PointSet
 | +- Polyline2D
 | +- Polypoint2D
 | +- Rectangle2D
 | +- Sphere
 | +- Text
 | +- TriangleSet2D
 | |
 | +- X3DComposedGeometryNode -+- IndexedFaceSet
 | | +- IndexedTriangleFanSet
 | | +- IndexedTriangleSet
 | | +- IndexedTriangleStripSet
 | | +- IndexedQuadSet
 | | +- QuadSet
 | | +- TriangleFanSet
 | | +- TriangleSet
 | | +- TriangleStripSet
 | |
 | +- X3DParametricGeometryNode -+- NurbsCurve
 | +- NurbsSweptSurface
 | +- NurbsSwungSurface
 | |
 | +- X3DNurbsSurfaceGeometryNode -+-
NurbsPatchSurface
 | +-
NurbsTrimmedSurface
 |
 +- X3DGeometricPropertyNode -+- FogCoordinate
 | +- HAnimDisplacer
 | |
 | |+- X3DColorNode -+- Color
 | | +- ColorRGBA
 | |
 | +- X3DCoordinateNode -+- Coordinate
 | | +- CoordinateDouble
 | | +- GeoCoordinate
 | |
 | +- X3DNormalNode -+- Normal
 | |
 | +- X3DTextureCoordinateNode -+- MultiTextureCoordinate
 | | +- X3DSingleTextureCoordinateNode -+-
TextureCoordinate
 | | +-
TextureCoordinate3D
 | | +-
TextureCoordinate4D
 | | +-
TextureCoordinateGenerator

 | | +-
TextureCoordinate
 | | +-
TextureCoordinate3D
 | | +-
TextureCoordinate4D
 | | +-
TextureCoordinateGenerator
 | |
 | +- X3DVertexAttributeNode -+- FloatVertexAttribute
 | +- Matrix3VertexAttribute
 | +- Matrix4VertexAttribute
 |
 +- X3DLayerNode -+- Layer
 | +- LayoutLayer

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

concepts.html[8/1/2020 9:59:12 AM]

 |
 +- X3DNBodyCollisionSpaceNode (X3DBoundedObject)* -+- CollisionSpace
 |
 +- X3DNurbsControlCurveNode -+- ContourPolyline2D
 | +- NurbsCurve2D
 |
 +- X3DParticleEmitterNode -+- ConeEmitter
 | +- ExplosionEmitter
 | +- PointEmitter
 | +- PolylineEmitter
 | +- SurfaceEmitter
 | +- VolumeEmitter
 |
 +- X3DParticlePhysicsModelNode -+- BoundedPhysicsModel
 | +- ForcePhysicsModel
 | +- WindPhysicsModel
 |
 +- X3DProtoInstance
 |
 +- X3DRigidJointNode -+- BallJoint
 | +- DoubleAxisHingeJoint
 | +- MotorJoint
 | +- SingleAxisHingeJoint
 | +- SliderJoint
 | +- UniversalJoint
 |
 +- X3DVolumeRenderStyleNode -+- ProjectionVolumeStyle
 | |
 | +- X3DComposableVolumeRenderStyle -+- BlendedVolumeStyle
 | +- BoundaryEnhancementVolumeStyle
 | +- CartoonVolumeStyle
 | +- ComposedVolumeStyle
 | +- EdgeEnhancementVolumeStyle
 | +- OpacityMapVolumeStyle
 | +- ProjectionVolumeStyle
 | +- ShadedVolumeStyle
 | +- SilhouetteEnhancementVolumeStyle
 | +- ToneMappedVolumeStyle
 |
 +- X3DChildNode -+- BooleanFilter
 +- BooleanToggle
 +- ClipPlane
 +- CollisionCollection
 +- DISEntityManager
 +- GeoLOD (X3DBoundedObject)*
 +- HAnimHumanoid (X3DBoundedObject)*
 +- HAnimMotion
 +- Inline (X3DUrlObject, X3DBoundedObject)*
 +- LocalFog (X3DFogObject)*
 +- NurbsOrientationInterpolator
 +- NurbsPositionInterpolator
 +- NurbsSet (X3DBoundedObject)*
 +- NurbsSurfaceInterpolator
 +- RigidBodyCollection
 +- StaticGroup (X3DBoundedObject)*
 +- ViewpointGroup
 |
 +- X3DBindableNode -+- Fog (X3DFogObject)*
 | +- GeoViewpoint
 | +- NavigationInfo
 | +- ListenerPoint
 | |
 | +- X3DBackgroundNode -+- Background
 | | +- TextureBackground
 | |
 | +- X3DViewpointNode -+- GeoViewpoint
 | +- OrthoViewpoint
 | +- Viewpoint
 | +- ViewpointGroup
 |
 +- X3DFollowerNode -+- X3DChaserNode -+- ColorChaser
 | | +- CoordinateChaser
 | | +- OrientationChaser
 | | +- PositionChaser
 | | +- PositionChaser2D
 | | +- ScalerChaser
 | | +- TexCoordChaser2D
 | |
 | +- X3DDamperNode -+- ColorDamper
 | +- CoordinateDamper
 | +- OrientationDamper
 | +- PositionDamper
 | +- PositionDamper2D
 | +- ScalarDamper
 | +- TexCoordDamper
 |
 +- X3DGroupingNode (X3DBoundedObject)* -+- Anchor
 | +- Billboard
 | +- CADAssembly
(X3DProductStructureChildNode)*
 | +- CADLayer
 | +- CADPart (X3DProductStructureChildNode)*
 | +- Collision (X3DSensorNode)*
 | +- EspduTransform (X3DSensorNode)*
 | +- GeoLocation
 | +- GeoTransform
 | +- Group

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

concepts.html[8/1/2020 9:59:12 AM]

 | +- HAnimJoint
 | +- HAnimSegment
 | +- HAnimSite
 | +- LayoutGroup
 | +- LOD
 | +- PickableGroup (X3DPickableObject)*
 | +- ScreenGroup
 | +- Switch
 | +- Transform
 | |
 | +- X3DViewportNode -+- Viewport
 |
 +- X3DInfoNode --+- DISEntityTypeMapping
 | +- GeoMetadata
 | +- WorldInfo
 |
 +- X3DInterpolatorNode -+- ColorInterpolator
 | +- CoordinateInterpolator
 | +- CoordinateInterpolator2D
 | +- GeoPositionInterpolator
 | +- NormalInterpolator
 | +- OrientationInterpolator
 | +- PositionInterpolator
 | +- PositionInterpolator2D
 | +- ScalarInterpolator
 | +- SplinePositionInterpolator
 | +- SplinePositionInterpolator2D
 | +- SplineScalarInterpolator
 | +- SquadOrientationInterpolator
 |
 +- X3DLayoutNode -+- Layout
 |
 +- X3DLightNode -+- DirectionalLight
 | +- PointLight
 | +- SpotLight
 |
 +- X3DNBodyCollidableNode (X3DBoundedObject)* -+- CollidableOffset
 | +- CollidableShape
 |
 +- X3DProductStructureChildNode -+- CADAssembly (X3DGroupingNode)*
 | +- CADFace (X3DBoundedObject)*
 | +- CADPart (X3DGroupingNode)*
 |
 +- X3DTextureProjectorNode -+- TextureProjectorPerspective
 | +- TextureProjectorParallel
 |
 +- X3DScriptNode (X3DUrlObject)* -+- Script
 |
 +- X3DSensorNode -+- Collision (X3DGroupingNode)*
 | +- CollisionSensor
 | +- EspduTransform (X3DGroupingNode)*
 | +- ReceiverPdu (X3DBoundedObject)*
 | +- SignalPdu (X3DBoundedObject)*
 | +- TimeSensor (X3DTimeDependentNode)*
 | +- TransmitterPdu (X3DBoundedObject)*
 | |
 | +- X3DEnvironmentalSensorNode -+- GeoProximitySensor
 | | +- ProximitySensor
 | | +- TransformSensor
 | | +- VisibilitySensor
 | |
 | +- X3DKeyDeviceSensorNode -+- KeySensor
 | | +- StringSensor
 | |
 | +- X3DNetworkSensorNode +- LoadSensor
 | |
 | +- X3DPickSensorNode -+- LinePickSensor
 | | +- PointPickSensor
 | | +- PrimitivePickSensor
 | | +- VolumePickSensor
 | |
 | +- X3DPointingDeviceSensorNode -+- X3DDragSensorNode -+-
CylinderSensor
 | | +-
PlaneSensor
 | | +-
SphereSensor
 | |
 | +- X3DTouchSensorNode -+-
GeoTouchSensor
 | +-
TouchSensor
 |
 +- X3DSequencerNode -+- BooleanSequencer
 | +- IntegerSequencer
 |
 +- X3DShapeNode (X3DBoundedObject)* -+- ParticleSystem
 | +- Shape
 |
 +- X3DSoundNode -+- Sound
 | +- SpatialSound
 |
 +- X3DTimeDependentNode -+- TimeSensor (X3DSensorNode)*
 | |
 | +- X3DSoundAnalysisNode -+- Analyser
 | |
 | +- X3DSoundChannelNode -+- ChannelSplitter

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

concepts.html[8/1/2020 9:59:12 AM]

 | | +- ChannelMerger
 | |
 | +- X3DSoundDestinationNode -+- AudioDestination
 | | +- StreamAudioDestination
 | |
 | +- X3DSoundProcessingNode -+- BiquadFilter
 | | +- Convolver
 | | +- Delay
 | | +- DynamicsCompressor
 | | +- Gain
 | | +- PeriodicWave
 | | +- WaveShaper
 | |
 | +- X3DSoundSourceNode -+- AudioBufferSource
 | +- AudioClip (X3DUrlObject)*
 | +- MicrophoneSource
 | +- MovieTexture (X3DTexture2DNode,
X3DUrlObject)*
 | +- OscillatorSource
 | +- StreamAudioSource
 |
 +- X3DTriggerNode -+- BooleanTrigger
 | +- IntegerTrigger
 | +- TimeTrigger
 |
 +- X3DVolumeDataNode (X3DBoundedObject)* -+- IsoSurfaceVolumeData
 +- SegmentedVolumeData
 +- VolumeData

* = Derived from multiple interfaces

Figure 4.2 — Interface hierarchy

The object hierarchy defines both abstract interfaces and concrete node types. Abstract
interfaces define functionality that is inherited by other interfaces and/or nodes, but are
never instantiated in the scene graph as objects. Concrete node types derive from one
or more abstract interfaces and may be instantiated in the scene graph. Thus, the live
scene graph consists only of instances of concrete node types. Components defined in
this part of ISO/IEC 19775 are required to implement the functionality of abstract
interfaces only insofar as that functionality is made available via one of the derived
concrete node types. Part 2 of ISO/IEC 19775 defines the means by which applications
may access the functionality provided in both abstract interfaces and concrete nodes via
programmatic means.

The two main types of object from which most others are derived are X3DNode and
X3DField. Nodes are the objects used in the declarative language to form the scene
graph, while fields are contained within nodes and hold the data items for nodes. Some
field objects contain simple data values like integers or arrays of strings. Other field
objects contain references to nodes. It is this ability of X3DNode to contain X3DField,
and X3DField to contain references to X3DNode, that makes it possible for X3D to form
scene graph hierarchies.

EXAMPLE

Transform { translation 1 2 3
 children [
 Shape {
 geometry Box { }
 }
 Group {
 children [...]
 }
]
}

In the above example, the Transform contains a simple field, translation, which contains a vector of 3 numbers. It
also contains a children field which may contain an array of other nodes. In this case it has two, a Shape and a
Group. The Shape and the Group both contain fields which may have other objects as well.

Derivation makes it possible to strongly type all objects. In the above example, the
children field is constrained to contain a list of objects derived from an object type

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

concepts.html[8/1/2020 9:59:12 AM]

called X3DChildNode. Both Shape and Group are derived (indirectly) from this object
and can therefore be placed in the children field. The geometry field of Shape, on the
other hand, can only contain a single node derived from X3DGeometryNode. Box is
derived from this object and can therefore be placed in the geometry field. But Box is
not derived from X3DChildNode, so it cannot be placed in the children field. Likewise,
Group is not derived from X3DGeometryNode and can therefore not be placed in the
geometry field.

The above example exhibits another quality of derivation. Transform is derived from
X3DGroupingNode and therefore inherits its children field. This makes the specification
of Transform simpler because it does not need to describe the functionality of the
children field. Because it is derived from X3DGroupingNode, the author knows it
contains a children field which behaves like the one in Group which is also derived from
X3DGroupingNode.

 4.4.2.4 Modifying objects

4.4.2.4.1 Routes

There are several ways to modify the fields of an object. Using one of the X3D file
formats, an author can declare a set of nodes, the initial state of their fields, and
interconnections between the fields called Routes. X3D uses an event propagation, or
dataflow model to change the values of fields at run-time. As part of its abstract
specification, the behavior of a node in response to events sent to its fields, and the
conditions under which its fields send events out, is described.

EXAMPLE It is possible to create a scene with run-time behavior using only this event propagation model:

DEF TS TimeSensor {
 loop TRUE
 cycleInterval 5
}
DEF I PositionInterpolator {
 key [0 0.5 1]
 keyValue [0 -1 0, 0 1 0, 0 -1 0]
}
DEF T Transform {
 children [
 Shape {
 geometry Box { }
 }
]
}
ROUTE ts.fraction_changed TO I.set_fraction
ROUTE I.value_changed TO T.set_translation

This example bounces a box up and down repeatedly over a five-second interval. The TimeSensor object is
defined to send an event continuously out of its fraction field. This event sends a floating point value which varies
from 0 to 1 over a 5 second interval, as specified by the cycleInterval. Its loop field tells it to do so repeatedly.
This fraction value is sent to the fraction field of a PositionInterpolator. This object is defined to send an event out
of its value field whenever it receives an event on its fraction field. The value is determined by the key and
keyValue fields. In this case it sends a vector whose y value varies between -1 and +1 and back again over the
interval. This value is sent to the translation field of the Transform node. This node is defined to set the position
of its children according to the value of translation. 4.4.8.2 Routes contains more information on routing.

4.4.2.4.2 Modifying objects via programmatic access

The routing mechanism is simple, but is limited to changing field values of nodes, and
only changes that are designed into a given node set. For greater flexibility, some

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

concepts.html[8/1/2020 9:59:12 AM]

profiles provide programmatic access to objects in the system. This allows field values
to be set and read, and functions to be called. Mechanisms are also provided to allow
PROTO objects to be found, which in turn allows objects of that type to be instantiated.

There are two types of programmatic access in X3D: External access (EXAMPLE access
from a containing HTML page or embedding native application) and Internal scripts using any of
the supported scripting languages.

Programmatic access to objects is provided via interfaces to those objects. The
interface of an object (its set of data and function properties) is specified, and is also
referred to as the object type. An object type that represents a node is also referred to
as a node type. Object types may be either abstract or concrete. Abstract object types
are not instantiable. Instead, they are used to derive other object types or to indicate
that a field may contain a node of any of the derivative node types. Concrete node
types are those derived from abstract node types and are instantiable. A compliant
implementation of an object's interface shall support the interface specifications as
defined in Part 2 of ISO/IEC 197775.

See 4.9, Application programmer interfaces for additional information.

 4.4.2.5 Object life cycle

Nodes have a life cycle: they are created, used and eventually destroyed. A node is
considered live if one or more of the following is true:

a. The node is a root node in the scene.
b. The node is referenced by a field of a live node.
c. There is a reference from a live script to the node.
d. There is an external programmatic reference to the node.

Rules b and c are applied recursively to cover the entire live scene graph.

Nodes instanced from a file are created implicitly by the browser upon encountering a
node instance or upon instancing a prototype's scene graph. Nodes may also be
instanced programmatically; in this case there are additional discrete steps in the
node's life cycle. Refer to Part 2 of ISO/IEC 197775 for more details.

4.4.3 DEF/USE semantics

Node names are limited in scope to a single X3D file, prototype definition, or string
submitted to either CreateX3DFromString, CreateX3DFromStream, or
CreateX3DFromURL browser service or a construction for SFNodes within a script. The
USE statement does not create a copy of the node. Instead, the same node is inserted
into the scene graph a second time, resulting in the node having multiple parents (see
4.3.5 Transformation hierarchy, for restrictions on self-referential nodes).

Node names shall be unique in the context within which the associated DEF keyword
occurs.

TODO: describe how, when an external environment exists,

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

concepts.html[8/1/2020 9:59:12 AM]

Abstract definition of how events can be exchanged between external environment
and scene graph.
Syntax for multiple encoding/language bindings may be defined in related
specifications, e.g. updates to 19777-1 JavaScript, 19776-1 XML Encoding, and
(eventually) 19776-5 JSON.
For example, HTML5/DOM id attribute can be used for performing event callbacks
using JavaScript, and thus has a similar role to DEF when events are ROUTEd.
Editors discussion: examples should not go into an annex, will need to go into
other file encodings and language bindings.
Pending eventual ISO submission and review of those specifications, we will need
example usage and some specification details publicly available to support
implementation efforts.

4.4.4 Prototype semantics

4.4.4.1 Introduction

The PROTO statement defines a new node type in terms of already defined (built-in or
prototyped) node types. Once defined, prototyped node types may be instantiated in
the scene graph exactly like the built-in node types.

Node type names shall be unique in each X3D file. The results are undefined if a
prototype is given the same name as a built-in node type or a previously defined
prototype in the same scope.

 4.4.4.2 PROTO interface declaration semantics

The prototype interface defines the fields and field access types for the new node type.
The interface declaration includes the types, names and default values (for initializeOnly
and inputOutput fields) for the prototype's fields.

The interface declaration may contain inputOutput field declarations, which are a
convenient way of defining an initializeOnly field, inputOnly field, and outputOnly field
at the same time. If an inputOutput field named zzz is declared, it is equivalent to
separately declaring an initializeOnly field named zzz, an inputOnly field named set_zzz,
and an outputOnly field named zzz_changed.

Each prototype instance can be considered to be a complete copy of the prototype, with
its own field values and copy of the prototype definition. A prototyped node type is
instantiated using standard node syntax. For example, the following prototype (which
has an empty interface declaration):

PROTO Cube [] { Box { } }

may be instantiated as follows:

Shape { geometry Cube { } }

It is recommended that user-defined field names defined in PROTO interface
declarations statements follow the naming conventions described in 4.4.2.2 Field
semantics.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

concepts.html[8/1/2020 9:59:12 AM]

If an outputOnly field in the prototype declaration is associated with an inputOutput
field in the prototype definition, the initial value of the associated outputOnly field shall
be the initial value of the inputOutput field. If the outputOnly field is associated with
multiple inputOutput fields, the results are undefined.

 4.4.4.3 PROTO definition semantics

A prototype definition consists of one or more nodes, nested PROTO statements, and
ROUTE statements. The first node type determines how instantiations of the prototype
can be used in an X3D file. An instantiation is created by filling in the parameters of the
prototype declaration and inserting copies of the first node (and its scene graph)
wherever the prototype instantiation occurs.

EXAMPLE If the first node in the prototype definition is a Material node, instantiations of the prototype can be used
wherever a Material node can be used. Any other nodes and accompanying scene graphs are not part of the
transformation hierarchy, but may be referenced by ROUTE statements or Script nodes in the prototype definition.

Nodes in the prototype definition may have their fields associated with the fields of the
prototype interface declaration by using IS statements in the body of the node. When
prototype instances are read from an X3D file, field values for the fields of the
prototype interface may be given. If given, the field values are used for all nodes in the
prototype definition that have IS statements for those fields. Similarly, when an input
field of a prototype instance is sent an event, the event is delivered to all nodes that
have IS statements for that field. When a node in a prototype instance generates an
output event that has an IS statement, the event is sent to any input fields connected
(via ROUTE) to the prototype instance's output field.

IS statements may appear inside the prototype definition wherever fields may appear.
IS statements shall refer to fields defined in the prototype declaration. Results are
undefined if an IS statement refers to a non-existent declaration. Results are undefined
if the type of the field being associated by the IS statement does not match the type
declared in the prototype's interface declaration. For example, it is illegal to associate
an SFColor with an SFVec3f. It is also illegal to associate an SFColor with an MFColor or
vice versa.

Results are undefined if an IS statement:

inputOnly field is associated with a initializeOnly field or an outputOnly field;
outputOnly field is associated with a initializeOnly field or inputOnly field;
initializeOnly field is associated with an inputOnly field or outputOnly field.

An inputOutput field in the prototype interface may be associated only with an
inputOutput field in the prototype definition, but an inputOutput field in the prototype
definition may be associated with either an inputOutput field, inputOnly field, or
outputOnly field in the prototype interface. When associating an inputOutput field in a
prototype definition with an inputOnly field or outputOnly field in the prototype
declaration, it is valid to use either the shorthand inputOutput field name (e.g.,
translation) or the explicit field name (e.g., set_translation or translation_changed).
Table 4.4 defines the rules for mapping between the access types of fields in a
prototype declarations and the access types for fields in its primary scene graph's nodes
(yes denotes a legal mapping, no denotes an error).

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

concepts.html[8/1/2020 9:59:12 AM]

 Table 4.4 — Rules for mapping PROTOTYPE declarations to node instances

 Prototype declaration

Prototype

definition

inputOutput initializeOnly inputOnly outputOnly

inputOutput yes yes yes yes

intializeOnly no yes no no

inputOnly no no yes no

outputOnly no no no yes

Results are undefined if a field of a node in the prototype definition is associated with
more than one field in the prototype's interface (i.e., multiple IS statements for a field
in a node in the prototype definition), but multiple IS statements for the fields in the
prototype interface declaration is valid. Results are undefined if a field of a node in a
prototype definition is both defined with initial values (i.e., field statement) and
associated by an IS statement with a field in the prototype's interface. If a prototype
interface has an outputOnly field E associated with multiple outputOnly fields in the
prototype definition EDi, the value of E is the value of the field that generated the event
with the greatest timestamp. If two or more of the outputOnly fields generated events
with identical timestamps, results are undefined.

 4.4.4.4 Prototype scoping rules

Prototype definitions appearing inside a prototype definition (i.e., nested) are local to
the enclosing prototype. IS statements inside a nested prototype's implementation may
refer to the prototype declarations of the innermost prototype.

A PROTO statement establishes a DEF/USE name scope separate from the rest of the
scene and separate from any nested PROTO statements. Nodes given a name by a DEF
construct inside the prototype may not be referenced in a USE construct outside of the
prototype's scope. Nodes given a name by a DEF construct outside the prototype scope
may not be referenced in a USE construct inside the prototype scope.

A prototype may be instantiated in a file anywhere after the completion of the prototype
definition. A prototype may not be instantiated inside its own implementation (i.e.,
recursive prototypes are illegal).

 4.4.5 External prototype semantics

 4.4.5.1 Introduction

The EXTERNPROTO statement defines a new node type. It is equivalent to the PROTO
statement, with two exceptions. First, the implementation of the node type is stored
externally, either in an X3D file containing an appropriate PROTO statement or using
some other implementation-dependent mechanism. Second, default values for fields are

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

concepts.html[8/1/2020 9:59:12 AM]

not given since the implementation will define appropriate defaults.

4.4.5.2 EXTERNPROTO interface semantics

The semantics of the EXTERNPROTO are exactly the same as for a PROTO statement,
except that default field values are not specified locally. In addition, events sent to an
instance of an externally prototyped node may be ignored until the implementation of
the node is found.

Until the definition has been loaded, the browser shall determine the initial value of
inputOutput fields using the following rules (in order of precedence):

a. the user-defined value in the instantiation (if one is specified);
b. the default value for that field type.

For outputOnly fields, the initial value on startup will be the default value for that field
type. During the loading of an EXTERNPROTO, if an initial value of an outputOnly field is
found, that value is applied to the field and no event is generated.

The names and types of the fields of the interface declaration shall be a subset of those
defined in the implementation. Declaring a field with a non-matching name is an error,
as is declaring a field with a matching name but a different type.

It is recommended that user-defined field names defined in EXTERNPROTO interface
statements follow the naming conventions described in 4.4.2.2 Field semantics.

4.4.5.3 EXTERNPROTO URL semantics

The string or strings specified after the interface declaration give the location of the
prototype's implementation. If multiple strings are specified, the browser searches in
the order of preference. For more information on URLs, see 9 Networking component.

If a URL in an EXTERNPROTO statement refers to an X3D file, the first PROTO
statement found in the X3D file (excluding EXTERNPROTOs) is used to define the
external prototype's definition. The name of that prototype does not need to match the
name given in the EXTERNPROTO statement. Results are undefined if a URL in an
EXTERNPROTO statement refers to a non-X3D file

To enable the creation of libraries of reusable PROTO definitions, browsers shall
recognize EXTERNPROTO URLs that end with "#name" to mean the PROTO statement
for "name" in the given X3D file. For example, a library of standard materials might be
stored in an X3D file called "materials.x3dv" that looks like:

#X3D V3.0 utf8
PROTO Gold [] { Material { ... } }
PROTO Silver [] { Material { ... } }
 ...etc.

A material from this library could might be used as follows:

#X3D V3.0 utf8
EXTERNPROTO GoldFromLibrary [] "http://.../materials.x3dv#Gold"
 ...
 Shape {
 appearance Appearance { material GoldFromLibrary {} }
 geometry ...
 }
 ...

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

concepts.html[8/1/2020 9:59:12 AM]

 4.4.6 Import/Export semantics

The IMPORT feature allows authors to incorporate content defined within Inline nodes or
created programmatically into the namespace of the containing file for the purposes of
event routing. In contrast with external prototyping (see 4.4.5 External prototype
semantics), which allows access to individual fields of nodes defined as prototypes in
external files, IMPORT provides access to all the fields of an externally defined node
with a single statement (see 9.2.5 IMPORT statement).

Importing nodes from an Inlined file is accomplished with two statements: IMPORT and
EXPORT. The IMPORT statement is used in the containing file to define which nodes of
an Inline are to be incorporated into the containing file's namespace. The EXPORT
statement is used in the file being Inlined, to control access over which nodes within a
file are visible to other files (see 9.2.6 EXPORT statement). EXPORT statements are not
allowed in prototype declarations.

 4.4.7 Run-time name scope

Each X3D browser defines a run-time name scope that contains all of the root nodes
currently contained by the scene graph and all of the descendant nodes of the root
nodes, with the exception of nodes hidden inside another name scope. Prototypes
establish a name scope and therefore nodes inside prototype instances are hidden from
the parent name scope.

Each Inline node or prototype instance also defines a run-time name scope, consisting
of all of the root nodes of the file referred to by the Inline node or all of the root nodes
of the prototype definition, restricted as above. Other nodes or extension mechanism
may be introduced which specify their own name scope.

The IMPORT feature allows nodes defined within files referenced from Inlinenodes to be
incorporated into the run-time name scope of the containing scene graph. Once an
IMPORT statement has been encountered, the new name may be used exactly like any
other node name for the purposes of routing or programmatic access (i.e., may be used
in ROUTE statements and accessed as a field from the Scene Access Interface). Names
imported from an Inline shall be explicitly declared as exportable within the content of
the inlined file, using the EXPORT statement; only names exported using the EXPORT
statement are available to be imported into other run-time name scopes. The optional
AS keyword allows a unique name to be assigned to the imported node in order to
avoid name conflicts in the containing scene graph's run-time name scope.

Nodes created dynamically (using the X3D Scene Access Interface) are not part of any
name scope, until they are added to the scene graph, at which point they become part
of the same name scope of their parent node(s). A node may be part of more than one
run-time name scope. A node shall be removed from a name scope when it is removed
from the scene graph.

 4.4.8 Event model

 4.4.8.1 Events

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

concepts.html[8/1/2020 9:59:12 AM]

Events are the primary means of generating behaviors in the X3D run-time
environment. Events are used throughout X3D: driving time-based animations;
handling object picking; detecting user movement and collision; changing the scene
graph hierarchy. The run-time environment manages the propagation of events through
the system according to a well-defined set of rules.

Nodes define input fields (i.e., fields with inputOutput or inputOnly access) that trigger
behavior. When a given event occurs, the node receives notification and can potentially
change internal state and the value of one or more of its fields. Nodes also define
output fields (i.e., fields with inputOutput or outputOnly access) that are sent upon
signal state changes or other occurrences within the node. Events sent to input fields
and events sent by output fields are referred to collectively in ISO/IEC 19775 as Events.

TODO: determine whether we need to further elaborate this definition when considering
external events.

4.4.8.2 Routes

Routes allows an author to declaratively connect the output events of a node to input
events of other nodes, providing a way to implement complex behaviors without
imperative programming. When a routed output event is fired, the corresponding
destination input event receives notification and can process a response to that change.
This processing can change the state of the node, generate additional events, or change
the structure of the scene graph. Routes may be created declaratively in an X3D file or
programmatically via an SAI call.

Routes are not nodes. The ROUTE statement is a construct for establishing event paths
between specified fields of nodes. ROUTE statements may either appear at the top level
of an X3D file or inside a node wherever fields may appear. It can appear after its
source or destination node and placing a ROUTE statement within a node does not
associate it with that node in any way. A ROUTE statement does follow the name
scoping rules as described in 4.4.7 Run-time name scope.

The type of the destination field shall be the same as the source type, unless a
component or support level permits an extension to this rule.

Redundant routing is ignored. If an X3D file repeats a routing path, the second and
subsequent identical routes are ignored. This also applies for routes created dynamically
using the X3D SAI.

Nodes created through the X3D prototyping mechanism give authors an opportunity to
create custom processing of incoming events. Events coming into a prototyped node
through an interface field can be routed to internal nodes for processing, or routed to
other interface fields for propagation outside the node. An author can also add
programmatic processing logic to an interface field using the internal scripting support
of the Script node.

4.4.8.3 Execution model

Once a sensor or Script has generated an initial event, the event is propagated from the
field producing the event along any ROUTEs to other nodes. These other nodes may
respond by generating additional events, continuing until all routes have been

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

concepts.html[8/1/2020 9:59:12 AM]

honoured. This process is called an event cascade. All events generated during a given
event cascade are assigned the same timestamp as the initial event, since all are
considered to happen instantaneously.

Some sensors generate multiple events simultaneously. Similarly, it is possible that
asynchronously generated events could might arrive at the identical time as one or
more sensor generated event. In these cases, all events generated are part of the same
initial event cascade and each event has the same timestamp. The order in which the
events are applied is not considered significant. Conforming X3D worlds shall be able to
accommodate simultaneous events in arbitrary order.

After all events of the initial event cascade are honored, post-event processing
performs actions stimulated by the event cascade. The browser shall perform the
following sequence of actions during a single timestamp:

a. Update camera based on currently bound Viewpoint's position and orientation.
b. Evaluate input from sensors.
c. Evaluate routes.
d. If any events were generated from steps b and c, go to step b and continue.
e. If particle system evaluation is to take place, evaluate the particle systems here.
f. If physics model evaluation is to take place, evaluate the physics model.

For profiles that support Script nodes and the Scene Access Interface, the above order
may have several intermediate steps. Details are described in 29 Scripting and
2[I.19775-2].

Figure 4.3 provides a conceptual illustration of the execution model.

Figure 4.3 — Conceptual execution model

Nodes that contain output events shall produce at most one event per field per
timestamp. If a field is connected to another field via a ROUTE, an implementation shall
send only one event per ROUTE per timestamp. This also applies to scripts where the
rules for determining the appropriate action for sending output events are defined in 29
Scripting component.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

concepts.html[8/1/2020 9:59:12 AM]

 4.4.8.4 Loops

Event cascades may contain loops where an event E is routed to a node that generates
an event that eventually results in E being generated again. See 4.4.8.3 Execution
model, for the loop breaking rule that limits each event to one event per timestamp.
This rule shall also be used to break loops created by cyclic dependencies between
different sensor nodes.

 4.4.8.5 Fan-in and fan-out

Fan-in occurs when two or more routes have the same destination field. All events are
considered to have been received simultaneously; therefore, the order in which they
are processed is not considered relevant.

Fan-out occurs when one field is the source for more than one route. This results in
sending any event generated by the field along all routes. All events are considered to
have been sent simultaneously; therefore, the order in which they are processed is not
considered relevant.

 4.4.8.6 Internal/external event passing

TODO: describe how, when an external environment exists,

Abstract definition of when events are be exchanged between external
environment and scene graph.
Essentially the external presentation event loop must complete each
render/interaction cycle before passing events to a contained X3D scene, and
Event loop for a contained X3D scene must complete each render/interaction cycle
before passing events to an external presentation.

 4.5 Components

4.5.1 Overview

An X3D component is a set of related functionality consisting of various X3D objects
and services as described below.

Components are specified in this standard or may be defined elsewhere. This standard
specifies a set of requirements which shall be satisfied for a component to be
considered an X3D component. Components may be organized into support levels as
provided by the component specification. The support levels are assigned an integer
identifier starting with level 1 as the simplest support level. Higher numbered support
levels (if specified) should incorporate all of the functionality of lower numbered support
levels. Thus, the support levels support a hierarchy of functionality.

New components may be defined either through creation of a new part to this
International Standard or through registration. Functionality may be added to an
already defined component by amending the appropriate part of this International
Standard or through registration. Such new functionality shall be in the form of one or
more new levels that augment the functionality already provided. Levels already

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

concepts.html[8/1/2020 9:59:12 AM]

defined shall not be subdivided. Each such addition shall satisfy the requirements for
component definition stated above.

4.5.2 Defining components

The following are the requirements for defining components:

a. All node objects within a component shall be derived, either directly or indirectly,
from the X3DNode class.

b. All field objects within a component shall be derived from the X3DField or
X3DArrayField classes.

c. The names for nodes and fields shall follow the naming semantics set forth in this
standard including those for scoping.

Several components are defined in this standard as shown in the Component index.
These components are defined in their respective parts of this International Standard.
In all cases, the X3D extension mechanism may be used to add new levels to the
components or may be used to define separate new components.

Each component definition is comprised of:

d. a name for the component suitable for use in the COMPONENT statement;
e. one or more levels starting with Level 1;
f. a list of prerequisites for the component (each prerequisite consisting of a

statement of which level in which other component is required for support of the
component being defined);

g. a conceptual description of the functionality being provided;
h. a definition of nodes being provided with an indication of in which level each node

is; and
i. a statement of conformance for the component.

 4.5.3 Base components

Components are specified in this standard or may be defined elsewhere. See the
Component index for a list of the components of X3D which have been formally
accepted by the governing body.

Each component is presented by describing the functionality to be supported. This is
followed by the specification of the abstract nodes of the component, if any. Following
the abstract node specifications, the concrete nodes of the component are specified.
Finally, the support levels are specified.

The support levels are specified in a table in which the first column presents the
number of each support level. The second column specifies the prerequisite components
that are required by the particular support level for the component being specified.
Each new level is presented with its prerequisites in a separate row of the table.
Subsequent rows until the next new level are used to specify node support for that
level. The third column specifies the nodes and other features of the component that
are to be supported, in whole or in part, by the indicated support level. The fourth
column specifies any constraints on the particular feature or node for the indicated

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

concepts.html[8/1/2020 9:59:12 AM]

support level. For each support level i+1, all features of the previous support level shall
also be supported.

In the second column, each prerequisite for a support level is listed by a component
name and a support level within that component. These table entries indicate that, for
the browser to claim support for that level of the component, the browser
implementation shall also support the component and support level(s) listed as a
prerequisite. If there are no prerequisites, the word "None" is specified.

In the third column, abstract nodes introduced at that support level are listed first
followed by the concrete nodes introduced at that support level.

In the fourth column, a listing of "n/a" means "not applicable". When it is indicated that
a field is "optionally supported", an X3D browser is not required to support that field. If
all fields of a node are to be entirely supported, the phrase "Full support" is used.

Table 4.5 is an example of the format for a support level table:

Table 4.5 — Example support level table

Level Prerequisites Nodes/Features Support

1 Core 1
Networking 2

 X3DTimeDependentNode
(abstract) n/a

 Node1Name fieldi optionally
supported.

 Node2Name All fields fully supported.

2

Level 1 nodes All fields as supported
by Level 1.

NodeName All fields fully supported.

Any new components defined by amendment or in new parts of this International
Standard shall specify their functionality using the same format.

 4.6 Profiles

4.6.1 Overview

ISO/IEC 19775 supports the concept of profiles. A profile is a named collection of
functionality and requirements that shall be supported in order for an implementation to
conform to that profile. Profiles are defined as a set of components and levels of each
component as well as the minimum support criteria for all of the objects contained

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

concepts.html[8/1/2020 9:59:12 AM]

within that set.

This part of ISO/IEC 19775 defines seven profiles satisfying varying sets of
requirements:

a. Core profile (see Annex A)
b. Interchange profile (see Annex B)
c. Interactive profile (see Annex C)
d. MPEG-4 interactive profile (see Annex D)
e. Immersive profile (see Annex E)
f. Full profile (see Annex F)
g. CADInterchange profile (see Annex H)

Each set of requirements is directed at supporting the needs of a particular
constituency. Not all constituencies may be satisfied by the functionality represented by
these profiles. Therefore, this part of ISO/IEC 19775 allows for defining additional
profiles either through amendment to this part of this International Standard or by
registration.

A system that conforms to a given profile supports the full set of objects and
capabilities defined for that profile.

 4.6.2 Defining profiles

A profile definition consists of the following:

a. a name for the profile suitable for use in the PROFILE statement;
b. an introduction defining the purpose for the profile;
c. a list of the components and levels within those components which comprise the

profile;
d. a statement of conformance criteria for the profile;
e. a table containing the node type set supported by the profile stating the X3D File

Limit and Minimum Browser Support for each node type;
f. a table of other limitations for the profile; and
g. any other information specific to the profile.

4.6.3 Relationship between profiles and components

A profile consists of a collection of components at given support levels. A user may also
supplement the predefined set of components for a given profile by specifying extra
component statements (see 7.2.5.4 COMPONENT statement). If the user supplies
additional component declarations in addition to the components and levels defined as
part of the profile, the resultant components supported shall be the union of all
components and levels requested. That is, a user cannot force a lower level of
component conformance onto a profile by explicitly declaring the component with a
lower level of support than that defined by the profile.

A profile definition shall be internally consistent. If a profile contains components that
list prerequisites that are not covered by the component levels declared for that profile,

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

concepts.html[8/1/2020 9:59:12 AM]

the prerequisites shall not be automatically made available. Authors wishing to use
these missing prerequisites shall explicitly declare the component and level required
through the use of the COMPONENT statement.

 4.7 Support levels
The X3D specification may be supported at varying Levels, or qualities of service. Any
X3D component may designate a level of service by using a numbering scheme in which
higher-numbered levels denote increasing qualities of service. A higher level of service
may indicate any of the following:

a. The presence (or absence) of features;
b. Improved support for a particular feature;
c. More rigorously defined semantics; or
d. More stringent conformance requirements.

Note that service levels between different features do not necessarily correspond. For
example, a profile may contain one component supported at level 2 and another at level
1. Any profile may combine components defined at different service levels, provided
that the features interoperate properly, the behavior is deterministic (within practical
limits) and the conformance requirements for that profile and components are well-
defined.

 4.8 Data encodings
The X3D run-time architecture is independent of the data encoding format. X3D content
and applications can be authored in a variety of encodings, including textual (XML and
Classic VRML encodings) and binary, either compressed or uncompressed. ISO/IEC
19775 contains an abstract encoding specification that defines the structure of the X3D
scene: hierarchical relationships among objects, initial values for objects, and dataflow
connections between objects. All concrete data encodings for X3D shall conform to this
abstract specification.

Browsers and generators may support any or all of the standard encoding formats,
depending on their application needs and the conformance requirements of a specific
component or profile.

X3D encodings are fully specified in the parts of ISO/IEC 19776.

 4.9 Scene access interface (SAI)
X3D provides a set of application programmer interfaces (APIs), called the Scene
Access Interface (SAI), that defines run-time access to the scene. Using the SAI a
developer may create and destroy nodes, send events to nodes, create connections
between nodes (routes), read or set field values in nodes, traverse the scene graph,
and control the operations of the browser. Programmatic access may be internal (i.e.,
used to create customized elements within the scene graph) or external (i.e.,
connecting to program elements outside the scene such as in a host application such as
a web browser). Internal access is supported via a special node called a Script node.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

concepts.html[8/1/2020 9:59:12 AM]

Script nodes allow developers to connect programming language functions and object
classes to the scene graph. Fields of a script are automatically mapped to properties
and methods of the object associated with that script. Script node code may generate
events which are propagated back to the scene graph by the run-time environment.
External access is supported through integration between the X3D run-time system and
a variety of programming language run-time libraries.

The X3D SAI is specified as a set of language-independent services and bindings to
several programming and scripting languages. A complete specification of the X3D SAI
services and the component model interfaces may be found in 2.[I19775-2]. The
language bindings for the services defined in ISO/IEC 19775-2 are specified in 2.
[I19777]. Internal programmatic access is enabled through the Script node, described
in 29 Scripting component.

TODO: determine whether we need to further elaborate this definition when considering
external environments.

 4.10 Component and profile registration
This part of ISO/IEC 19775 allows new concepts to be defined by registration of
components, new levels within components, and profiles. Registration shall not be used
to modify any existing component, level of a component, or profile. New functionality is
registered using the established procedures of the ISO International Register of
Items1). These procedures require the proposer to supply all information for a new
registered item except for the level number. The level number (if applicable) is assigned
and managed by the ISO International Registration Authority for Graphical Items.
Registration shall be according to the procedures in ISO/IEC 9973.

1)Contact information for the ISO-designated Registration Authority for Items registered under the ISO/IEC
9973 procedures is available at the ISO Maintenance Agencies and Registration Authorities web site:
http://www.iso.org/iso/standards_development/maintenance_agencies.htm.

http://www.iso.org/jtc1/sc24/register
http://www.iso.org/jtc1/sc24/register
http://www.iso.org/jtc1/sc24/register
http://www.iso.org/iso/standards_development/maintenance_agencies.htm

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 25 Geospatial Component

geospatial.html[8/1/2020 9:59:17 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

25 Geospatial component

 25.1 Introduction

25.1.1 Name

The name of this component is "Geospatial". This name shall be used when referring to
this component in the COMPONENT statement (see 7.2.5.4 Component statement).

25.1.2 Overview

This clause describes the Geospatial component of this part of ISO/IEC 19775. This
includes how to associate real world locations to elements in the X3D world as well as
specifying nodes particularly tuned for geospatial applications. Table 25.1 provides links
to the major topics in this clause.

 Table 25.1 — Topics

25.1 Introduction
25.1.1 Name
25.1.2 Overview

25.2 Concepts
25.2.1 Overview
25.2.2 Spatial reference frames
25.2.3 Specifying a spatial reference frame
25.2.4 Specifying geospatial coordinates
25.2.5 Dealing with high-precision coordinates
25.2.6 Geospatial navigation issues

25.3 Node reference
25.3.1 GeoCoordinate
25.3.2 GeoElevationGrid
25.3.3 GeoLocation
25.3.4 GeoLOD
25.3.5 GeoMetadata
25.3.6 GeoOrigin (deprecated)

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 25 Geospatial Component

geospatial.html[8/1/2020 9:59:17 AM]

25.3.7 GeoPositionInterpolator
25.3.8 GeoProximitySensor
25.3.9 GeoTouchSensor
25.3.10 GeoTransform
25.3.11 GeoViewpoint

25.4 Support levels

Figure 25.1 — Loading of GeoLOD levels

Table 25.1 — Topics
Table 25.2 — Supported spatial reference frames
Table 25.3 — Supported earth ellipsoids
Table 25.4 — Supported earth geoids
Table 25.5 — GeoMetadata keywords and values
Table 25.6 — Geospatial component support levels

 25.2 Concepts

25.2.1 Overview

This section contains discussions of various important concepts that are integral to the
Geospatial component, providing support for geographic and geospatial applications.
This support includes the ability to embed geospatial coordinates in certain X3D nodes,
to support high-precision geospatial modeling, and to handle large multi-resolution
terrain databases. These concepts are described below. The Geospatial component
includes conventions that are defined by the Spatial Reference Model (see ISO/IEC
18026).

In total, the following nodes comprise the Geospatial component. These nodes are
defined as follows.

GeoCoordinate
GeoElevationGrid
GeoLocation
GeoLOD
GeoMetadata
GeoOrigin
GeoPositionInterpolator
GeoProximitySensor
GeoTouchSensor
GeoTransform
GeoViewpoint

 25.2.2 Spatial reference frames

X3D defines an implicit Cartesian, right-handed three-dimensional coordinate system

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 25 Geospatial Component

geospatial.html[8/1/2020 9:59:17 AM]

for modeling purposes, as defined in 4.3.6 Standard units and coordinate system.
However, most geo-referenced data are provided in a geodetic or projective spatial
reference frame. A geodetic (or geographic) spatial reference frame is related to the
ellipsoid used to model the earth, for example the latitude/longitude system. A
projective spatial reference frame employs a projection of the ellipsoid onto some
simple surface such as a cone or a cylinder, for example, the Lambert Conformal Conic
(LCC) or the Universal Transverse Mercator (UTM) projections. In order to be useful to
the geospatial community, X3D provides support for a number of nodes that can use
spatial reference frames for modeling purposes. The spatial reference frames supported
by X3D are defined in Table 25.2.

 Table 25.2 — Supported spatial reference frames

Code Name

GD Geodetic spatial reference frame

GC Geocentric spatial reference frame

UTM Universal Transverse Mercator

WM Web Mercator

The code GDC shall be synonymous to GD, and the code GCC shall be synonymous to
GC. However, these two synonyms may be subject to future deprecation. In addition to
these spatial reference frames, X3D defines 23 standard ellipsoids in order to model the
shape of the earth. These are all defined in Table 25.3.

 Table 25.3 — Supported earth ellipsoids

Code Ellipsoid Name
Semi-Major

Axis
(metres)

Inv.
Flattening

(F-1)

AA Airy 1830 6377563.396 299.3249646

AM Modified Airy 6377340.189 299.3249646

AN Australian National 6378160 298.25

BN Bessel 1841 (Namibia) 6377483.865 299.1528128

BR Bessel 1841 (Ethiopia Indonesia...) 6377397.155 299.1528128

CC Clarke 1866 6378206.4 294.9786982

CD Clarke 1880 6378249.145 293.465

EA Everest (India 1830) 6377276.345 300.8017

EB Everest (Sabah & Sarawak) 6377298.556 300.8017

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 25 Geospatial Component

geospatial.html[8/1/2020 9:59:17 AM]

EC Everest (India 1956) 6377301.243 300.8017

ED Everest (W. Malaysia 1969) 6377295.664 300.8017

EE Everest (W. Malaysia & Singapore
1948) 6377304.063 300.8017

EF Everest (Pakistan) 6377309.613 300.8017

FA Modified Fischer 1960 6378155 298.3

HE Helmert 1906 6378200 298.3

HO Hough 1960 6378270 297

ID Indonesian 1974 6378160 298.247

IN International 1924 6378388 297

KA Krassovsky 1940 6378245 298.3

RF Geodetic Reference System 1980
(GRS 80) 6378137 298.257222101

SA South American 1969 6378160 298.25

WD WGS 72 6378135 298.26

WE WGS 84 6378137 298.257223563

Finally, X3D supports the specification of a geoid representing mean sea level. The list
of geoids supported is presented in Table 25.4.

 Table 25.4 — Supported earth geoids

Code Name

WGS84 WGS84 geoid

Internally, an X3D browser will transform all geographic coordinates into earth-fixed
geocentric coordinates (i.e., an (x,y,z) displacement from the center of the earth in
units of length base units). This is a 3D Cartesian coordinate system that best
integrates with X3D's implicit coordinate system. In addition, an offset may be applied
to these geocentric coordinates if a (deprecated) GeoOrigin node is supplied (see 25.2.5
Dealing with high-precision coordinates). The resulting coordinates are cast to single-
precision and are the final values used for rendering. This process means that we
provide support for increased precision around an area of interest, and also enable data
specified in multiple spatial reference frames to be fused into a single context.

 25.2.3 Specifying a spatial reference frame

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 25 Geospatial Component

geospatial.html[8/1/2020 9:59:17 AM]

All the X3D nodes that allow inclusion of geographic coordinates support a field called
geoSystem. This field is used to specify the particular spatial reference frame that will
be used for the geospatial coordinates in that node. This is an MFString field that can
include a number of arguments to fully designate the spatial reference frame. Each
argument appears in a separate string within the MFString array. Argument matching is
case sensitive. Optional arguments may appear in any order. The following values are
supported.

"GD" - Geodetic spatial reference frame (latitude/longitude). An optional argument
may be used to specify the ellipsoid using one of the ellipsoid codes that are
defined in Table 25.3. If no ellipsoid is specified, then "WE" is assumed (i.e., the
WGS84 ellipsoid). An optional "WGS84" string can be specified if you wish all
elevations to relative to the WGS84 geoid (i.e., mean sea level) (see Table 25.4);
otherwise, all elevations will be relative to the ellipsoid. An example spatial
reference frame definition of this format is ["GD", "WD"], for a geodetic spatial
reference frame based upon the WGS72 ellipsoid with all elevations being relative
to that ellipsoid.

"UTM" - Universal Transverse Mercator. One further required argument must be
supplied for UTM in order to specify the zone number (1..60). This is given in the
form "Z<n>", where <n> is the zone number. An optional argument of "S" may be
supplied in order to specify that the coordinates are in the southern hemisphere
(otherwise, northern hemisphere will be assumed). A further optional argument
may be used to specify the ellipsoid using one of the ellipsoid codes that are
defined in Table 25.3. If no ellipsoid is specified, then "WE" is assumed (i.e., the
WGS84 ellipsoid). An optional "WGS84" string can be specified if you wish all
elevations to relative to the WGS84 geoid (i.e., mean sea level (see Table 25.4));
otherwise, all elevations will be relative to the ellipsoid. An example spatial
reference frame definition of this format is ["UTM", "Z10", "S", "GD"], for a
southern hemisphere UTM spatial reference frame in zone 10 with all elevations
being with respect to mean sea level.

"GC" - Earth-fixed Geocentric with respect to the WGS84 ellipsoid. No additional
arguments are supported. An example spatial reference frame definition of this
format is ["GC"].

"WM" - Web Mercator projection used for all web mapping (slippy maps). An
example spatial reference frame definition of this format is ["WM"].

If no geoSystem field is specified, the default value is ["GD", "WE"].

 25.2.4 Specifying geospatial coordinates

Once the spatial reference frame has been defined, a single geographic coordinate is
specified as an SFVec3d. Lists of geographic coordinates are encoded as an MFVec3d.
The meaning of each component value depends upon the particular spatial reference
frame that was defined via the geoSystem field in the same node. Given the following
geoSystem definitions, the meaning of each component is defined as follows.

GD: (<latitude>, <longitude>, <elevation>) or (<longitude>, <latitude>,
<elevation>). The order of latitude and longitude is controlled by the geoSystem

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 25 Geospatial Component

geospatial.html[8/1/2020 9:59:17 AM]

field. If "latitude_first" is specified, the order is latitude then longitude. If
"longitude_first" is specified, the order is longitude then latitude. If neither is
specified, "latitude_first" is the default. Elevation is always specified third. Latitude
and longitude are given in units of angle base units. The following assumes an
angle base unit of degrees. If a UNIT statement for angle base units has been
provided, the following values for latitude and/or longitude should be suitable
converted to that angle base units. Latitude is in the range −90..+90, and
longitude can be in the range −180..+180 or 0..360 (0 deg longitude is the same
point in both cases). Longitudinal values are relative to the Greenwich Prime
Meridian. Elevation is given in units of length base units above the ellipsoid (the
default) or above the WGS84 geoid (if you supplied the "WGS84" parameter in the
geoSystem field).

EXAMPLE (37.4506, −122.1834, 0) is the latitude/longitude coordinate for Menlo Park,
California, USA.

UTM: (<northing>, <easting>, <elevation>) or (<easting>, <northing>,
<elevation>). The order of northing and easting is controlled by the geoSystem
field. If "northing_first" is specified, the order is northing then easting. If
"easting_first" is specified, the order is easting then northing. If neither is
specified, "northing_first" is the default. Elevation is always specified third.
Northings, eastings, and elevation are all given in units of length base units. The
zone of the coordinate, and whether it is in the southern hemisphere, are defined
in the geoSystem string. Elevation is given with reference to the ellipsoid (the
default) or the WGS84 geoid (if the "WGS84" parameter is specified in the
geoSystem field).

EXAMPLE (4145173, 572227, 0) is the zone 10 northern hemisphere UTM coordinate for
Menlo Park, California, USA.

GC: (<x>, <y>, <z>). These values are all given in units of metres. The
coordinate represents an offset from the center of the planet, based upon the
WGS84 ellipsoid. The z-axis passes through the poles while the x-axis cuts through
the latitude/longitude coordinate (0,0) degrees.

EXAMPLE (−2700301, −4290762, 3857213) is the geocentric coordinate for Menlo Park,
California, USA.

WM: (<x>, <y>, <elevation>). These values are all given in units of metres. The
x and y values represent Web Mercator coordinates with an origin at 0 degrees
latitude and longitude, based upon the WGS84 ellipsoid. The elevation is also with
respect to the WGS84 ellipsoid.

EXAMPLE (-13601393.87, 4502102.12, 0) is the Web Mercator coordinate for Menlo Park,
California, USA.

 25.2.5 Dealing with high-precision coordinates

Most computer graphics systems, including X3D, use single-precision floating point
values to model and render all geometry. This is a natural design constraint since
computer graphics typically deals with small screens (up to around 1600 x 1280 pixels),

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 25 Geospatial Component

geospatial.html[8/1/2020 9:59:17 AM]

and locally bounded regions. As a result, there is no need to use double-precision
values because any increases in accuracy that it brings would be lost in sub-pixel noise.

However, single-precision is insufficient to model data over the range of the earth at
accurate ground resolutions. With only 23 bits of mantissa, a coordinate can be
accurate to only one part in 8 million (223-1); or about 6 or 7 decimal digits of
precision. Since the equatorial radius of the earth (considered as an example planetary
body) is 6,378,137 m (under the WGS84 ellipsoid), it is not possible to achieve
resolutions better than around 0.8 metres using single-precision floating point numbers
(6,378,137 / 8,388,607 = 0.8). Below this threshold, various floating point rounding
artifacts such as vertices coalescing and camera jitter will occur.

This geo-referencing problem is one avoided by establishing a geo-referenced local
coordinate system (LCS). An absolute geo-referenced location is defined as the origin of
the LCS. This becomes the reference point that correlates to the X3D world's (0,0,0)
origin. Any subsequent geospatial locations are translated into X3D's Cartesian
coordinate system relative to this LCS origin. Moreover, by allowing the user to define
these local frames easily, the creator of the geo-referenced data uses the accuracy of a
single-precision floating point representation by creating X3D worlds of only limited
local extent. This is the purpose of the GeoOrigin node as specified via the geoOrigin
field of the geographic X3D nodes. The GeoOrigin node and all geoOrigin fields are often
unnecessary deprecated since browsers can automatically provide local origins as
necessary).

To illustrate this concept, imagine an example where the GeoOrigin is specified as
(310385.0 e, 4361550.0 n, 0 m, zone 13) in UTM coordinates. This may be transformed
to a double-precision geocentric coordinate of (−1459877.12, −4715646.92,
4025213.19). Then a supplied absolute UTM coordinate of (310400.0 e, 4361600.0 n, 0
m, zone 13) may be transformed internally to a geocentric coordinate of
(−1459854.51, −4715620.48, 4025252.11). Finally, this absolute geocentric coordinate
can be transformed to a single-precision local Cartesian coordinate system by
subtracting the GeoOrigin location to give (22.61, 26.44, 38.92), which is within single-
precision range.

 25.2.6 Geospatial navigation issues

There are a number of navigation issues that are specific to the task of browsing large
geographic areas. One important issue is addressed here, that of elevation scaled
velocity.

The velocity at which users can navigate around a world should depend upon their
height above the terrain.

EXAMPLE When flying over the coast at a height of 100 metres above the terrain, a velocity of 100 metres per
second could might be considered relatively fast. However, when approaching the earth from outer space, a
velocity of 100 metres per second would be intolerably slow. Creators of geographic visualization systems have
therefore learned to scale the velocity of the user's navigation in an attempt to maintain a constant pixel flow across
the screen. A simple linear relationship between velocity and the user's elevation above an ellipsoid such as
WGS84 often provides an acceptable and easily computable solution to this problem. This behavior is addressed
by the GeoViewpoint node.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 25 Geospatial Component

geospatial.html[8/1/2020 9:59:17 AM]

 25.3 Node reference

 25.3.1 GeoCoordinate
GeoCoordinate : X3DCoordinateNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFVec3d [in,out] point [] (-∞,∞)
 SFNode [] geoOrigin NULL [GeoOrigin] (deprecated)
 MFString [] geoSystem ["GD","WE"] [see 25.2.3]
}

The GeoCoordinate node specifies a list of coordinates in a spatial reference frame. It is
used in the coord field of vertex-based geometry nodes including IndexedFaceSet,
IndexedLineSet, and PointSet.

The geoOrigin field is used to specify a local coordinate frame for extended precision as
described in 25.2.5 Dealing with high-precision coordinates.

The geoSystem field is used to define the spatial reference frame and is described in
25.2.3 Specifying a spatial reference frame.

The point array is used to contain the actual geospatial coordinates and should be
provided in a format consistent with that specified for the particular geoSystem (see
above). The geospatial coordinates are transparently transformed into a geocentric,
curved-earth representation. For example, this would allow a geographer to create a
X3D world where all coordinates are specified in terms of latitude, longitude, and
elevation.

 25.3.2 GeoElevationGrid
GeoElevationGrid : X3DGeometryNode {
 MFDouble [in] set_height
 SFNode [in,out] color NULL [X3DColorNode]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFNode [in,out] normal NULL [X3DNormalNode]
 SFNode [in,out] texCoord NULL [X3DTextureCoordinateNode]
 SFFloat [in,out] yScale 1.0 [0,∞)
 SFBool [] ccw TRUE
 SFBool [] colorPerVertex TRUE
 SFDouble [] creaseAngle 0 [0,∞)
 SFVec3d [] geoGridOrigin 0 0 0 (-∞,∞)
 SFNode [] geoOrigin NULL [GeoOrigin] (deprecated)
 MFString [] geoSystem ["GD","WE"] [see 25.2.3]
 MFDouble [] height [0 0] (-∞,∞)
 SFBool [] normalPerVertex TRUE
 SFBool [] solid TRUE
 SFInt32 [] xDimension 0 (0,∞)
 SFDouble [] xSpacing 1.0 [0,∞)
 SFInt32 [] zDimension 0 (0,∞)
 SFDouble [] zSpacing 1.0 [0,∞)
}

The GeoElevationGrid node specifies a uniform grid of elevation values within some
spatial reference frame. These are then transparently transformed into a geocentric,
curved-earth representation. For example, this would allow a geographer to create a
height field where all coordinates are specified in terms of latitude, longitude, and
elevation.

The fields color, colorPerVertex, texCoord, normal, and normalPerVertex all have the
same meaning as for ElevationGrid (see 13.3.4 ElevationGrid). Similarly, if necessary,
tessellation is applied as specified in 13.3.4 ElevationGrid.

The ccw, solid, and creaseAngle fields are described in 11.2.3 Common geometry fields.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 25 Geospatial Component

geospatial.html[8/1/2020 9:59:17 AM]

The geoOrigin field is used to specify a local coordinate frame for extended precision as
described in 25.2.5 Dealing with high-precision coordinates.

The geoSystem field is used to define the spatial reference frame and is described in
25.2.3 Specifying a spatial reference frame.

The geoGridOrigin field specifies the geographic coordinate for the south-west corner
(bottom-left) of the dataset. This value should be specified as described in 25.2.4
Specifying geospatial coordinates.

The height array contains xDimension × zDimension floating point values that represent
elevation above the ellipsoid or the geoid, as appropriate. These values are given in
row-major order from west to east, south to north. When the geoSystem is "GD",
xSpacing refers to the number of units of longitude in angle base units between
adjacent height values and zSpacing refers to the number of units of latitude in angle
base units between vertical height values. When the geoSystem is "UTM", xSpacing refers
to the number of eastings (length base units) between adjacent height values and
zSpacing refers to the number of northings (length base units) between vertical height
values.

EXAMPLE If xDimension = n and the grid spans d units horizontally, the xSpacing value should be set to:

d / (n−1).

The yScale value can be used to produce a vertical exaggeration of the data when it is
displayed. By default, this value is 1.0 (no exaggeration). If this value is set greater
than 1.0, all heights will appear larger than actual.

25.3.3 GeoLocation
GeoLocation : X3DGroupingNode {
 MFNode [in] addChildren [X3DChildNode]
 MFNode [in] removeChildren [X3DChildNode]
 MFNode [in,out] children [] [X3DChildNode]
 SFBool [in out] bboxDisplay FALSE
 SFVec3d [in,out] geoCoords 0 0 0 (-∞,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [in out] visible TRUE
 SFNode [] geoOrigin NULL [GeoOrigin] (deprecated)
 MFString [] geoSystem ["GD","WE"] [see 25.2.3]
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or −1 −1 −1
}

The GeoLocation node provides the ability to geo-reference any standard X3D model.
That is, to take an ordinary X3D model, contained within the children field of the node,
and to specify its geospatial location. This node is a grouping node that can be thought
of as a Transform node. However, the GeoLocation node specifies an absolute location,
not a relative one, so content developers should not nest GeoLocation nodes within
each other.

The geoOrigin field is used to specify a local coordinate frame for extended precision as
described in 25.2.5 Dealing with high-precision coordinates.

The geoSystem field is used to define the spatial reference frame and is described in
25.2.3 Specifying a spatial reference frame.

The geometry of the nodes in children is to be specified in units of metres in X3D

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 25 Geospatial Component

geospatial.html[8/1/2020 9:59:17 AM]

coordinates relative to the location specified by the geoCoords field. The geoCoords field
should be provided in the format described in 25.2.3 Specifying a spatial reference
frame.

The geoCoords field can be used to dynamically update the geospatial location of the
model; for example, an event could might be sent from a GeoPositionInterpolator node.

In addition to placing a X3D model at the correct geospatial location, the GeoLocation
node will also adjust the orientation of the model appropriately. The standard X3D
coordinate system specifies that the +Y axis = up, +Z = out of the screen, and +X =
towards the right. The GeoLocation node will set the orientation so that the +Y axis is
the up direction for that local area (the normal to the tangent plane on the ellipsoid),
−Z points towards the north pole, and +X is east.

25.3.4 GeoLOD
GeoLOD : X3DChildNode, X3DBoundedObject {
 SFBool [in out] bboxDisplay FALSE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [in out] visible TRUE
 MFNode [out] children [X3DChildNode]
 SFInt32 [out] level_changed
 SFVec3d [] center 0 0 0 (-∞,∞)
 MFString [] child1Url [] [URI]
 MFString [] child2Url [] [URI]
 MFString [] child3Url [] [URI]
 MFString [] child4Url [] [URI]
 SFNode [] geoOrigin NULL [GeoOrigin] (deprecated)
 MFString [] geoSystem ["GD","WE"] [see 25.2.3]
 SFFloat [] range 10 [0,∞)
 MFString [] rootUrl [] [URI]
 MFNode [] rootNode [] [X3DChildNode]
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or −1 −1 −1
}

The GeoLOD node provides a terrain-specialized form of the LOD node. It is a grouping
node that specifies two different levels of detail for an object using a tree structure,
where 0 to 4 children can be specified, and also efficiently manages the loading and
unloading of these levels of detail.

The level of detail is switched depending upon whether the user is closer or farther than
range length base units from the geospatial coordinate center. The center field should
be specified as described in 25.2.4 Specifying geospatial coordinates.

The geoOrigin field is used to specify a local coordinate frame for extended precision as
described in 25.2.5 Dealing with high-precision coordinates.

The geoSystem field is used to define the spatial reference frame and is described in
25.2.3 Specifying a spatial reference frame.

The visible field specifies whether or not the content within a node is visually displayed.
The value of this field has no effect on animation behaviors, collision behaviors, event
passing, or other non-visual characteristics.

When the user is outside the specified range, only the geometry for rootUrl or rootNode
are displayed. When the viewer enters the specified range, this geometry is replaced
with the contents of the four children files defined by child1Url through child4Url. The
four children files are loaded into memory only when the user is within the specified
range. Similarly, these are unloaded from memory when the user leaves this range.
Figure 25.1 illustrates this process. The child URLs shall be arranged in the same order

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 25 Geospatial Component

geospatial.html[8/1/2020 9:59:17 AM]

as in the figure; i.e., child1Url represents the bottom-left quadtree child. It is valid to
specify less than four child URLs; in which case, the GeoLOD should switch to the
children nodes when all of the specified URLs have been loaded. This latter feature can
support tree structures other than quadtrees, such as binary trees.

Figure 25.1 — Loading of GeoLOD levels

The rootUrl and rootNode fields provide two different ways to specify the geometry of
the root tile. You may use one or the other. The rootNode field lets you include the
geometry for the root tile directly within the X3D file; whereas the rootUrl field lets you
specify a URL for a file that contains the geometry. The result of specifying a value for
both of these fields is undefined.

The children field is used to expose a portion of the scene graph for the currently loaded
set of nodes. The value returned as an event is an MFNode containing the currently
selected tile. This will either be the node specified by the rootNode field or the nodes
specified by the child1Url, child2Url, child3Url, and child4Url fields. The GeoLOD node
shall generate a new children output event each time the scene graph is changed
(EXAMPLE whenever nodes are loaded or unloaded). When the new children event is
generated, the GeoLOD node shall also generate a level_changed event with value 0 or
1, where 0 indicates the rootNode field and 1 indicates the nodes specified by the
child1Url, child2Url, child3Url, and child4Url fields.

The GeoLOD node may optionally be implemented with support for a cache of the most
recent nodes that have been loaded. This cache should be global across all GeoLOD
instances in a scene. This will improve performance when navigating large terrain
models by avoiding excessive loading and unloading when a user makes small changes
in viewpoint.

25.3.5 GeoMetadata
GeoMetadata : X3DInfoNode, X3DUrlObject {
 MFNode [in,out] data []
 SFString [in,out] description ""
 SFBool [in,out] load TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFTime [in,out] refresh 0.0 [0,∞)
 MFString [in,out] summary []
 MFString [in,out] url [] [URI]
}

The GeoMetadata node supports the specification of metadata describing any number of
geospatial nodes. This is similar to a WorldInfo node, but specifically for describing
geospatial information.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 25 Geospatial Component

geospatial.html[8/1/2020 9:59:17 AM]

There are a number of standards and representations for geospatial metadata. Rather
than adopt any particular standard, the purpose of the GeoMetadata node is to provide
links to any of these complete metadata descriptions, with the option to also supply a
short, human-readable summary. More specific metadata can be specified using the
metadata field available in each node.

The url field is used to specify a hypertext link to an external, complete metadata
description. Multiple URL strings can be specified in order to provide alternative
locations for the same metadata information. The summary field may be used to specify
the format of the metadata in the case where this cannot be deduced easily.

The summary string array contains a set of keyword/value pairs, with each keyword
and its subsequent value contained in a separate string; i.e., there should always be an
even (or zero) number of strings. This provides a simple, extensible mechanism to
include metadata elements that are human-readable and easy to parse. Table 25.5
specifies a number of keywords and the format that should be used to describe their
values. If an unknown keyword is found, it (and its associated value) are ignored.

 Table 25.5 — GeoMetadata keywords and values

Keyword Value

title A name to succinctly identify the dataset to user. For
example, "San Francisco, CA".

description
A brief textual description or summary of the content of the
dataset. For example, "LANDSAT 7 satellite imagery taken
over northern Scotland".

coordinateSystem

The spatial reference frame used to represent the data (e.g.,
GD, UTM, or LCC). The list of valid codes that can be used in
this field are defined in ISO/IEC 18026. In the case of UTM,
the zone number should also be specified in the format "UTM
Zx", where the zone number is in the range [1,60]. For
example, "UTM Z11".

horizontalDatum
The name of the geodetic datum. The list of valid codes that
can be used in this field are defined in ISO/IEC 18026. For
example, "W84".

verticalDatum
The name of the vertical datum (geoid). The list of valid
codes that can be used in this field are defined in ISO/IEC
18026. For example, "W84".

ellipsoid
The name of the geodetic ellipsoid. The list of valid codes that
can be used in this field are defined in ISO/IEC 18026. For
example, "WE".

extent

The bounding coordinates for the dataset given in spatial
reference frame specified by the coordinateSystem keyword.
These are provided in the order eastmost, southmost,
westmost, northmost. An example for GD is: "-180.0 -90.0
180.0 90.0".

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 25 Geospatial Component

geospatial.html[8/1/2020 9:59:17 AM]

resolution The resolution, or ground sample distance, given in units of
length base units. For example, "30".

originator
A string defining the originator of the data, for example the
author, agency, organization, publisher, etc. For example,
"John Doe, Any Corporation, Some Town, Some Country"

copyright
Any appropriate copyright declaration that pertains to the
data. For example, "(c) Copyright 2000, Any Corporation. All
rights reserved. Freely distributable."

date

A single date/time, or a date/time range, defining the valid
time period to which the data pertains. Dates are specified in
the format "YYYY MM DD [HH:MM]". Years in the current time
period should be specified using four digits (EXAMPLE "1999" or
"2001"). Years can have other than four digits and can be
negative. A date range is specified by supplying two values
separated by a "-" (hyphen) character. An optional time can
be supplied should this level of accuracy be required. Times
are to be specified in 24-hour format with respect to GMT.
For example, "1999 01 01 00:00 - 1999 12 31 23:59".

metadataFormat

A string that specifies the format of the external metadata
description specified by the url field of the GeoMetadata
node. For example, "FGDC", "ISO TC211", "CEN TC287", or
"OGC".

dataUrl

A hypertext link to the source data used to create the X3D
node(s) to which this metadata pertains. Multiple dataUrl
keyword/value pairs can be specified in order to provide
alternative locations for the same source data. For example,
"http://www.foo.bar/data/sf1".

dataFormat

A free-text string that describes the format of the source data
used to create the X3D node(s) to which this metadata
pertains. This refers to the source data specified by the
dataUrl keyword (if present). For example, "USGS 5.5-min
DEM".

The data field is used to list all of the other nodes in a scene by DEF name that
reference the data described in the GeoMetadata node. For example, if the
GeoMetadata node is describing a height field grid, the appropriate GeoElevationGrid
node could might be included inside the data field. The nodes in the data field are not
rendered, so DEF/USE can be used in order to first describe them and then to use them
in the scene graph This approach allows associating multiple data nodes with a single
GeoMetadata node, specifying multiple GeoMetadata nodes within a single scene, and
also provides a mechanism to easily locate all of the data that pertain to any particular
metadata entry. If the data field is not specified, it is assumed that the GeoMetadata
node pertains to the entire scene.

 25.3.6 GeoOrigin (deprecated)
GeoOrigin : X3DNode {
 SFVec3d [in,out] geoCoords 0 0 0 (-∞,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 25 Geospatial Component

geospatial.html[8/1/2020 9:59:17 AM]

 MFString [] geoSystem ["GD","WE"] [see 25.2.3]
 SFBool [] rotateYUp FALSE
}

GeoOrigin node usage is discouraged because different models built with separate
GeoOrigin nodes cannot be easily combined. GeoOrigin is still needed in some situations
to achieve correct visual fidelity. Relevant GeoOrigin examples may include fine
positioning in a global context, to aid deployment to handheld devices which may use
lower-precision arithmetic in their graphics pipelines.

GeoOrigin node usage is deprecated and its use is discouraged. The presence of a
GeoOrigin node is tolerated but can be ignored in X3D scenes having version 3.0, 3.1 or
3.2. GeoOrigin node is not allowed in X3D scenes having version 3.3 or higher.

The GeoOrigin node defines an absolute geospatial location and an implicit local
coordinate frame against which geometry is referenced. This node is used to translate
from geographical coordinates into a local Cartesian coordinate system which can be
managed by the X3D browser.

The geoCoords field is used to specify a local coordinate frame for extended precision as
described in 25.2.5 Dealing with high-precision coordinates.

The geoSystem field is used to define the spatial reference frame and is described in
25.2.3 Specifying a spatial reference frame.

The rotateYUp field is used to specify whether coordinates of nodes that use this
GeoOrigin are to be rotated such that their up direction is aligned with the X3D Y axis.
The default behavior is to not perform this operation. This means that the local up
direction will depend upon the location of the GeoOrigin with respect to the planet
surface. The principal reason for performing the rotation is to ensure that standard
navigation modes such as "FLY" and "WALK", which assume that +Y = up, will function
correctly. Specifying rotateYUp to be TRUE may incur an extra computational overhead in
order to perform the rotation for each point.

 25.3.7 GeoPositionInterpolator
GeoPositionInterpolator : X3DInterpolatorNode {
 SFFloat [in] set_fraction (-∞,∞)
 MFFloat [in,out] key [] (-∞,∞)
 MFVec3d [in,out] keyValue []
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFVec3d [out] geovalue_changed
 SFVec3f [out] value_changed
 SFNode [] geoOrigin NULL [GeoOrigin] (deprecated)
 MFString [] geoSystem ["GD","WE"] [see 25.2.3]
}

The GeoPositionInterpolator node provides an interpolator capability where key values
are specified in geographic coordinates and the interpolation is performed within the
specified spatial reference frame.

The geoOrigin field is used to specify a local coordinate frame for extended precision as
described in 25.2.5 Dealing with high-precision coordinates.

The geoSystem field is used to define the spatial reference frame and is described in
25.2.3 Specifying a spatial reference frame.

The fields key, set_fraction, and value_changed have the same meaning as in the

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 25 Geospatial Component

geospatial.html[8/1/2020 9:59:17 AM]

PositionInterpolator node.

The keyValue array is used to contain the actual coordinates and should be provided in
a format consistent with that specified for the particular geoSystem.

The geovalue_changed field outputs the the interpolated coordinate in the spatial
reference frame specified by geoSystem. This can be passed to other GeoX3D nodes
that support a field of this form (e.g., GeoViewpoint and GeoLocation).

25.3.8 GeoProximitySensor
GeoProximitySensor : X3DEnvironmentalSensorNode {
 SFBool [in,out] enabled TRUE
 SFVec3d [in,out] geoCenter 0 0 0 (-∞,∞) (deprecated as of vs. 3.3)
 SFVec3d [in,out] center 0 0 0 (-∞,∞) (starting with vs. 3.3)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFVec3f [in,out] size 0 0 0 [0,∞)
 SFVec3f [out] centerOfRotation_changed
 SFTime [out] enterTime
 SFTime [out] exitTime
 SFVec3d [out] geoCoord_changed
 SFBool [out] isActive
 SFRotation [out] orientation_changed
 SFVec3f [out] position_changed
 SFNode [] geoOrigin NULL [GeoOrigin] (deprecated)
 MFString [] geoSystem ["GD","WE"] [see 25.2.3]
}

The GeoProximitySensor node generates events when the viewer enters, exits, and
moves within a region in space (defined by a box).

A GeoProximitySensor node generates isActive events as the viewer enters and exits
the rectangular box defined by its geoCenter and size fields. This box is oriented
tangent to the ellipsoid in a local coordinate system. Starting with version 3.3, the
geoCenter field is renamed center.

The fields geoSystem and geoOrigin are described in 25.2.3 Specifying a spatial
reference frame and 25.2.5 Dealing with high-precision coordinates, respectively.

The geoCoord_changed generates an event that returns the geospatial coordinates of
the viewer's position in the spatial reference frame specified by geoSystem for the
viewer's position whenever a position_changed event is generated. The
geoCoord_changed value corresponds to the world position returned by
position_changed.

The remaining fields are defined in 22.4.1 ProximitySensor.

 25.3.9 GeoTouchSensor
GeoTouchSensor : X3DTouchSensorNode {
 SFString [in,out] description ""
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFVec3f [out] hitNormal_changed
 SFVec3f [out] hitPoint_changed
 SFVec2f [out] hitTexCoord_changed
 SFVec3d [out] hitGeoCoord_changed
 SFBool [out] isActive
 SFBool [out] isOver
 SFTime [out] touchTime
 SFNode [] geoOrigin NULL [GeoOrigin] (deprecated)
 MFString [] geoSystem ["GD","WE"] [see 25.2.3]
}

A GeoTouchSensor node tracks the location and state of a pointing device and detects

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 25 Geospatial Component

geospatial.html[8/1/2020 9:59:17 AM]

when the user points at geometry contained by the parent group of the
GeoTouchSensor. This node provides the same functionality as a TouchSensor but also
provides the ability to return the geographic coordinate under the pointing device.

The description field in the GeoTouchSensor node specifies a textual description of the
GeoTouchSensor node. This may be used by browser-specific user interfaces that wish
to present users with more detailed information about the GeoTouchSensor.

A GeoTouchSensor can be enabled or disabled by sending an event of value TRUE or FALSE
to the enabled field. A disabled GeoTouchSensor does not track user input or send
events.

The geoOrigin field is used to specify a local coordinate frame for extended precision as
described in 25.2.5 Dealing with high-precision coordinates.

The geoSystem field is used to define the spatial reference frame and is described in
25.2.3 Specifying a spatial reference frame.

The fields hitNormal_changed, hitPoint_changed, hitTexCoord_changed, isActive,
isOver, and touchTime all have the same meaning as in the TouchSensor node.

The hitGeoCoord_changed field is generated while the pointing device is pointing
towards the GeoTouchSensor's geometry (i.e., when isOver is TRUE). It is a field
containing the geospatial coordinate for the point of intersection between the pointing
device's location and the underlying geometry. The value of the geoSystem string
defines the spatial reference frame of the geospatial coordinate. For example, given the
default geoSystem value of "GD", the hitGeoCoord_changed field will be in the format
(<latitude> <longitude> <elevation>) (see 25.2.4 Specifying geospatial coordinates).

25.3.10 GeoTransform
GeoTransform : X3DGroupingNode {
 MFNode [in] addChildren [X3DChildNode]
 MFNode [in] removeChildren [X3DChildNode]
 MFNode [in,out] children [] [X3DChildNode]
 SFBool [in out] bboxDisplay FALSE
 SFVec3d [in,out] geoCenter 0 0 0 (-∞,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFRotation [in,out] rotation 0 0 1 0 [-1,1] or (-∞,∞)
 SFVec3f [in,out] scale 1 1 1 (0,∞)
 SFRotation [in,out] scaleOrientation 0 0 1 0 [-1,1] or (-∞,∞)
 SFVec3f [in,out] translation 0 0 0 (-∞,∞)
 SFBool [in out] visible TRUE
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or −1 −1 −1
 SFNode [] geoOrigin NULL [GeoOrigin] (deprecated)
 MFString [] geoSystem ["GD","WE"] [see 25.2.3]
}

The GeoTransform node is a grouping node that defines a coordinate system for its
children to support the translation and orientation of geometry built using
GeoCoordinate nodes within the local world coordinate system. The X-Z plane of a
GeoTransform coordinate system is tangent to the ellipsoid of the spatial reference
frame at the location specified by the geoCenter field.

The geoCenter field specifies, in the spatial reference frame specified by the geoSystem
field, the location at which the local coordinate system is centered.

The fields geoSystem and geoOrigin are described in 25.2.3 Specifying a spatial
reference frame and 25.2.5 Dealing with high-precision coordinates, respectively.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 25 Geospatial Component

geospatial.html[8/1/2020 9:59:17 AM]

The remaining fields are defined in 10.4.4 Transform.

25.3.11 GeoViewpoint
GeoViewpoint : X3DViewpointNode {
 SFBool [in] set_bind
 SFVec3d [in,out] centerOfRotation 0 0 0 (-∞,∞)
 SFString [in,out] description ""
 SFFloat [in,out] farClippingPlane -1 -1 or (0,∞)
 SFFloat [in,out] fieldOfView π/4 (0,π)
 SFBool [in,out] jump TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFFloat [in,out] nearClippingPlane -1 -1 or (0,∞)
 SFRotation [in,out] orientation 0 0 1 0 (-∞,∞) or -1 1
 SFVec3d [in,out] position 0 0 100000 (-∞,∞)
 SFBool [in,out] retainUserOffsets FALSE
 SFTime [out] bindTime
 SFBool [out] isBound
 SFNode [] geoOrigin NULL [GeoOrigin] (deprecated)
 MFString [] geoSystem ["GD","WE"] [see 25.2.3]
 SFFloat [] speedFactor 1.0 [0,∞)
}

The GeoViewpoint node allows the specification of a viewpoint in terms of a geospatial
coordinate. This node can be used wherever a Viewpoint node can be used and can be
combined with Viewpoint nodes in the same scene. The fieldOfView, jump, description,
set_bind, bindTime, and isBound fields and events have the same behavior as the
standard Viewpoint node. When a GeoViewpoint node is bound, it overrides the
currently bound Viewpoint and NavigationInfo nodes in the scene.

The geoOrigin field is used to specify a local coordinate frame for extended precision as
described in 25.2.5 Dealing with high-precision coordinates.

The geoSystem field is used to define the spatial reference frame and is described in
25.2.3 Specifying a spatial reference frame.

The position is used to define the actual coordinate at which the viewpoint is to be
located. It should be provided in a format consistent with that specified by geoSystem.
There is also a set_position field which can be routed from the geovalue_changed field
of a GeoPositionInterpolator node in order to animate the position of the GeoViewpoint.

The orientation string defines a relative orientation from the local orientation frame that
is defined by the position field. By default, the orientation of the viewpoint will always
be aligned such that the +Y axis is the up vector for the local area (the normal to the
tangent plane on the ellipsoid), -Z points towards the north pole, and +X is east.
Therefore, if a GeoViewpoint is created that always looked straight down, no matter
where on the planetary body is being observed, an orientation value of [1 0 0 -1.57] is
used. The set_orientation field can be routed from the value_changed field of an
OrientationInterpolator in order to animate the orientation of the GeoViewpoint.

The GeoViewpoint node may be implemented as if there is an embedded NavigationInfo
node that is bound and unbound with the GeoViewpoint node. As such, a X3D browser
should internally set the speed, avatarSize, and visibilityLimit fields to an appropriate
value for the viewpoint's elevation. The X3D browser should also continually update the
speed field as the user moves in order to support elevation scaled velocity (see 25.2.6
Geospatial navigation issues). It is recommended that the speed of user interaction be
defined as:

(elevation / 10.0) speed base units

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 25 Geospatial Component

geospatial.html[8/1/2020 9:59:17 AM]

where elevation is the user's elevation above the WGS84 ellipsoid in units of speed base
units. It is also recommended that the same scaling factor be applied to the avatarSize
vector.

The speedFactor field of the GeoViewpoint node is used as a multiplier to the elevation-
based velocity that the node sets internally; i.e., this is a relative value and not an
absolute speed as is the case for the NavigationInfo node.

 25.4 Support levels
The Geospatial component provides one level of support as specified in Table 25.6.

 Table 25.6 — Geospatial component support levels

Level Prerequisites Nodes/Features Support

1

Core 1
Time 1
Networking 1
Grouping 3
Rendering 1
Shape 1
Geometry3D 1
Interpolator 1
Point device sensor 1
Navigation 1

 GeoCoordinate All fields fully
supported.

 GeoElevationGrid All fields fully
supported.

 GeoLocation All fields fully
supported.

 GeoLOD All fields fully
supported.

 GeoMetadata All fields fully
supported.

 GeoOrigin (deprecated) All fields fully
supported.

 GeoPositionInterpolator All fields fully
supported.

 GeoTouchSensor All fields fully
supported.

 GeoViewpoint All fields fully
supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 25 Geospatial Component

geospatial.html[8/1/2020 9:59:17 AM]

 2

Core 1
Time 1
Networking 1
Grouping 3
Rendering 1
Shape 1
Geometry3D 1
Interpolator 1
Environmental device
sensor 1
Navigation 1

 All Level 1 Geospatial
nodes

All fields fully
supported.

 GeoProximitySensor All fields fully
supported.

 GeoTransform All fields fully
supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex D MPEG-4 interactive profile

MPEG4interactive.html[8/1/2020 9:59:20 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

Annex D

(normative)

MPEG-4 interactive profile

 D.1 General
This annex defines the X3D components which comprise the MPEG-4 interactive profile.
This includes not only the nodes which shall be supported but also which fields in the
supported nodes may be ignored.

This profile is targeted towards:

providing the base point of interoperability with the MPEG-4 standard (see 2.
[I14496-1]),
implementing a lightweight playback engine that supports rich graphics and
interactivity,
possible implementation in a low-footprint engine requiring limited navigation and
environmental sensor control (EXAMPLE an applet or small browser plug-in), and
allowing a broader range of implementations by eliminating some complexity of a
complete X3D implementation.

 D.2 Topics
Table D.1 provides links to the major topics in this annex.

Table D.1 — Topics

D.1 General
D.2 Topics
D.3 Component support
D.4 Conformance criteria
D.5 Node set

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex D MPEG-4 interactive profile

MPEG4interactive.html[8/1/2020 9:59:20 AM]

D.6 Other limitations

Table D.1 — Topics
Table D.2 — Components and levels
Table D.3 — Nodes for conforming to the MPEG-4 interactive profile
Table D.4 — Other limitations

 D.3 Component support
Table D.2 lists the components and their levels which shall be supported in the MPEG-4
interactive profile. Tables D.2 and D.3 describe limitations on required support for
nodes and fields contained within these components.

Table D.2 — Components and levels

Component Level Reference

Core 1 7.5 Support levels

Time 1 8.5 Support levels

Networking 2 9.5 Support levels

Grouping 2 10.5 Support levels

Rendering 1 11.5 Support levels

Shape 1 12.5 Support levels

Geometry3D 2 13.4 Support levels

Lighting 2 17.5 Support levels

Texturing 1 18.5 Support levels

Interpolation 2 19.5 Support levels

Pointing device sensor 1 20.5 Support levels

Environmental sensor 1 22.5 Support levels

Navigation 1 23.4 Support levels

Environmental effects 1 24.5 Support levels

 D.4 Conformance criteria
Conformance to this profile shall include conformance criteria defined by the
specifications for those components and levels listed in Table D.2.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex D MPEG-4 interactive profile

MPEG4interactive.html[8/1/2020 9:59:20 AM]

In Tables D.3 and D.4, the first column defines the item for which conformance is being
defined. In some cases, general limits are defined but are later overridden in specific
cases by more restrictive limits. The second column defines the requirements for a X3D
file conforming to the MPEG-4 interactive profile; if a X3D file contains any items that
exceed these limits, it may not be possible for a X3D browser conforming to the MPEG-
4 interactive profile to successfully parse that X3D filD. The third column defines the
minimum complexity for a X3D scene that a X3D browser conforming to the MPEG-4
interactive profile shall be able to present to the user. Fields flagged as "not supported"
may be supported by browsers which conform to the MPEG-4 interactive profilD. The
word "ignore" in the minimum browser support column refers only to the display of the
item; in particular, set_ events to ignored inputOutput fields shall still generate
corresponding _changed events.

 D.5 Node set
Table D.3 lists the nodes that shall be supported in the MPEG-4 interactive profile and
specifies any fields in these nodes for which this profile requires less than full support.

Table D.3 — Nodes for conforming to the MPEG-4 Interactive profile

Item File Limit Minimum Browser Support

Anchor No
restrictions.

addChildren optionally supported.
removeChildren optionally supported.
Ignore parameter. Ignore description.

Appearance No
restrictions.

textureTransform optionally supported.
lineProperties not supported.
fillProperties not supported.

Background No
restrictions.

groundAngle and groundColor optionally
supported. backURL, frontURL, leftURL,
rightURL, topURL optionally supported.
skyAngle optionally supported. One
skyColor.

Box No
restrictions. Full support.

Color 15,000
colours. 15,000 colours.

ColorInterpolator
Restrictions
as for all
interpolators.

Full support as for all interpolators.

ColorRGBA 15,000
colours.

15,000 colours. Alpha component
optionally supported.

Cone No
restrictions. Full support.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex D MPEG-4 interactive profile

MPEG4interactive.html[8/1/2020 9:59:20 AM]

Coordinate 65,535
points 65,535 points.

CoordinateInterpolator

15,000
coordinates
per
keyValuD.
Restrictions
as for all
interpolators.

15,000 coordinates per keyValue.
Support as for all interpolators.

Cylinder No
restrictions. Full support.

CylinderSensor No
restrictions. Full support.

DirectionalLight No
restrictions.

Not scoped by parent Group or
Transform.

ElevationGrid No
restrictions. ccw optionally supported.

Group
Restrictions
as for all
groups.

Full support except as for all groups.

ImageTexture

JPEG (2.
[JPEG]) and
PNG (2.
[I15948])
format.

JPEG (2.[JPEG]) and PNG (2.[I15948])
format.

IndexedFaceSet

10 vertices
per facD.
5000 faces.
Less than
65,535
indices.

ccw optionally supported.
set_colorIndex optionally supported.
set_normalIndex optionally supported.
normal optionally supported. Only
convex indexed face sets supported.
Hence, convex optionally supported. For
creaseAngle, only 0 and π radians
supported (or the equivalent if a
different angle base unit has been
specified). normalIndex optionally
supported. 10 vertices per face. 5000
faces. 65,535 indices in any index field.
Face list shall be well-defined as follows:

1. Each face is terminated with −1,
including the last face in the array.

2. Each face contains at least three
non-coincident vertices.

3. A given coordIndex is not repeated
in a face.

4. The vertices of a face shall define
a planar polygon.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex D MPEG-4 interactive profile

MPEG4interactive.html[8/1/2020 9:59:20 AM]

5. The vertices of a face shall not
define a self-intersecting polygon.

IndexedLineSet

15,000 total
vertices.
15,000
indices in
any index
field.

15,000 total vertices. 15,000 indices in
any index field. set_colorIndex
optionally supported. set_coordIndex
optionally supported.

Inline No
restrictions.

All fields except load which is optionally
supported.

LineSet 15,000 total
vertices. 15,000 total vertices.

Material No
restrictions.

ambientIntensity optionally supported.
shininess optionally supported.
specularColor optionally supported. A
Material with emissiveColor not equal to
(0,0,0), diffuseColor equal to (0,0,0) is
an unlit material. One-bit transparency;
transparency values ≥ 0.5 transparent.

MetadataBoolean No
restrictions. Full support.

MetadataDouble No
restrictions. Full support.

MetadataFloat No
restrictions. Full support.

MetadataInteger No
restrictions. Full support.

MetadataSet No
restrictions. Full support.

MetadataString No
restrictions. Full support.

NavigationInfo No
restrictions.

avatarSize optionally supported. speed
optionally supported. type optionally
supported. visibilityLimit optionally
supported.

NormalInterpolator
Restrictions
as for all
interpolators.

Full support except as for all
interpolators.

OrientationInterpolator
Restrictions
as for all
interpolators.

Full support except as for all
interpolators.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex D MPEG-4 interactive profile

MPEG4interactive.html[8/1/2020 9:59:20 AM]

PixelTexture 512 width.
512 height.

512 width. 512 height. Display fully
transparent and fully opaque pixels.

PlaneSensor No
restrictions. Full support.

PointLight No
restrictions.

radius optionally supported. Linear
attenuation.

PointSet 5000 points. 5000 points.

PositionInterpolator
Restrictions
as for all
interpolators.

Full support except as for all
interpolators.

ProximitySensor No
restrictions.

position_changed optionally supported.
orientation_changed optionally
supported.

ScalarInterpolator
Restrictions
as for all
interpolators.

Full support except as for all
interpolators.

Shape No
restrictions. Full support.

Sphere No
restrictions. Full support.

SphereSensor No
restrictions. Full support.

SpotLight No restriction beamWidth optionally supported. radius
optionally supported. Linear attenuation.

Switch No
restrictions Full support.

TextureCoordinate 65,535
coordinates. 65,535 coordinates.

TextureTransform No
restrictions. Full support.

TimeSensor No
restrictions.

pause optionally supported.
isPaused optionally supported.
resumeTime optionally supported.

TouchSensor No
restrictions. Full support.

Transform
Restrictions
as for all
groups.

Full support except as for all groups.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex D MPEG-4 interactive profile

MPEG4interactive.html[8/1/2020 9:59:20 AM]

Viewpoint No
restrictions.

fieldOfView optionally supported.
description optionally supported.

WorldInfo No
restrictions. Full support.

 D.6 Other limitations
Table D.4 specifies other aspects of X3D functionality that are supported by this profile.
Note that general items refer only to those specific nodes listed in Table D.3.

Table D.4 — Other limitations

Item X3D File Limit Minimum Browser Support

All groups 500 children. 500 children. Ignore bboxCenter
and bboxSizD.

All
interpolators 1000 key-value pairs. 1000 key-value pairs.

All lights 8 simultaneous lights. 8 simultaneous lights.

Names for
DEF/field 50 utf8 octets. 50 utf8 octets.

All url fields 10 URLs.

10 URLs. URN's ignored.
Support `http', `file', and `ftp'
protocols.
Support relative URLs where
relevant.

SFBool No restrictions. Full support.

SFColor No restrictions. Full support.

SFColorRGBA No restrictions. Full support.

SFDouble Mp restrictions. Full support. Range ±1e±12.
Precision 1e−7.

SFFloat No restrictions. Full support.

SFImage 256 width. 256 height. 256 width. 256 height.

SFInt32 No restrictions. Full support.

SFNode No restrictions. Full support.

SFRotation No restrictions. Full support.

SFString 30,000 utf8 octets. 30,000 utf8 octets.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex D MPEG-4 interactive profile

MPEG4interactive.html[8/1/2020 9:59:20 AM]

SFTime No restrictions. Full support.

SFVec2d 15,000 values. 15,000 values.

SFVec2f 15,000 values. 15,000 values.

SFVec3d 15,000 values. 15,000 values.

SFVec3f 15,000 values. 15,000 values.

MFColor 15,000 values. 15,000 values.

MFColorRGBA 15,000 values. 15,000 values.

MFDouble 1000 values. 1000 values.

MFFloat 1,000 values. 1,000 values.

MFInt32 20,000 values. 20,000 values.

MFNode 500 values. 500 values.

MFRotation 1,000 values. 1,000 values.

MFString 30,000 utf8 octets per
string, 10 strings.

30,000 utf8 octets per string, 10
strings.

MFTime 1,000 values. 1,000 values.

MFVec2d 15,000 values. 15,000 values.

MFVec2f 15,000 values. 15,000 values.

MFVec3d 15,000 values. 15,000 values.

MFVec3f 15,000 values. 15,000 values.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 5 Field type reference

fieldsDef.html[8/1/2020 9:59:22 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

5 Field type reference

 5.1 General
This clause describes the syntax and general semantics of fields, the elemental data
types used by X3D to define the properties of nodes. Nodes are composed of fields
whose types are defined in this clause. For more information on nodes, see 4.4.2 Object
model.

Table 5.1 provides links to the major topics in this clause.

Table 5.1 — Topics

5.1 General
5.2 Abstract field types

5.2.1 Overview
5.2.2 X3DArrayField
5.2.3 X3DField

5.3 Field types
5.3.1 SFBool and MFBool
5.3.2 SFColor and MFColor
5.3.3 SFColorRGBA and MFColorRGBA
5.3.4 SFDouble and MFDouble
5.3.5 SFFloat and MFFloat
5.3.6 SFImage and MFImage
5.3.7 SFInt32 and MFInt32
5.3.8 SFMatrix3d and MFMatrix3d
5.3.9 SFMatrix3f and MFMatrix3f
5.3.10 SFMatrix4d and MFMatrix4d
5.3.11 SFMatrix4f and MFMatrix4f
5.3.12 SFNode and MFNode
5.3.13 SFRotation and MFRotation
5.3.14 SFString and MFString
5.3.15 SFTime and MFTime
5.3.16 SFVec2d and MFVec2d

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 5 Field type reference

fieldsDef.html[8/1/2020 9:59:22 AM]

5.3.17 SFVec2f and MFVec2f
5.3.18 SFVec3d and MFVec3d
5.3.19 SFVec3f and MFVec3f
5.3.20 SFVec4d and MFVec4d
5.3.21 SFVec4f and MFVec4f

 5.2 Abstract field types

5.2.1 Overview

There are two general classes of field types: field types that contain a single value
(where a value may be a single number, a vector, or even an image), and field types
that contain an ordered list of multiple values. Single-valued field types have names
that begin with SF. Multiple-valued field types have names that begin with MF. Multiple-
valued fields are written as an ordered list of values. If the field has zero values, the
value is empty but still represented.

5.2.2 X3DArrayField

X3DArrayField is the abstract field type from which all field types that can contain
multiple values are derived. All fields derived from X3DArrayField have names beginning
with MF. MFxxxx fields may zero or more values, each of which shall be of the type
indicated by the corresponding SFxxxx field type. It is illegal for any MFxxxx field to mix
values of different SFxxxx field types.

EXAMPLE MFString is a field type that can contain zero or more character strings.

5.2.3 X3DField

X3DField is the abstract field type from which all single values field types are derived.
All fields derived from X3DField have names beginning with SF. SFxxxx fields may only
contain a single value of the type indicated by the name of the field type.

EXAMPLE SFBool is a field type that can contain a single Boolean value.

 5.3 Field types

5.3.1 SFBool and MFBool

The SFBool field specifies a single Boolean value. The MFBool field specifies multiple
Boolean values. Each Boolean value represents either TRUE or FALSE. How these values
are represented is encoding dependent.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 5 Field type reference

fieldsDef.html[8/1/2020 9:59:22 AM]

The default value of an uninitialized SFBool field is FALSE. The default value of an
uninitialized MFBool field is the empty list.

5.3.2 SFColor and MFColor

The SFColor field specifies one RGB (red-green-blue) colour triple. MFColor specifies
zero or more RGB triples. Each colour is written to the X3D file as an RGB triple of
floating point numbers in the range 0.0 to 1.0.

The default value of an uninitialized SFColor field is (0 0 0). The default value of an
uninitialized MFColor field is the empty list.

5.3.3 SFColorRGBA and MFColorRGBA

The SFColorRGBA field specifies one RGBA (red-green-blue-alpha) colour quadruple that
includes alpha (opacity) information. MFColorRGBA specifies zero or more RGBA
quadruples. Each colour is written to the X3D file as an RGBA quadruple of floating
point numbers in the range 0.0 to 1.0. Alpha values range from 0.0 (fully transparent)
to 1.0 (fully opaque).

The default value of an uninitialized SFColorRGBA field is (0 0 0 0). The default value of
an uninitialized MFColorRGBA field is the empty list.

5.3.4 SFDouble and MFDouble

The SFDouble field specifies one double-precision floating point number. MFDouble
specifies zero or more double-precision floating point numbers. SFDouble and MFDouble
are represented in the X3D file as specified in the respective encoding.

Implementation of these fields is targeted at the double precision floating point
capabilities of processors. However, it is allowable to implement this field using fixed
point numbering provided at least 14 decimal digits of precision are maintained and
that exponents have range of at least [-12, 12] for both positive and negative numbers.

The default value of an uninitialized SFDouble field is 0.0. The default value of an
MFDouble field is the empty list.

5.3.5 SFFloat and MFFloat

The SFFloat field specifies one single-precision floating point number. MFFloat specifies
zero or more single-precision floating point numbers. SFFloats and MFFloats are
represented in the X3D file as specified in the respective encoding.

Implementation of these fields is targeted at the single precision floating point
capabilities of processors. However, it is allowable to implement this field using fixed
point numbering provided at least six decimal digits of precision are maintained and
that exponents have range of at least [-12, 12] for both positive and negative numbers.

The default value of an uninitialized SFFloat field is 0.0. The default value of an MFFloat
field is the empty list.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 5 Field type reference

fieldsDef.html[8/1/2020 9:59:22 AM]

5.3.6 SFImage and MFImage

The SFImage field specifies a single uncompressed 2-dimensional pixel image. SFImage
fields contain three integers representing the width, height and number of components
in the image, followed by width×height hexadecimal or integer values representing the
pixels in the image. MFImage fields contain zero or more SFImage fields. Each image in
an MFImage field may contain different values for the width, height, and number of
components in the image and hence may have a different number of hexadecimal or
integer values.

Pixel values are limited to 256 levels of intensity (i.e., 0-255 decimal or 0x00-0xFF
hexadecimal). A one-component image specifies one-byte hexadecimal or integer
values representing the intensity of the image. For example, 0xFF is full intensity in
hexadecimal (255 in decimal), 0x00 is no intensity (0 in decimal). A two-component
image specifies the intensity in the first (high) byte and the alpha opacity in the second
(low) byte. Pixels in a three-component image specify the red component in the first
(high) byte, followed by the green and blue components (e.g., 0xFF0000 is red, 0x00FF00
is green, 0x0000FF is blue). Four-component images specify the alpha opacity byte after
red/green/blue (e.g., 0x0000FF80 is semi-transparent blue). A value of 0x00 is completely
transparent, 0xFF is completely opaque. Note that alpha equals (1.0 -transparency), if
alpha and transparency each range from 0.0 to 1.0.

Each pixel is read as a single unsigned number. For example, a 3-component pixel with
value 0x0000FF may also be written as 0xFF (hexadecimal) or 255 (decimal). Pixels are
specified from left to right, bottom to top. The first hexadecimal value is the lower left
pixel and the last value is the upper right pixel.

The default value of an SFImage outputOnly field is (0 0 0). The default value of an
MFImage field is the empty list.

5.3.7 SFInt32 and MFInt32

The SFInt32 field specifies one 32-bit integer. The MFInt32 field specifies zero or more
32-bit integers. SFInt32 and MFInt32 fields are signed integers.

The default value of an uninitialized SFInt32 field is 0. The default value of an MFInt32
field is the empty list.

5.3.8 SFMatrix3d and MFMatrix3d

The SFMatrix3d field specifies a 3×3 matrix of double-precision floating point numbers.
MFMatrix3d specifies zero or more 3×3 matrices of double-precision floating point
numbers. Each floating point number is represented in the X3D file as specified in the
respective encoding.

SFMatrix3d matrices are organized in row-major fashion. The first row of the matrix
stores information for the x dimension, and the second for the y dimension. Since these
data types are commonly used for transformation matrices, translation values are
stored in the third row.

The default value of an uninitialized SFMatrix3d field is the identity matrix [1 0 0 0 1 0

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 5 Field type reference

fieldsDef.html[8/1/2020 9:59:22 AM]

0 0 1]. The default value of an uninitialized MFMatrix3d field is the empty list.

5.3.9 SFMatrix3f and MFMatrix3f

The SFMatrix3f field specifies a 3×3 matrix of single-precision floating point numbers.
MFMatrix3f specifies zero or more 3×3 matrices of single-precision floating point
numbers. Each floating point number is represented in the X3D file as specified in the
respective encoding.

SFMatrix3f matrices are organized in row-major fashion. The first row of the matrix
stores information for the x dimension, and the second for the y dimension. Since these
data types are commonly used for transformation matrices, translation values are
stored in the third row.

The default value of an uninitialized SFMatrix3f field is the identity matrix [1 0 0 0 1 0 0
0 1]. The default value of an uninitialized MFMatrix3f field is the empty list.

5.3.10 SFMatrix4d and MFMatrix4d

The SFMatrix4d field specifies a 4×4 matrix of double-precision floating point numbers.
MFMatrix4d specifies zero or more 4×4 matrices of double-precision floating point
numbers. Each floating point number is represented in the X3D file as specified in the
respective encoding.

SFMatrix4d matrices are organized in row-major fashion. The first row of the matrix
stores information for the x dimension, the second for the y dimension, and the third
for the z dimension. Since these data types are commonly used for transformation
matrices, translation values are stored in the fourth row.

The default value of an uninitialized SFMatrix4d field is the identity matrix [1 0 0 0 0 1
0 0 0 0 1 0 0 0 0 1]. The default value of an uninitialized MFMatrix4d field is the empty
list.

5.3.11 SFMatrix4f and MFMatrix4f

The SFMatrix4f field specifies a 4x4 matrix of single-precision floating point numbers.
MFMatrix4f specifies zero or more 4x4 matrices of single-precision floating point
numbers. Each floating point number is represented in the X3D file as specified in the
respective encoding.

SFMatrix4f matrices are organized in row-major fashion. The first row of the matrix
stores information for the x dimension, the second for the y dimension, and the third
for the z dimension. Since these data types are commonly used for transformation
matrices, translation values are stored in the fourth row.

The default value of an uninitialized SFMatrix4f field is the identity matrix [1 0 0 0 0 1 0
0 0 0 1 0 0 0 0 1]. The default value of an uninitialized MFMatrix4f field is the empty
list.

5.3.12 SFNode and MFNode

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 5 Field type reference

fieldsDef.html[8/1/2020 9:59:22 AM]

The SFNode field specifies an X3D node. The MFNode field specifies zero or more nodes.

The default value of an uninitialized SFNode field is NULL. The default value of an
MFNode field is the empty list.

5.3.13 SFRotation and MFRotation
The SFRotation field specifies one arbitrary rotation. The MFRotation field specifies zero
or more arbitrary rotations. An SFRotation is written to the X3D file as four floating
point values. The allowable form for a floating point number is defined in the specific
encoding. The first three values specify a normalized rotation axis vector about which
the rotation takes place. The fourth value specifies the amount of right-handed rotation
about that axis in angle base units.

The 3x3 matrix representation of a rotation (x y z a) is

[tx2+c txy+sz txz-sy
 txy-sz ty2+c tyz+sx
 txz+sy tyz-sx tz2+c]

where c = cos(a), s = sin(a), and t = 1-c.

The default value of an uninitialized SFRotation field is (0 0 1 0). The default value of an
MFRotation field is the empty list.

5.3.14 SFString and MFString

The SFString and MFString fields contain strings encoded with the UTF-8 universal
character set (see ISO/IEC 10646). SFString specifies a single string. The MFString
specifies zero or more strings. Strings are specified as a sequence of UTF-8 octets.

Any characters (including linefeeds and '#') may appear within the string.

The default value of an uninitialized SFString outputOnly field is the empty string. The
default value of an MFString field is the empty list.

Characters in ISO/IEC 10646 are encoded in multiple octets. Code space is divided into
four units, as follows:

+-------------+-------------+-----------+------------+

| Group-octet | Plane-octet | Row-octet | Cell-octet |

+-------------+-------------+-----------+------------+

ISO/IEC 10646 allows two basic forms for characters:

a. UCS-2 (Universal Coded Character Set-2). This form is also known as the Basic
Multilingual Plane (BMP). Characters are encoded in the lower two octets (row and
cell).

b. UCS-4 (Universal Coded Character Set-4). Characters are encoded in the full four
octets.

In addition, two transformation formats (UCS Transformation Format or UTF) are

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 5 Field type reference

fieldsDef.html[8/1/2020 9:59:22 AM]

accepted: UTF-8 and UTF-16. Each represents the nature of the transformation: 8-bit or
16-bit. UTF-8 and UTF-16 are referenced in ISO/IEC 10646.

UTF-8 maintains transparency for all ASCII code values (0...127). It allows ASCII text
(0x0..0x7F) to appear without any changes and encodes all characters from 0x80..
0x7FFFFFFF into a series of six or fewer bytes.

If the most significant bit of the first character is 0, the remaining seven bits are
interpreted as an ASCII character. Otherwise, the number of leading 1 bits indicates the
number of bytes following. There is always a zero bit between the count bits and any
data.

The first byte is one of the following. The X indicates bits available to encode the
character:

 0XXXXXXX only one byte 0..0x7F (ASCII)
 110XXXXX two bytes Maximum character value is 0x7FF
 1110XXXX three bytes Maximum character value is 0xFFFF
 11110XXX four bytes Maximum character value is 0x1FFFFF
 111110XX five bytes Maximum character value is 0x3FFFFFF
 1111110X six bytes Maximum character value is 0x7FFFFFFF

All following bytes have the format 10XXXXXX.

As a two byte example, the symbol for a registered trade mark ®, encoded as 0x00AE
in UCS-2 of ISO 10646, has the following two byte encoding in UTF-8: 0xC2, 0xAE.

5.3.15 SFTime and MFTime

The SFTime field specifies a single time value. The MFTime field specifies zero or more
time values. Time values are specified as a double-precision floating point number. The
allowable form for a double precision floating point number is defined in the specific
encoding. Time values are specified as the number of seconds from a specific time
origin. Typically, SFTime fields represent the number of seconds since Jan 1, 1970,
00:00:00 GMT.

The default value of an uninitialized SFTime field is -1. The default value of an MFTime
field is the empty list.

5.3.16 SFVec2d and MFVec2d

The SFVec2d field specifies a two-dimensional (2D) vector. An MFVec2d field specifies
zero or more 2D vectors. SFVec2d's and MFVec2d's are represented as a pair of double-
precision floating point values (see 5.3.4 SFDouble and MFDouble). The allowable form
for a double-precision floating point number is defined in the specific encoding.

The default value of an uninitialized SFVec2d field is (0 0). The default value of an
MFVec2d field is the empty list.

5.3.17 SFVec2f and MFVec2f
The SFVec2f field specifies a two-dimensional (2D) vector. An MFVec2f field specifies
zero or more 2D vectors. SFVec2f's and MFVec2f's are represented as a pair of single-
precision floating point values (see 5.3.5 SFFloat and MFFloat). The allowable form for a

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 5 Field type reference

fieldsDef.html[8/1/2020 9:59:22 AM]

single-precision floating point number is defined in the specific encoding.

The default value of an uninitialized SFVec2f field is (0 0). The default value of an
MFVec2f field is the empty list.

5.3.18 SFVec3d and MFVec3d

The SFVec3d field or event specifies a three-dimensional (3D) vector. An MFVec3d field
or event specifies zero or more 3D vectors. SFVec3d's and MFVec3d's are represented
as a 3-tuple of double-precision floating point values (see 5.3.4 SFDouble and
MFDouble). The allowable form for a double-precision floating point number is defined
in the specific encoding.

The default value of an uninitialized SFVec3d field is (0 0 0). The default value of an
MFVec3d field is the empty list.

5.3.19 SFVec3f and MFVec3f

The SFVec3f field or event specifies a three-dimensional (3D) vector. An MFVec3f field
or event specifies zero or more 3D vectors. SFVec3f's and MFVec3f's are represented as
a 3-tuple of single-precision floating point values (see 5.3.5 SFFloat and MFFloat). The
allowable form for a single-precision floating point number is defined in the specific
encoding.

The default value of an uninitialized SFVec3f field is (0 0 0). The default value of an
MFVec3f field is the empty list.

5.3.20 SFVec4d and MFVec4d

The SFVec4d field or event specifies a three-dimensional (3D) homogeneous vector. An
MFVec4d field or event specifies zero or more 3D homogeneous vectors. SFVec4d's and
MFVec4d's are represented as a 4-tuple of double-precision floating point values (see
5.3.4 SFDouble and MFDouble). The allowable form for a double-precision floating point
number is defined in the specific encoding.

The default value of an uninitialized SFVec4d field is (0 0 0 1). The default value of an
MFVec4d field is the empty list.

5.3.21 SFVec4f and MFVec4f

The SFVec4f field or event specifies a three-dimensional (3D) homogeneous vector. An
MFVec4f field or event specifies zero or more 3D homogeneous vectors. SFVec4f's and
MFVec4f's are represented as a 4-tuple of single-precision floating point values (see
5.3.5 SFFloat and MFFloat). The allowable form for a single-precision floating point
number is defined in the specific encoding.

The default value of an uninitialized SFVec4f field is (0 0 0 1). The default value of an
MFVec4f field is the empty list.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 5 Field type reference

fieldsDef.html[8/1/2020 9:59:22 AM]

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 26 HAnim Component

hanim.html[8/1/2020 9:59:24 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

26 Humanoid Animation (H-Anim HAnim)
component

 26.1 Introduction

26.1.1 Name

The name of this component is "H-Anim HAnim". This name shall be used when
referring to this component in the COMPONENT statement (see 7.2.5.4 Component
statement).

26.1.2 Overview

This clause describes the Humanoid Animation (H-Anim HAnim) component of this part
of ISO/IEC 19775. Table 26.1 provides links to the major topics in this clause. The H-
Anim HAnim component of X3D defines the node bindings and other specifics for
implementing ISO/IEC 19774 (see 2.[I19774]) within X3D.

 Table 26.1 — Topics

26.1 Introduction
26.1.1 Name
26.1.2 Overview

26.2 Concepts
26.3 Node reference

26.3.1 HAnimDisplacer
26.3.2 HAnimHumanoid
26.3.3 HAnimJoint
26.3.4 HAnimMotion
26.3.5 HAnimSegment
26.3.6 HAnimSite

26.4 Support levels

Table 26.1 — Topics
Table 26.2 — H-anim component support levels

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 26 HAnim Component

hanim.html[8/1/2020 9:59:24 AM]

 26.2 Concepts
This component maps the functionality defined in ISO/IEC 19774 to a set of X3D nodes.
The semantics for these nodes are as specified therein.

 26.3 Node reference

26.3.1 HAnimDisplacer
HAnimDisplacer : X3DGeometricPropertyNode {
 MFInt32 [in,out] coordIndex [] [0,∞) or -1
 SFString [in out] description ""
 MFVec3f [in,out] displacements []
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFString [in,out] name ""
 SFFloat [in,out] weight 0.0 (-∞,∞)
}

Applications may need to alter the shape of individual segments. At the most basic
level, this is done by writing to the point field of the node derived from
X3DCoordinateNode that is found in the coord field of the HAnimSegment node.

In some cases, the application may need to be able to identify specific groups of
vertices within an HAnimSegment.

EXAMPLE The application may need to know which vertices within the skull HAnimSegment
comprise the left eyebrow.

It may also require "hints" as to the direction in which each vertex should move. That
information is stored in a node called an HAnimDisplacer. The HAnimDisplacers for a
particular HAnimSegment are stored in the displacers field of that HAnimSegment.

The description of each field shall be as described in Each field is described in ISO/IEC
19774.

26.3.2 HAnimHumanoid

HAnimHumanoid : X3DChildNode, X3DBoundedObject {
 SFVec3f [in,out] center 0 0 0 (-∞,∞)
 SFString [in out] description ""
 SFBool [in out] bboxDisplay FALSE
 SFBool [in out] visible TRUE
 MFString [in,out] info []
 MFVec3f [in,out] jointBindingPositions [] (-∞,∞)
 MFRotation [in,out] jointBindingRotations [] (-∞,∞)|[-1,1]
 MFVec3f [in,out] jointBindingScales [] (0,∞)
 MFNode [in,out] joints [] [HAnimJoint]
 SFInt32 [in,out] loa -1 [-1,4]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFNode [in,out] motions [] [HAnimMotion]
 MFBool [in,out] motionsEnabled []
 SFString [in,out] name ""
 SFRotation [in,out] rotation 0 0 1 0 (-∞,∞)|[-1,1]
 SFVec3f [in,out] scale 1 1 1 (0,∞)
 SFRotation [in,out] scaleOrientation 0 0 1 0 (-∞,∞)|[-1,1]
 MFNode [in,out] segments [] [HAnimSegment]
 MFNode [in,out] sites [] [HAnimSite]
 SFString [in,out] skeletalConfiguration "BASIC"
 MFNode [in,out] skeleton [] [HAnimJoint, HAnimSite]
 MFNode [in,out] skin [] [IndexedFaceSet, X3DGroupingNodeGroup, Transform, Shape]
 SFNode [in,out] skinBindingCoords NULL [X3DCoordinateNode]
 SFNode [in,out] skinBindingNormals NULL [X3DNormalNode]
 SFNode [in,out] skinCoord NULL [X3DCoordinateNode]
 SFNode [in,out] skinNormal NULL [X3DNormalNode]
 SFVec3f [in,out] translation 0 0 0 (-∞,∞)
 SFString [in,out] version ""

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 26 HAnim Component

hanim.html[8/1/2020 9:59:24 AM]

 MFNode [in,out] viewpoints [] [HAnimSite]
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or −1 −1 −1
}

The HAnimHumanoid node is used to store human-readable data such as author and
copyright information, as well as to store references to the HAnimJoint, HAnimMotion,
HAnimSegment, and HAnimSite nodes in addition to serving as a container for the
entire humanoid. Thus, it serves as an essential node for moving the humanoid through
its environment.

The description of each field shall be as described in Each field is described in ISO/IEC
19774.

26.3.3 HAnimJoint
HAnimJoint : X3DGroupingNode {
 MFNode [in] addChildren [HAnimJoint,HAnimSegment,HAnimSite]
 MFNode [in] removeChildren [HAnimJoint,HAnimSegment,HAnimSite]
 SFVec3f [in,out] center 0 0 0 (-∞,∞)
 MFNode [in,out] children [] [HAnimJoint,HAnimSegment,HAnimSite]
 SFString [in out] description ""
 MFNode [in,out] displacers [] [HAnimDisplacer]
 SFBool [in out] bboxDisplay FALSE
 SFBool [in out] visible TRUE
 SFRotation [in,out] limitOrientation 0 0 1 0 (-∞,∞)|[-1,1]
 MFVec3f [in,out] llimit [] (-∞,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFString [in,out] name ""
 SFRotation [in,out] rotation 0 0 1 0 (-∞,∞)|[-1,1]
 SFVec3f [in,out] scale 1 1 1 (0,∞)
 SFRotation [in,out] scaleOrientation 0 0 1 0 (-∞,∞)|[-1,1]
 MFInt32 [in,out] skinCoordIndex []
 MFFloat [in,out] skinCoordWeight []
 MFFloat [in,out] stiffness [0 0 0] [0,1]
 SFVec3f [in,out] translation 0 0 0 (-∞,∞)
 MFVec3f [in,out] ulimit [] (-∞,∞)
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or −1 −1 −1
}

Each joint in the body is represented by an HAnimJoint node, which is used to define
the relationship of each body segment to its immediate parent.

An HAnimJoint may only be a child of another HAnimJoint node or a child within the
skeleton field in the case of the HAnimJoint used as a humanoid root (i.e., an
HAnimJoint may not be a child of an HAnimSegment).

The HAnimJoint node is also used to store other joint-specific information. In particular,
a joint name is provided so that applications can identify each HAnimJoint node at run-
time. The HAnimJoint node may contain hints for inverse-kinematics systems that wish
to control the H-Anim HAnim figure. These hints include the upper and lower joint
limits, the orientation of the joint limits, and a stiffness/resistance value.

NOTE These limits are not enforced by any mechanism within the scene graph of the humanoid, and are provided
for information purposes only. Use of this information and enforcement of the joint limits is up to the application.

Humanoid authors and tools are free to implement the HAnimJoint node however they
choose. In particular, they may choose to use a single polygonal mesh to represent a
humanoid, rather than having a separate IndexedFaceSet for each body segment. In
such a case, an HAnimJoint would be responsible for moving the vertices that
correspond to a particular body segment and all the segments descended from it.

The description of each field shall be as described in Each field is described in ISO/IEC
19774.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 26 HAnim Component

hanim.html[8/1/2020 9:59:24 AM]

26.3.4 HAnimMotion
HAnimMotion : X3DChildNode {
 SFString [in,out] channels ""
 MFBool [in,out] channelsEnabled []
 SFTime [out] cycleTime
 SFString [in,out] description ""
 SFTime [out] elapsedTime (0,∞)
 SFBool [in,out] enabled TRUE
 SFInt32 [out] frameCount [0,∞)
 SFTime [in,out] frameDuration 0.1 (0,∞)
 SFInt32 [in,out] frameIncrement 1 (-∞,∞)
 SFInt32 [in,out] frameIndex 0 (0,∞)
 SFString [in,out] joints ""
 SFInt32 [in,out] loa -1 [-1,4]
 SFBool [in,out] loop false
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [in] next
 SFBool [in] previous
 MFFloat [in,out] values [] (-∞,∞)
}

HAnimMotion is used for motion animation of Humanoid characters. Raw motion data,
for example, motion capture data, details the number of frames, the frame display
time, and the parameter values for the motion from each channel at each frame.

The description of each field shall be as described in Each field is described in ISO/IEC
19774.

26.3.5 HAnimSegment
HAnimSegment : X3DGroupingNode {
 MFNode [in] addChildren [X3DChildNode]
 MFNode [in] removeChildren [X3DChildNode]
 SFVec3f [in,out] centerOfMass 0 0 0 (-∞,∞)
 MFNode [in,out] children [] [X3DChildNode]
 SFNode [in,out] coord NULL [X3DCoordinateNode]
 SFString [in out] description ""
 MFNode [in,out] displacers [] [HAnimDisplacer]
 SFBool [in out] bboxDisplay FALSE
 SFBool [in out] visible TRUE
 SFFloat [in,out] mass 0 [0,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFFloat [in,out] momentsOfInertia [0 0 0 0 0 0 0 0 0] [0,∞)
 SFString [in,out] name ""
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or −1 −1 −1
}

Each body segment is stored in an HAnimSegment node. The HAnimSegment node is a
grouping node that will typically contain either a number of Shape nodes or perhaps
Transform nodes that position the body part within its coordinate system as defined in
ISO/IEC 19774. The use of LOD nodes is recommended if the geometry of the
HAnimSegment is complex.

The description of each field shall be as described in Each field is described in ISO/IEC
19774.

26.3.6 HAnimSite
HAnimSite : X3DGroupingNode {
 MFNode [in] addChildren [X3DChildNode]
 MFNode [in] removeChildren [X3DChildNode]
 SFVec3f [in,out] center 0 0 0 (-∞,∞)
 MFNode [in,out] children [] [X3DChildNode]
 SFString [in out] description ""
 SFBool [in out] bboxDisplay FALSE
 SFBool [in out] visible TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFString [in,out] name ""
 SFRotation [in,out] rotation 0 0 1 0 (-∞,∞)|[-1,1]
 SFVec3f [in,out] scale 1 1 1 (0,∞)
 SFRotation [in,out] scaleOrientation 0 0 1 0 (-∞,∞)|[-1,1]

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 26 HAnim Component

hanim.html[8/1/2020 9:59:24 AM]

 SFVec3f [in,out] translation 0 0 0 (-∞,∞)|[-1,1]
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or −1 −1 −1
}

An HAnimSite node serves three purposes. The first is to define an "end effecter"
location that can be used by an inverse kinematics system. The second is to define an
attachment point for accessories such as jewelry and clothing. The third is to define a
location for a virtual camera in the reference frame of an HAnimSegment (such as a
view "through the eyes" of the humanoid for use in multi-user worlds).

The description of each field shall be as described in Each field is described in ISO/IEC
19774.

 26.4 Support levels
The H-Anim HAnim component provides 3 levels of support as specified in Table 26.2.

 Table 26.2 — Humanoid animation (H-Anim HAnim) component support levels

Level Prerequisites Nodes/Features Support

1

Core 1
Grouping 1
Geometry3D 2
Shape 1
Texturing 1
Navigation 2

HAnimHumanoid
skeleton support

HAnimDisplacer All fields fully supported.

HAnimHumanoid

All fields fully supported
except skin, skinCoord,
skinNormal,
skinBindingCoords,
skinBindingNormals, motions
and motionsEnabled fields.

HAnimJoint
All fields fully supported
except skinCoordIndex and
skinCoordWeight fields.

HAnimSegment All fields fully supported.

HAnimSite All fields fully supported.

2

Core 1
Grouping 1
Geometry3D 2
Shape 1
Texturing 1
Navigation 2

HAnimHumanoid
skin support

HAnimDisplacer All fields fully supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 26 HAnim Component

hanim.html[8/1/2020 9:59:24 AM]

HAnimHumanoid
All fields fully supported
except motions and
motionsEnabled fields.

HAnimJoint All fields fully supported.

HAnimSegment All fields fully supported.

HAnimSite All fields fully supported.

3

Core 1
Grouping 1
Geometry3D 2
Shape 1
Texturing 1
Navigation 2

Motion animation
support

HAnimDisplacer All fields fully supported.

HAnimHumanoid All fields fully supported.

HAnimJoint All fields fully supported.

HAnimMotion All fields fully supported.

HAnimSegment All fields fully supported.

HAnimSite All fields fully supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex E Immersive profile

immersive.html[8/1/2020 9:59:25 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

Annex E

(normative)

Immersive profile

 E.1 General
This annex defines the X3D components which comprise the immersive profile. This
includes not only the nodes which shall be supported but also which fields in the
supported nodes may be ignored.

This profile is targeted towards:

implementing immersive virtual worlds with complete navigational and
environmental sensor control and
implementing the functionality within the X3D architectural framework analogous
to that specified in ISO/IEC 14772-1 for the VRML base profile of that standard
(see 2.[I14772-1]).

 E.2 Topics
Table E.1 provides links to the major topics in this annex.

Table E.1 — Topics

E.1 General
E.2 Topics
E.3 Component support
E.4 Conformance criteria
E.5 Node set
E.6 Other limitations

Table E.1 — Topics

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex E Immersive profile

immersive.html[8/1/2020 9:59:25 AM]

Table E.2 — Components and levels
Table E.3 — Nodes for conforming to the Immersive profile
Table E.4 — Other limitations

 E.3 Component support
Table E.2 lists the components and their levels which shall be supported in the
Immersive profile. Tables E.2 and E.3 describe limitations on required support for nodes
and fields contained within these components.

Table E.2 — Components and levels

Component Level Reference

Core 2 7.5 Support levels

Time 1 8.5 Support levels

Networking 3 9.5 Support levels

Grouping 2 10.5 Support levels

Rendering 3 11.5 Support levels

Shape 2 12.5 Support levels

Geometry3D 4 13.4 Support levels

Geometry2D 1 14.4 Support levels

Text 1 15.5 Support levels

Sound 1 16.5 Support levels

Lighting 2 17.5 Support levels

Texturing 3 18.5 Support levels

Interpolation 2 19.5 Support levels

Pointing device sensor 1 20.5 Support levels

Key device sensor 2 21.5 Support levels

Environmental sensor 2 22.5 Support levels

Navigation 2 23.4 Support levels

Environmental effects 2 24.5 Support levels

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex E Immersive profile

immersive.html[8/1/2020 9:59:25 AM]

Scripting 1 29.5 Support levels

Event utilities 1 30.5 Support levels

 E.4 Conformance criteria
Conformance to this profile shall include conformance criteria defined by the
specifications for those components and levels listed in Table E.2.

In Table E.2 and Table E.3, the first column defines the item for which conformance is
being defined. In some cases, general limits are defined but are later overridden in
specific cases by more restrictive limits. The second column defines the requirements
for a X3D file conforming to the Immersive profile; if a X3D file contains any items that
exceed these limits, it may not be possible for a X3D browser conforming to the
Immersive profile to successfully parse that X3D file. The third column defines the
minimum complexity for a X3D scene that a X3D browser conforming to the Immersive
profile shall be able to present to the user. The word "ignore" in the minimum browser
support column refers only to the display of the item; in particular, set_ events to
ignored inputOutput fields shall still generate corresponding _changed events.

 E.5 Node set
Table E.3 lists the nodes which shall be supported in the Immersive profile and specifies
any fields in these nodes for which this profile requires less than full support.

Table E.3 — Nodes for conforming to the Immersive profile

Item X3D File
Limit

Minimum Browser
Support

Anchor No
restrictions. Full support.

Appearance No
restrictions. fillProperties not supported.

AudioClip
30 second
uncompressed
PCM WAV.

30 second uncompressed PCM
WAV.

Background No
restrictions.

One skyColor, one groundColor,
panorama images as per
ImageTexture.

Billboard Restrictions as
for all groups.

Full support except as for all
groups.

BooleanFilter No
restrictions. Full support.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex E Immersive profile

immersive.html[8/1/2020 9:59:25 AM]

BooleanSequencer No
restrictions. Full support.

BooleanToggle No
restrictions. Full support.

BooleanTrigger No
restrictions. Full support.

Box No
restrictions. Full support.

Collision Restrictions as
for all groups.

Full support except as for all
groups. Any navigation
behaviour acceptable when
collision occurs.

Color 15,000
colours. 15,000 colours.

ColorInterpolator
Restrictions as
for all
interpolators.

Full support except as for all
interpolators.

ColorRGBA 15,000
colours.

15,000 colours. Alpha
component optionally supported.

Cone No
restrictions. Full support.

Coordinate 15,000 points. 15,000 points.

CoordinateInterpolator

15,000
coordinates
per keyValue.
Restrictions as
for all
interpolators.

15,000 coordinates per
keyValue. Support as for all
interpolators.

Cylinder No
restrictions. Full support.

CylinderSensor No
restrictions. Full support.

DirectionalLight No
restrictions.

Not scoped by parent Group or
Transform.

ElevationGrid 16,000
heights. 16,000 heights.

Extrusion

(#crossSection
points) ×
(#spine
points) ≤

(#crossSection points) × (#spine
points) ≤ 2,500.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex E Immersive profile

immersive.html[8/1/2020 9:59:25 AM]

2,500.

Fog No
restrictions. Full support.

FontStyle No
restrictions.

If the values of the text aspects
character set, family, style
cannot be simultaneously
supported, the order of
precedence shall be: 1) character
set 2) family 3) style. Browser
shall display all characters in
Table 2 (Basic Latin) and Table 3
(Latin-1 Supplement) of ISO/IEC
10646-1 (see 2.[I10646-1]).

Group Restrictions as
for all groups.

Full support except as for all
groups.

ImageTexture

JPEG (2.
[JPEG]) and
PNG (2.
[I15948])
format.
Restrictions as
for
PixelTexture.

JPEG (2.[JPEG]) and PNG (2.
[I15948]) format. Support as for
PixelTexture.

IndexedFaceSet

10 vertices per
face. 5000
faces. Less
than 15,000
indices.

10 vertices per face. 5000 faces.
15,000 indices in any index field.

IndexedLineSet

15,000 total
vertices.
15,000 indices
in any index
field.

15,000 total vertices. 15,000
indices in any index field.

IndexedTriangleFan

15,000 total
vertices.
15,000 indices
in any index
field.

15,000 total vertices. 15,000
indices in any index field.

IndexedTriangleSet

15,000 total
vertices.
15,000 indices
in any index
field.

15,000 total vertices. 15,000
indices in any index field.

IndexedTriangleStripSet

15,000 total
vertices.
15,000 indices
in any index

15,000 total vertices. 15,000
indices in any index field.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex E Immersive profile

immersive.html[8/1/2020 9:59:25 AM]

field.

Inline No
restrictions. Full support.

IntegerSequencer No
restrictions. Full support.

IntegerTrigger No
restrictions. Full support.

KeySensor No
restrictions. Full support.

LineProperties No
restrictions. Full support.

LineSet 15,000 total
vertices. 15,000 total vertices.

LoadSensor No
restrictions. Full support.

LOD Restrictions as
for all groups.

At least first 4 level/range
combinations interpreted, and
support as for all groups.

Material No
restrictions. Full support.

MetadataBoolean No
restrictions. Full support.

MetadataDouble No
restrictions. Full support.

MetadataFloat No
restrictions. Full support.

MetadataInteger No
restrictions. Full support.

MetadataSet No
restrictions. Full support.

MetadataString No
restrictions. Full support.

MovieTexture

MPEG1-
Systems and
MPEG1-Video
formats (see
2.[I14496-1]).

MPEG1-Systems and MPEG1-
Video formats (see 2.[I14496-
1]). Display one active movie
texture.

At least two textures displayed

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex E Immersive profile

immersive.html[8/1/2020 9:59:25 AM]

MultiTexture No
restrictions.

per node with any number
specified.

Full support.

MultiTextureCoordinate 15,000
coordinates. 15,000 coordinates.

MultiTextureTransform Restrictions as
for all groups.

addChildren optionally
supported. removeChildren
optionally supported. Otherwise,
full support except as for all
groups.

NavigationInfo No
restrictions. Full support.

Normal 15,000
normals 15,000 normals

NormalInterpolator

15,000
normals per
keyValue.
Restrictions as
for all
interpolators.

15,000 normals per keyValue.
Support as for all interpolators.

OrientationInterpolator
Restrictions as
for all
interpolators.

Full support except as for all
interpolators.

PixelTexture 512 width. 512
height.

512 width. 512 height. Display
fully transparent and fully
opaque pixels.

PlaneSensor No
restrictions. Full support.

PointLight No
restrictions.

radius optionally supported.
Linear attenuation.

PointSet 5000 points. 5000 points.

Polyline2D 5000 vertices. 5000 vertices.

Polypoint2D 5000 points. 5000 points.

PositionInterpolator
Restrictions as
for all
interpolators.

Full support except as for all
interpolators.

ProximitySensor No
restrictions. Full support.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex E Immersive profile

immersive.html[8/1/2020 9:59:25 AM]

Rectangle2D No
restrictions. Full support.

ScalarInterpolator
Restrictions as
for all
interpolators.

Full support except as for all
interpolators.

Script
25 fields of
each access
type.

25 fields of each access type.
No scripting language support
required.

Shape No
restrictions. Full support.

Sound No
restrictions. 2 active sounds.

Sphere No
restrictions. Full support.

SphereSensor No
restrictions. Full support.

SpotLight No restriction
beamWidth optionally supported.
radius optionally supported.
Linear attenuation.

StringSensor
100 characters
per string. 100
strings.

Full support. 100 characters per
string. 100 strings.

Switch Restrictions as
for all groups.

Full support except as for all
groups.

Text
100 characters
per string. 100
strings.

100 characters per string. 100
strings.

TextureCoordinate 15,000
coordinates. 15,000 coordinates.

TextureCoordinateGenerator No
restrictions. Full support.

TextureTransform No
restrictions. Full support.

TimeSensor No
restrictions.

pause optionally supported.
isPaused optionally supported.
resumeTime optionally
supported.

TimeTrigger No
restrictions. Full support.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex E Immersive profile

immersive.html[8/1/2020 9:59:25 AM]

TouchSensor No
restrictions. Full support.

TriangleFanSet 15,000
coordinates. Full support.

TriangleSet 15,000
coordinates. Full support.

TriangleSet2D 15,000
coordinates. Full support.

TriangleStripSet 15,000
coordinates. Full support.

Transform Restrictions as
for all groups.

Full support except as for all
groups.

Viewpoint No
restrictions. Full support.

VisibilitySensor No
restrictions. Always visible.

WorldInfo No
restrictions. Full support.

 E.6 Other limitations
Table E.4 specifies limitations unrelated to nodes which are imposed by the Immersive
profile.

Table E.4 — Other limitations

Item X3D File Limit Minimum Browser Support

All groups 500 children. 500 children. Ignore bboxCenter and
bboxSize.

All interpolators 1000 key-value
pairs. 1000 key-value pairs.

All lights 8 simultaneous
lights. 8 simultaneous lights.

Names for
DEF/PROTO/field 50 utf8 octets. 50 utf8 octets.

All url fields 10 URLs.
10 URLs. URN's ignored.
Support 'http', 'file', and 'ftp' protocols.
Support relative URLs where relevant.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex E Immersive profile

immersive.html[8/1/2020 9:59:25 AM]

PROTO/
EXTERNPROTO

30 fields of each
access type. 30 fields of each access type.

EXTERNPROTO n/a
URL references X3D files conforming to
the current X3D profile/component
configuration

PROTO
definition
nesting depth

5 levels. 5 levels.

SFBool No restrictions. Full support.

SFColor No restrictions. Full support.

SFColorRGBA No restrictions. Full support.

SFDouble No restrictions. Full support. Range ±1e±12. Precision
1e−7.

SFFloat No restrictions. Full support.

SFImage 512 width. 512
height. 512 width. 512 height.

SFInt32 No restrictions. Full support.

SFNode No restrictions. Full support.

SFRotation No restrictions. Full support.

SFString 30,000 utf8
octets. 30,000 utf8 octets.

SFTime No restrictions. Full support.

SFVec2d 15,000 values. 15,000 values.

SFVec2f 15,000 values. 15,000 values.

SFVec3d 15,000 values. 15,000 values.

SFVec3f 15,000 values. 15,000 values.

MFColor 15,000 values. 15,000 values.

MFColorRGBA 15,000 values. 15,000 values.

MFDouble 1000 values. 1000 values.

MFFloat 1,000 values. 1,000 values.

MFInt32 20,000 values. 20,000 values.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex E Immersive profile

immersive.html[8/1/2020 9:59:25 AM]

MFNode 500 values. 500 values.

MFRotation 1,000 values. 1,000 values.

MFString
30,000 utf8 octets
per string, 10
strings.

30,000 utf8 octets per string, 10 strings.

MFTime 1,000 values. 1,000 values.

MFVec2d 15,000 values. 15,000 values.

MFVec2f 15,000 values. 15,000 values.

MFVec3d 15,000 values. 15,000 values.

MFVec3f 15,000 values. 15,000 values.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 6 Conformance

conformance.html[8/1/2020 9:59:27 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

6 Conformance

 6.1 General

6.1.1 Topics

This clause addresses conformance of X3D files, X3D generators and X3D browsers.

The topics covered in this clause are shown in Table 6.1.

 Table 6.1 — Topics

6.1 General
6.1.1 Topics
6.1.2 Objectives
6.1.3 Scope

6.2 Conformance
6.2.1 Conformance of X3D files
6.2.2 Conformance of X3D generators
6.2.3 Conformance of X3D browsers

6.3 Minimum support requirements
6.3.1 Minimum support requirements for generators
6.3.2 Minimum support requirements for browsers

 6.1.2 Objectives

The primary objectives of the specifications in this clause are:

a. to promote interoperability by eliminating arbitrary subsets of, or extensions to,
ISO/IEC 19775;

b. to promote uniformity in the development of conformance tests;
c. to promote consistent results across X3D browsers;
d. to facilitate automated test generation.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 6 Conformance

conformance.html[8/1/2020 9:59:27 AM]

 6.1.3 Scope

Conformance is defined for X3D files and for X3D browsers. For X3D generators,
conformance guidelines are presented for enhancing the likelihood of successful
interoperability.

A concept of base profile conformance is defined to ensure interoperability of X3D
generators and X3D browsers. Base profile conformance is based on a set of limits and
minimal requirements. Base profile conformance is intended to provide a functional
level of reasonable utility for X3D generators while limiting the complexity and resource
requirements of X3D browsers. Base profile conformance may not be adequate for all
uses of X3D.

This clause addresses the X3D data stream and implementation requirements.
Implementation requirements include the latitude allowed for X3D generators and
X3D browsers. This clause does not directly address the environmental, performance, or
resource requirements of the generator or browser.

This clause does not define the application requirements or dictate application
functional content within a X3D file.

The scope of this clause is limited to rules for the open interchange of X3D content.

 6.2 Conformance

 6.2.1 Conformance of X3D files

An X3D file is syntactically correct according to this part of ISO/IEC 19775 if the
following conditions are met:

a. The X3D file contains as its first element an X3D header statement (see 7.2.5.2
Header statement) specifying the version to which this file conforms. Versions and
associated content are specified in Annex L Version content.

b. All entities contained therein match the functional specification of entities of this
part of ISO/IEC 19775 that correspond to the version specified in the header
statement. The X3D file shall obey the relationships defined in the formal grammar
and all other syntactic requirements.

c. The sequence of entities in the X3D file obeys the relationships specified in this
part of ISO/IEC 19775 for the version specified in the header statement producing
the structure specified in the part of ISO/IEC 19775 for the version specified in the
header statement.

d. All field values in the X3D file obey the relationships specified in this part of
ISO/IEC 19775 for the version specified in the header statement producing the
structure specified in this part of ISO/IEC 19775 for the version specified in the
header statement.

e. No nodes appear in the X3D file other than those specified for the applicable profile
as specified in this part of ISO/IEC 19775 unless specified in a COMPONENT
statement, are required for the encoding technique, or are those defined by the
PROTO or EXTERNPROTO entities should such be available in the profile.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 6 Conformance

conformance.html[8/1/2020 9:59:27 AM]

f. No nodes or fields appear in the X3D file other than those defined as part of the
version specified in the header statement.

g. The X3D file is encoded according to the rules of ISO/IEC 19776.
h. It does not contain behaviour described as undefined in this part of ISO/IEC

19775.

 6.2.2 Conformance of X3D generators

A X3D generator is conforming to ISO/IEC 19775 if all X3D files that are generated are
syntactically correct and meet the requirements state in 6.2.1 Conformance of X3D
files.

A X3D generator conforms to a profile if it can be configured such that all X3D files
generated conform to that profile.

 6.2.3 Conformance of X3D browsers

An X3D browser is conforming if:

a. It is able to read any X3D file that conforms to the profiles and components
supported by that browser for the version(s) support by that browser.

b. It implements the functionality specified for all abstract interfaces, insofar as they
are made available in concrete nodes derived from those interfaces, within the
latitude defined for the specified profile, components, and version and as allowed
in this clause.

c. It presents the graphical and audio characteristics of the X3D nodes in any X3D file
that conforms to the applicable profile, components, and version, within the
latitude defined for the specified profile, components, and version and as allowed
in this clause.

d. It correctly handles user interaction and generation of events as specified for the
applicable profile, components, and version, within the latitude defined for the
specified profile, components, and version and as allowed in this clause.

e. It satisfies the minimum support requirements for browsers for the applicable
profile as enumerated in the table of minimum support requirements for that
profile.

 6.3 Minimum support requirements

 6.3.1 Minimum support requirements for generators

There is no minimum complexity which is required of (or appropriate for) X3D
generators. Any compliant set of nodes of arbitrary complexity may be generated, as
appropriate to represent application content, and which produce only the nodes allowed
by the applicable profile, components, and version.

 6.3.2 Minimum support requirements for browsers

Each profile defines the minimum complexity which shall be supported by an X3D
browser in support of that profile. Browser implementations may choose to support

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 6 Conformance

conformance.html[8/1/2020 9:59:27 AM]

greater limits but may not reduce the limits described for the applicable profile. When
the X3D file contains nodes which exceed the limits implemented by the browser, the
results are undefined. The words "optionally supported" in the minimum browser
support column refers only to the display of the item; in particular, set_ events to
ignored inputOutput fields shall still generate corresponding _changed events. Where
latitude is specified in a table of minimum support requirements for a particular node,
full support is required for other aspects of that node.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 27 NURBS Component

nurbs.html[8/1/2020 9:59:29 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

27 NURBS component

 27.1 Introduction

27.1.1 Name

The name of this component is "NURBS". This name shall be used when referring to this
component in the COMPONENT statement (see 7.2.5.4 Component statement).

27.1.2 Overview

This subclause describes the Non-uniform Rational B-Spline (NURBS) component of this
part of ISO/IEC 19775. Table 27.1 provides links to the major topics in this subclause.

 Table 27.1 — Topics

27.1 Introduction
27.1.1 Name
27.1.2 Overview

27.2 Concepts
27.2.1 Overview of NURBS
27.2.2 NURBS-related nodes
27.2.3 Common geometry fields and correctness
27.2.4 Tessellation strategies
27.2.5 Trimmed NURBS

27.3 Abstract types
27.3.1 X3DNurbsControlCurveNode
27.3.2 X3DNurbsSurfaceGeometryNode
27.3.3 X3DParametricGeometryNode

27.4 Node reference
27.4.1 Contour2D
27.4.2 ContourPolyline2D
27.4.3 CoordinateDouble
27.4.4 NurbsCurve

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 27 NURBS Component

nurbs.html[8/1/2020 9:59:29 AM]

27.4.5 NurbsCurve2D
27.4.6 NurbsOrientationInterpolator
27.4.7 NurbsPatchSurface
27.4.8 NurbsPositionInterpolator
27.4.9 NurbsSet
27.4.10 NurbsSurfaceInterpolator
27.4.11 NurbsSweptSurface
27.4.12 NurbsSwungSurface
27.4.13 NurbsTextureCoordinate
27.4.14 NurbsTrimmedSurface

27.5 Support levels

Figure 27.1 — NurbsCurve
Figure 27.2 — NurbsPatchSurface
Figure 27.3 — NurbsSweptSurface
Figure 27.4 — NurbsSwungSurface
Figure 27.5 — NurbsTrimmedSurface

Table 27.1 — Topics
Table 27.2 — NURBS component support levels

 27.2 Concepts

27.2.1 Overview of NURBS

Non-uniform Rational B-Splines (NURBS) provide a convenient and efficient manner to
generate curved lines and surfaces which can be smooth at any viewing distance. Since
these surfaces are generated parametrically, only a small amount of data need be
provided for describing complex surfaces.

 27.2.2 NURBS-related nodes

The characteristics of a NURBS surfaces and curves are defined according to the
mathematical definitions for Non-Uniform Rational B-Spline geometry.

There are many construction techniques including:

a. special cases of NURBS surfaces such as sphere, cylinder or Bezier surfaces;
b. Extrusion/swept surfaces, constructed given a spine curve and a cross-section

curve either or both of which can be NURBS curves;
c. surfaces of revolution, constructed given a circle/arc and a NURBS cross-section

curve;
d. skinned surfaces constructed from a set of curves;
e. Gordon surfaces interpolating two sets of curves;
f. Coons patches, a bi-cubic blended surface constructed from four border curves;
g. Surfaces interpolating a set of points.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 27 NURBS Component

nurbs.html[8/1/2020 9:59:29 AM]

For this standard, it is assumed that creation of such surfaces is only a construction
step at authoring time and that the surface will be represented as one of the
X3DParametricGeometryNode nodes for X3D run-time delivery.

27.2.3 Common geometry fields and correctness

Background information on NURBS and some implementation strategies are described
in [NURBS].

NURBs require input to be specified using control points, weights, knots and the order.
Each of these inputs are defined using separate fields of the appropriate data type.

The control points and the corresponding weight values are held in separate fields. This
separation also allows independent animation of the controlPoint fields using a
CoordinateInterpolator node.

All nodes that use NURBs principles use the same field names (or u/v variations on
them for the surface case). Those field names shall be interpreted as follows:

order defines the order of curve. From a mathematical point of view, the curve is
defined by a polynomial of the degree order−1. The value of order shall be greater than
or equal to 2. An implementation may limit order to a certain number. If it does so,
then a warning shall be generated and the surface not displayed. An implementation
shall at least support orders 2,3 and 4. The number of control points shall be at least
equal to the order of the curve. The order defines the number of adjacent control points
that influence a given control point.

controlPoint defines the X3DCoordinateNode instance that provides the source of
coordinates used to control the curve or surface. Depending on the weight value and
the order, this piecewise linear curve is approximated by the resulting parametric curve.
The number of control points shall be equal to or greater than the order. A closed B-
Spline curve can be specified by repeating the limiting control points, specifying a
periodic knot vector, and setting the closed field to TRUE. If the last control point is not
identical to the first or there exists a non-unitary value of weight within (order-1) control
points of the seam, the closed field is ignored.

A weight value that shall be greater than zero is assigned to each controlPoint. The
ordering of the values is equivalent to the ordering of the control point values. The
number of values shall be identical to the number of control points. If the length of the
weight vector is 0, the default weight 1.0 is assumed for each control point, thus
defining a non-Rational curve. If the number of weight values is less than the number
of control points, all weight values shall be ignored and a value of 1.0 shall be used.

knots defines the knot vector. The number of knots shall be equal to the number of
control points plus the order of the curve. The order shall be non-decreasing. Within the
knot vector there may not be more than order−1 consecutive knots of equal value. If
the length of a knot vector is 0 or not the exact number required (numcontrolPoint +
order), a default uniform knot vector is computed.

27.2.4 Tessellation strategies

Because low-level real-time rendering systems currently can handle only planar

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 27 NURBS Component

nurbs.html[8/1/2020 9:59:29 AM]

triangles, a NURBS surface needs to be broken down (i.e., tessellated) into a set of
triangles approximating the true surface.

Tessellation can be done in different coordinate spaces:

a. Tessellation in object space and the internal computation of the equivalent to an
X3D IndexedFaceSet.

b. Transforming the control vertices to screen space, and tessellation in screen space

There are different methods to determine tessellation points on the surface:

c. fixed tessellation based on a absolute number of subdivisions;
d. adaptive tessellation based on chord length;
e. adaptive tessellation based on the angle between two triangles;
f. view dependent tessellation, fine tessellation near silhouette edges.

This standard does not specify which method is used to tessellate the surface. However,
the implementation shall render the NURBS such that the approximation produces a
rendered image in which the edges of the tessellation can not be perceived.

NOTE: Tessellation in screen space requires the ability to pass already transformed vertices for
rendering. This requires the application to already light the vertices (see 17 Lighting component)
and pass the resulting color and specular RGB values for each vertex of a triangle.

To avoid cracks at the junction of two surfaces, tessellation values of a whole set of
surfaces can be specified in a NurbsSet.

 27.2.5 Trimmed NURBS

The trimming curve specifies a NURBS-curve that limits the NURBS surface in order to
create NURBS surfaces that contain holes or have smooth boundaries. Trimming curves
are curves in the parametric space of the surface.

A trimming region is defined by a set of closed trimming loops in the parameter space
of a surface. When a loop is oriented counter-clockwise, the area within the loop is
retained, and the part outside is discarded. When the loop is oriented clockwise, the
area within the loop is discarded, and the rest is retained. Loops may be nested, but a
nested loop must be oriented oppositely from the loop that contains it. The outermost
loop must be oriented counter-clockwise. Clockwiseness is determined by viewing the
parametric surface from the side defined by the cross-product between the u and v
axes of the parametric space.

A trimming loop consists of a connected sequence of NURBS curves and piecewise linear
curves. The last point of every curve in the sequence shall be the same as the first
point of the next curve, and the last point of the last curve shall be the same as the first
point of the first curve. Self intersecting curves are not allowed.

 27.3 Abstract types

27.3.1 X3DNurbsControlCurveNode

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 27 NURBS Component

nurbs.html[8/1/2020 9:59:29 AM]

X3DNurbsControlCurveNode : X3DNode {
 MFVec2d [in,out] controlPoint [] (-∞,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

The X3DNurbsControlCurveNode abstract node type is the base type for all node types
that provide control curve information in 2D space.

The control points are defined in 2D coordinate space and interpreted according to the
descendent node type as well as the user of this node instance.

27.3.2 X3DNurbsSurfaceGeometryNode
X3DNurbsSurfaceGeometryNode : X3DParametricGeometryNode {
 SFNode [in,out] controlPoint NULL [X3DCoordinateNode]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFNode [in,out] texCoord NULL [X3DTextureCoordinateNode|NurbsTextureCoordinate]
 SFInt32 [in,out] uTessellation 0 (-∞,∞)
 SFInt32 [in,out] vTessellation 0 (-∞,∞)
 MFDouble [in,out] weight [] (0,∞)
 SFBool [] solid TRUE
 SFBool [] uClosed FALSE
 SFInt32 [] uDimension 0 [0,∞)
 MFDouble [] uKnot [] (-∞,∞)
 SFInt32 [] uOrder 3 [2,∞)
 SFBool [] vClosed FALSE
 SFInt32 [] vDimension 0 [0,∞)
 MFDouble [] vKnot [] (-∞,∞)
 SFInt32 [] vOrder 3 [2,∞)
}

The X3DNurbsSurfaceGeometryNode represents the abstract geometry type for all
types of NURBS surfaces.

uDimension and vDimension define the number of control points in the u and v
dimensions.

uOrder and vOrder define the order of the surface in the u and v dimensions.

uKnot and vKnot define the knot values of the surface in the u and v dimensions.

uClosed and vClosed define whether or not the specific dimension is to be evaluated as
a closed surface along the u and v directions, respectively.

controlPoint defines a set of control points of dimension uDimension × vDimension. This
set of points defines a mesh where the points do not have a uniform spacing.
uDimension points define a polyline in u-direction followed by further u-polylines with
the v-parameter in ascending order. The number of control points shall be equal or
greater than the order. A closed surface shall be specified by repeating the limiting
control points and setting the closed field to TRUE. If the closed field is set to FALSE, the
implementation shall not be required to smoothly blend the edges of the surface in that
dimension into a continuous surface. A closed surface in either the u-dimension or the
v-dimension shall be specified by repeating the limiting control points for that
dimension and setting the respective uClosed or vClosed field to TRUE. If the last control
point is not identical with the first control point, the field is ignored. If either the
uClosed or the vClosed field is set to FALSE, the implementation shall not be required to
smoothly blend the edges of the surface in that dimension into a continuous surface.

The control vertex corresponding to the control point P[i,j] on the control grid is:

 P[i,j].x = controlPoint[i + (j × uDimension)].x
 P[i,j].y = controlPoint[i + (j × uDimension)].y
 P[i,j].z = controlPoint[i + (j × uDimension)].z
 P[i,j].w = weight[i + (j × uDimension)]

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 27 NURBS Component

nurbs.html[8/1/2020 9:59:29 AM]

 where 0 ≤ i < uDimension and
 0 ≤ j < vDimension.

For an implementation subdividing the surface in a equal number of subdivision steps,
tessellation values could might be interpreted in the following way:

a. if a tessellation value is greater than 0, the number of tessellation points is:

 tessellation+1;

b. if a tessellation value is smaller than 0, the number of tessellation points is:

 −tessellation × (u/v)dimension)+1;

c. if a tessellation value is 0, the number of tessellation points is:

 (2 × (u/v)dimension)+1.

For implementations doing tessellations based on chord length, tessellation values less
than zero are interpreted as the maximum chord length deviation in pixels.
Implementations doing fully automatic tessellation may ignore the tessellation hint
parameters.

texCoord provides additional information on how to generate texture coordinates. By
default, texture coordinates in the unit square (or cube for 3D coordinates) are
generated automatically from the parametric subdivision. A NurbsTextureCoordinate
node or simply a TextureCoordinate node can then be used to compute a texture
coordinate given a u/v parameter of the X3DParametricGeometryNode. The
NurbsTextureCoordinate also supports non-animated surfaces to specify a "chord
length"-based texture coordinate parametrization.

The solid field determines whether the surface is visible when viewed from the inside.
11.2.3 Common geometry fields provides a complete description of the solid field. When
solid=TRUE is used, the surface shall be visible only from the side that appears ccw
(counter-clockwise) on the screen, assuming a surface's quads would be rendered in
this order:

point(u , v);
point(u-1, v);
point(u-1, v-1);
point(u , v-1);

where u is the parameter generating successive points along the u dimension, and v is
the parameter generating successive points along the v dimension.

 27.3.3 X3DParametricGeometryNode
X3DParametricGeometryNode : X3DGeometryNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

The X3DParametricGeometryNode abstract node type is the base type for all geometry
node types that are created parametrically and use control points to describe the final
shape of the surface. How the control points are described and interpreted shall be a
property of the individual node type.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 27 NURBS Component

nurbs.html[8/1/2020 9:59:29 AM]

 27.4 Node reference

 27.4.1 Contour2D
Contour2D : X3DNode {
 MFNode [in] addChildren [NurbsCurve2D|ContourPolyline2D]
 MFNode [in] removeChildren [NurbsCurve2D|ContourPolyline2D]
 MFNode [in,out] children [] [NurbsCurve2D|ContourPolyline2D]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

The Contour2D node groups a set of curve segments to a composite contour. The
children shall form a closed loop with the first point of the first child repeated as the last
point of the last child, and the last point of a segment repeated as the first point of the
consecutive one. The segments shall be defined by concrete nodes that implement the
X3DNurbsControlCurveNode abstract type nodes, and shall be enumerated in the child
field in consecutive order according to the topology of the contour.

The 2D coordinates used by the node shall be interpreted to lie in the (u, v) coordinate
space defined by the NURBS surface.

 27.4.2 ContourPolyline2D
ContourPolyline2D : X3DNurbsControlCurveNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFVec2d [in,out] controlPoint [] (-∞, ∞)
}

The ContourPolyline2D node defines a piecewise linear curve segment as a part of a
trimming contour in the u,v domain of a surface.

The controlPoint field specifies the end points of each segment of the piecewise linear
curve.

ContourPolyline2D nodes are used as children of the Contour2D group.

27.4.3 CoordinateDouble
CoordinateDouble : X3DCoordinateNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFVec3d [in,out] point [] (-∞,∞)
}

CoordinateDouble is a node type derived from X3DCoordinateNode that allows the
definition of 3D coordinates in double precision floating point values.

27.4.4 NurbsCurve
NurbsCurve : X3DParametricGeometryNode {
 SFNode [in,out] controlPoint NULL [X3DCoordinateNode]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFInt32 [in,out] tessellation 0 (-∞,∞)
 MFDouble [in,out] weight [] (0,∞)
 SFBool [] closed FALSE
 MFDouble [] knot [] (-∞,∞)
 SFInt32 [] order 3 [2,∞)
}

The NurbsCurve node is a geometry node defining a parametric curve in 3D space (see
Figure 27.1)

The tessellation field gives a hint to the curve tessellator by setting an absolute number

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 27 NURBS Component

nurbs.html[8/1/2020 9:59:29 AM]

of subdivision steps. These values shall be greater than or equal to the Order field. A
value of 0 indicates that the browser choose a suitable tessellation. Interpretation of
values below 0 is implementation dependent.

For an implementation subdividing the curvesurface into an equal number of subdivision
steps, tessellation values are interpreted as follows:

a. if a tessellation value is greater than 0, the number of tessellation points is:

 tessellation+1;

b. if a tessellation value is smaller than 0, the number of tessellation points is:

 −tessellation × (number of control points)+1;

c. if a tessellation value is 0, the number of tessellation points is:

 (2 × (number of control points)+1.

For implementations doing tessellations based on chord length, tessellation values less
than zero are interpreted as the maximum chord length deviation in pixels.
Implementations doing fully automatic tessellation may ignore the tessellation hint
parameters.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 27 NURBS Component

nurbs.html[8/1/2020 9:59:29 AM]

Figure 27.1 — NurbsCurve

27.4.5 NurbsCurve2D
NurbsCurve2D : X3DNurbsControlCurveNode {
 MFVec2d [in,out] controlPoint [] (-∞,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFInt32 [in,out] tessellation 0 (-∞,∞)
 MFDouble [in,out] weight [] (0,∞)
 SFBool [] closed FALSE
 MFDouble [] knot [] (-∞,∞)
 SFInt32 [] order 3 [2,∞)
}

The NurbsCurve2D node defines a trimming segment that is part of a trimming contour
in the u,v domain of the surface.

NurbsCurve2D nodes are used as children of the Contour2D group.

27.4.6 NurbsOrientationInterpolator
NurbsOrientationInterpolator : X3DChildNode {
 SFFloat [in] set_fraction (-∞,∞)
 SFNode [in,out] controlPoint NULL [X3DCoordinateNode]
 MFDouble [in,out] knot [] (-∞,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 27 NURBS Component

nurbs.html[8/1/2020 9:59:29 AM]

 SFInt32 [in,out] order 3 (2,∞)
 MFDouble [in,out] weight [] (-∞,∞)
 SFRotation [out] value_changed
}

NurbsOrientationInterpolator specifies a 3D NURBS curve using the same fields as
described for the NurbsCurve node.

The field set_fraction has the same meaning as in the NurbsPositionInterpolator.

Sending a set_fraction input computes a 3D position on the curve, from which a tangent
to the curve at that position is calculated. The tangent direction shall be oriented to
point along the curve from the first knot value towards the last value. This orientation
value shall be then sent by value_changed. Given the same definition for control points,
knots, order and weights, and the same value for set_fraction the orientation
interpolator shall generate the orientation of the tangent of the curve at the same
position as the NurbsPositionInterpolator.

27.4.7 NurbsPatchSurface
NurbsPatchSurface : X3DNurbsSurfaceGeometryNode {
 SFNode [in,out] controlPoint NULL [X3DCoordinateNode]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFNode [in,out] texCoord NULL [X3DTextureCoordinateNode|NurbsTextureCoordinate]
 SFInt32 [in,out] uTessellation 0 (-∞,∞)
 SFInt32 [in,out] vTessellation 0 (-∞,∞)
 MFDouble [in,out] weight [] (0,∞)
 SFBool [] solid TRUE
 SFBool [] uClosed FALSE
 SFInt32 [] uDimension 0 [0,∞)
 MFDouble [] uKnot [] (-∞,∞)
 SFInt32 [] uOrder 3 [2,∞)
 SFBool [] vClosed FALSE
 SFInt32 [] vDimension 0 [0,∞)
 MFDouble [] vKnot [] (-∞,∞)
 SFInt32 [] vOrder 3 [2,∞)
}

The NurbsPatchSurface node is a contiguous NURBS surface patch. Figure 27.2 shows
an example of a NurbsPatchSurface node:

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 27 NURBS Component

nurbs.html[8/1/2020 9:59:29 AM]

Figure 27.2 — NurbsPatchSurface

27.4.8 NurbsPositionInterpolator
NurbsPositionInterpolator : X3DChildNode {
 SFFloat [in] set_fraction (-∞,∞)
 SFNode [in,out] controlPoint NULL [X3DCoordinateNode]
 MFDouble [in,out] knot [] (-∞,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFInt32 [in,out] order 3 (2,∞)
 MFDouble [in,out] weight [] (-∞,∞)
 SFVec3f [out] value_changed
}

NurbsPositionInterpolator describes a 3D NURBS curve as specified in 27.4.4
NurbsCurve.

The fields set_fraction and value_changed have the same meaning as specified in
19.4.6 PositionInterpolator.

Sending a set_fraction input computes a 3D position on the curve, which is sent by
value_changed. The set_fraction value is used as the input value for the tessellation
function. Thereby, the knot corresponds to the key field of a conventional interpolator
node; i.e., if the set_fraction value is within [0,1] and the knot vector within [0,2], only
half of the curve is computed.

27.4.9 NurbsSet
NurbsSet : X3DChildNode, X3DBoundedObject {
 MFNode [in] addGeometry [X3DNurbsSurfaceGeometryNode]

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 27 NURBS Component

nurbs.html[8/1/2020 9:59:29 AM]

 MFNode [in] removeGeometry [X3DNurbsSurfaceGeometryNode]
 MFNode [in,out] geometry [] [X3DNurbsSurfaceGeometryNode]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFFloat [in,out] tessellationScale 1.0 (0,∞)
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or −1 −1 −1
}

The NurbsSet node groups a set of Nurbs surface nodes to a common group for
rendering purposes only. This informs the browser that the set of Nurbs surfaces shall
be treated as a unit during tessellation to enforce tessellation continuity along borders.
The tessellationScale parameter is scaling the tessellation values in lower level Nurbs
surface nodes. A set of Nurbs surfaces that use a matching set of controlPoint along the
borders shall result in a common tessellation stepping.

The geometry represented in the children of this node shall not be directly rendered. It
is an informational node only. Surfaces not represented elsewhere in the transformation
hierarchy shall not be rendered.

The bounds information is provided for optimization purposes only. A browser may
choose to use this information about when to apply trimming or smooth tessellation
between patches based on the bounds information (EXAMPLE only smooth when the viewer
is within the bounds).

 27.4.10 NurbsSurfaceInterpolator
NurbsSurfaceInterpolator : X3DChildNode {
 SFVec2f [in] set_fraction (-∞,∞)
 SFNode [in,out] controlPoint NULL [X3DCoordinateNode]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFDouble [in,out] weight [] (-∞,∞)
 SFVec3f [out] position_changed
 SFVec3f [out] normal_changed
 SFInt32 [] uDimension 0 [0,∞)
 MFDouble [] uKnot [] (-∞,∞)
 SFInt32 [] uOrder 3 [2,∞)
 SFInt32 [] vDimension 0 [0,∞)
 MFDouble [] vKnot [] (-∞,∞)
 SFInt32 [] vOrder 3 [2,∞)
}

NurbsSurfaceInterpolator describes a 3D NURBS surface as specified in 27.4.7
NurbsPatchSurface.

Sending a set_fraction input computes a 3D position and normal on the surface for the
given u and v coordinates. The computed position on the surface shall be sent by
position_changed, and the computed normal shall be sent by normal_changed.

Normals generated by normal_changed events shall point from the ccw (counter-
clockwise) side of the surface, assuming the order of surface quads is as specified for
X3DNurbsSurfaceGeometryNode.

27.4.11 NurbsSweptSurface
NurbsSweptSurface : X3DParametricGeometryNode {
 SFNode [in,out] crossSectionCurve NULL [X3DNurbsControlCurveNode]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFNode [in,out] trajectoryCurve NULL [NurbsCurve]
 SFBool [] ccw TRUE
 SFBool [] solid TRUE
}

NurbsSweptSurface describes a generalized surface that defines a path in 2D space and
constant cross section that may be 2D or 3D of the path as illustrated in Figure 27.3.
Conceptually it is the NURBS equivalent of the Extrusion node (see 13.3.5 Extrusion)

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 27 NURBS Component

nurbs.html[8/1/2020 9:59:29 AM]

but permits the use of non-closed cross sections.

Figure 27.3 — NurbsSweptSurface

The solid and ccw fields are defined as specified in 11.2.3 Common geometry fields. To
have the polygons' normals facing away from the axis, the trajectory curve should be
oriented so that it is moving counterclockwise when looking down the −Y axis, thus
defining a concept of "inside" and "outside".

With solid TRUE and ccw TRUE, the cylinder is visible from the outside. Changing ccw to
FALSE makes it visible from the inside.

27.4.12 NurbsSwungSurface
NurbsSwungSurface : X3DParametricGeometryNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFNode [in,out] profileCurve NULL [X3DNurbsControlCurveNode]
 SFNode [in,out] trajectoryCurve NULL [X3DNurbsControlCurveNode]
 SFBool [] ccw TRUE
 SFBool [] solid TRUE
}

NurbsSwungSurface describes a generalized surface that defines a path and constant
cross section of the path as illustrated in Figure 27.4.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 27 NURBS Component

nurbs.html[8/1/2020 9:59:29 AM]

Figure 27.4 — NurbsSwungSurface

The profile curve is a 2D curve in the yz-plane that describes the cross-sectional shape
of the object.

The trajectory curve is a 2d curve in the xz-plane that describes the path over which to
trace the cross-section.

The solid and ccw fields are defined in 11.2.3 Common geometry fields. To have the
normals of the polygons facing away from the axis, the trajectory curve should be
oriented so that it is moving counterclockwise when looking down the −Y axis, thus
defining a concept of "inside" and "outside".

With solid TRUE and ccw TRUE, the cylinder is visible from the outside. Changing ccw to
FALSE specifies that the cylinder is visible from the inside.

27.4.13 NurbsTextureCoordinate
NurbsTextureCoordinate : X3DNode {
 MFVec2f [in,out] controlPoint [] (-∞,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 27 NURBS Component

nurbs.html[8/1/2020 9:59:29 AM]

 MFFloat [in,out] weight [] (0,∞)
 SFInt32 [] uDimension 0 [0,∞)
 MFDouble [] uKnot [] (-∞,∞)
 SFInt32 [] uOrder 3 [2,∞)
 SFInt32 [] vDimension 0 [0,∞)
 MFDouble [] vKnot [] (-∞,∞)
 SFInt32 [] vOrder 3 [2,∞)
}

The NurbsTextureCoordinate node is a NURBS surface existing in the parametric domain
of its surface host specifying the mapping of the texture onto the surface.

The parameters are as specified in X3DNurbsSurfaceGeometryNode with the exception
that the control points are specified in (u, v) coordinates.

The tessellation process generates 2D texture coordinates. If a NurbsTextureCoordinate
is undefined, texture coordinates are computed by the client on the basis of parametric
step size. Conventional vertex parameters do not apply on NURBS surfaces because
triangles are only available after polygonalization. However, the conventional texture
transform may be used.

NurbsTextureCoordinate nodes are accessed through the texCoord field of a node
derived from X3DNurbsSurfaceGeometryNode. A NurbsTextureCoordinate node
separately encountered is ignored.

27.4.14 NurbsTrimmedSurface
NurbsTrimmedSurface : X3DNurbsSurfaceGeometryNode {
 MFNode [in] addTrimmingContour [Contour2D]
 MFNode [in] removeTrimmingContour [Contour2D]
 SFNode [in,out] controlPoint NULL [X3DCoordinateNode]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFNode [in,out] texCoord NULL [X3DTextureCoordinateNode|NurbsTextureCoordinate]
 MFNode [in,out] trimmingContour [] [Contour2D]
 SFInt32 [in,out] uTessellation 0 (-∞,∞)
 SFInt32 [in,out] vTessellation 0 (-∞,∞)
 MFDouble [in,out] weight [] (0,∞)
 SFBool [] solid TRUE
 SFBool [] uClosed FALSE
 SFInt32 [] uDimension 0 [0,∞)
 MFDouble [] uKnot [] (-∞,∞)
 SFInt32 [] uOrder 3 [2,∞)
 SFBool [] vClosed FALSE
 SFInt32 [] vDimension 0 [0,∞)
 MFDouble [] vKnot [] (-∞,∞)
 SFInt32 [] vOrder 3 [2,∞)
}

The NurbsTrimmedSurface node defines a NURBS surface (see 27.4.7
NurbsPatchSurface) that is trimmed by a set of trimming loops. The outermost
trimming loop shall be defined in a counterclockwise direction. An example of a
NurbsTrimmedSurface node is shown in Figure 27.5.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 27 NURBS Component

nurbs.html[8/1/2020 9:59:29 AM]

Figure 27.5 — NurbsTrimmedSurface

The trimmingContour field, if specified, shall contain a set of Contour2D (see 27.4.1
Contour2D) nodes. Trimming loops shall be processed as described for the Contour2D
node. If no trimming contours are defined, the NurbsTrimmedSurface node shall have
the same semantics as the NurbsPatchSurface node.

 27.5 Support levels
The Non-uniform Rational B-spline (NURBS) component provides four levels of support
as specified in Table 27.2. Level 1 provides basic NURBS support. Level 2 adds the
ability to ensure controlled tessellation along the boundaries between two NURBS
surfaces. Level 3 adds specialized NURBS nodes. Level 4 adds trimmed NURBS
surfaces.

 Table 27.2 — NURBS component support levels

Level Prerequisites Nodes/Features Support

Core 1
Grouping 1

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 27 NURBS Component

nurbs.html[8/1/2020 9:59:29 AM]

1 Shape 1
Interpolator 1
Texturing 1

X3DNurbsControlCurveNode
(abstract) n/a

 X3DNurbsSurfaceGeometryNode
(abstract) n/a

 X3DParametricGeometryNode
(abstract) n/a

CoordinateDouble All fields fully
supported.

NurbsCurve All fields fully
supported.

NurbsOrientationInterpolator All fields fully
supported.

NurbsPatchSurface All fields fully
supported.

NurbsPositionInterpolator All fields fully
supported.

NurbsSurfaceInterpolator All fields fully
supported.

 NurbsTextureCoordinate All fields fully
supported.

2

Core 1
Grouping 1
Shape 1
Interpolator 1
Texturing 1

All Level 1 NURBS nodes As supported in
Level 1.

 NurbsSet All fields fully
supported.

3

Core 1
Grouping 1
Shape 1
Interpolator 1
Texturing 1

All Level 2 NURBS nodes As supported in
Level 2.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 27 NURBS Component

nurbs.html[8/1/2020 9:59:29 AM]

NurbsCurve2D All fields fully
supported.

ContourPolyline2D All fields fully
supported.

 NurbsSweptSurface All fields fully
supported.

 NurbsSwungSurface All fields fully
supported.

4

Core 1
Grouping 1
Shape 1
Interpolator 1
Texturing 1

All Level 3 NURBS nodes As supported in
Level 3.

Contour2D All fields fully
supported.

NurbsTrimmedSurface All fields fully
supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex F Full profile

fullProfile.html[8/1/2020 9:59:32 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

Annex F

(normative)

Full profile

 F.1 General
This annex defines the X3D components which comprise the Full profile. This includes
not only the nodes which shall be supported but also which fields in the supported
nodes may be ignored.

The Full profile of X3D is comprised of all features of the standard.

 F.2 Topics
Table F.1 provides links to the major topics in this annex.

Table F.1 — Topics

F.1 General
F.2 Topics
F.3 Component support
F.4 Conformance criteria
F.5 Node set
F.6 Other limitations

Table F.1 — Topics
Table F.2 — Components and levels
Table F.3 — Nodes for conforming to the Full profile
Table F.4 — Other limitations

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex F Full profile

fullProfile.html[8/1/2020 9:59:32 AM]

 F.3 Component support
Table F.2 lists the components and their levels which shall be supported in the Full
profile. Tables F.2 and F.3 describe limitations on required support for nodes and fields
contained within these components.

Table F.2 — Components and levels

Component Level Reference

Core 2 7.5 Support levels

Time 2 8.5 Support levels

Networking 3 9.5 Support levels

Grouping 3 10.5 Support levels

Rendering 5 11.5 Support levels

Shape 4 12.5 Support levels

Geometry3D 4 13.4 Support levels

Geometry2D 2 14.4 Support levels

Text 1 15.5 Support levels

Sound 1 16.5 Support levels

Lighting 3 17.5 Support levels

Texturing 3 18.5 Support levels

Interpolation 5 19.5 Support levels

Pointing device sensor 1 20.5 Support levels

Key device sensor 2 21.5 Support levels

Environmental sensor 3 22.5 Support levels

Navigation 3 23.4 Support levels

Environmental effects 4 24.5 Support levels

Geospatial 2 25.4 Support levels

Humanoid animation 1 26.4 Support levels

Non-uniform Rational B-Spline (NURBS) 4 27.5 Support levels

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex F Full profile

fullProfile.html[8/1/2020 9:59:32 AM]

Distributed interactive simulation 2 28.4 Support levels

Scripting 1 29.5 Support levels

Event utilities 1 30.5 Support levels

Programmable shaders 1 31.5 Support levels

CAD geometry 2 32.5 Support levels

Texturing3D 2 33.5 Support levels

Cube map environmental texturing 3 34.5 Support levels

Layering component 1 35.5 Support levels

Layout component 2 36.5 Support levels

Rigid body physics component 2 37.5 Support levels

Picking sensor component 3 38.5 Support levels

Followers component 1 39.5 Support levels

Particle systems component 3 40.5 Support levels

Volume rendering component 4 41.5 Support levels

 F.4 Conformance criteria
Conformance to this profile shall include conformance criteria defined by the
specifications for those components and levels listed in Table F.2.

In Table F.3 and Table F.4, the first column defines the item for which conformance is
being defined. In some cases, general limits are defined but are later overridden in
specific cases by more restrictive limits. The second column defines the requirements
for a X3D file conforming to the Full profile; if a X3D file contains any items that exceed
these limits, it may not be possible for a X3D browser conforming to the Full profile to
successfully parse that X3D file. The third column defines the minimum complexity for a
X3D scene that a X3D browser conforming to the Full profile shall be able to present to
the user. Fields flagged as "not supported" may be supported by browsers which
conform to the Full profile. The word "ignore" in the minimum browser support column
refers only to the display of the item; in particular, set_ events to ignored inputOutput
fields shall still generate corresponding _changed events.

 F.5 Node set
Table F.3 lists the nodes which shall be supported in the Full profile and specifies any
fields in these nodes for which this profile requires less than full support.

Table F.3 — Nodes for conforming to the Full profile

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex F Full profile

fullProfile.html[8/1/2020 9:59:32 AM]

Item X3D File
Limit

Minimum Browser
Support

Anchor No
restrictions. Full support

Appearance No
restrictions. Full support.

Arc2D No
restrictions. Full support.

ArcClose2D No
restrictions. Full support.

AudioClip
30 second
uncompressed
PCM WAV.

30 second uncompressed
PCM WAV.

Background No
restrictions. Full support.

BallJoint No
restrictions. Full support.

Billboard Restrictions as
for all groups.

Full support except as for
all groups.

BlendedVolumeStyle No
restrictions. Full support.

BooleanFilter No
restrictions. Full support.

BooleanSequencer No
restrictions. Full support.

BooleanToggle No
restrictions. Full support.

BooleanTrigger No
restrictions. Full support.

BoundaryEnhancementVolumeStyle No
restrictions. Full support.

BoundedPhysicsModel No
restrictions. Full support.

Box No
restrictions. Full support.

CADAssembly No Full support.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex F Full profile

fullProfile.html[8/1/2020 9:59:32 AM]

restrictions.

CADFace No
restrictions. Full support.

CADLayer No
restrictions. Full support.

CADPart No
restrictions. Full support.

CartoonVolumeStyle No
restrictions. Full support.

Circle2D No
restrictions. Full support.

ClipPlane At least six
planes. Full support.

CollidableOffset No
restrictions. Full support.

CollidableShape No
restrictions. Full support.

Collision Restrictions as
for all groups.

Full support except as for
all groups. Any
navigation behaviour
acceptable when collision
occurs.

CollisionCollection No
restrictions. Full support.

CollisionSensor No
restrictions. Full support.

CollisionSpace No
restrictions. Full support.

Color 15,000
colours. 15,000 colours.

ColorChaser No
restrictions. Full support.

ColorDamper No
restrictions. Full support.

ColorInterpolator
Restrictions as
for all
interpolators.

Full support except as for
all interpolators.

15,000

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex F Full profile

fullProfile.html[8/1/2020 9:59:32 AM]

ColorRGBA colours. 15,000 colours.

ComposedCubeMapTexture No
restrictions. Full support.

ComposedShader No
restrictions. Full support.

ComposedTexture3D No
restrictions. Full support.

ComposedVolumeStyle No
restrictions. Full support.

Cone No
restrictions. Full support.

ConeEmitter No
restrictions. Full support.

Contact No
restrictions. Full support.

Contour2D No
restrictions. Full support.

ContourPolyline2D 1500 control
points. Order 30.

Coordinate 15,000 points. 15,000 points.

CoordinateChaser No
restrictions. Full support.

CoordinateDamper No
restrictions. Full support.

CoordinateDouble 15,000 points. 15,000 points.

CoordinateInterpolator

15,000
coordinates
per keyValue.
Restrictions as
for all
interpolators.

15,000 coordinates per
keyValue. Support as for
all interpolators.

CoordinateInterpolator2D

15,000
coordinates
per keyValue.
Restrictions as
for all
interpolators.

15,000 coordinates per
keyValue. Support as for
all interpolators.

Cylinder No Full support.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex F Full profile

fullProfile.html[8/1/2020 9:59:32 AM]

restrictions.

CylinderSensor No
restrictions. Full support.

DirectionalLight No
restrictions. Full support.

DISEntityManager No
restrictions. Full support.

DISEntityTypeMapping No
restrictions. Full support.

Disk2D No
restrictions. Full support.

DoubleAxisHingeJoint No
restrictions. Full support.

EaseInEaseOut No
restrictions. Full support.

EdgeEnhancementVolumeStyle No
restrictions. Full support.

ElevationGrid 16,000
heights. 16,000 heights.

EspduTransform No
restrictions. Full support.

ExplosionEmitter No
restrictions. Full support.

Extrusion

(#crossSection
points)×
(#spine
points) ≤
2,500.

(#crossSection points)×
(#spine points) ≤ 2,500.

FillProperties No
restrictions. Full support.

FloatVertexAttribute No
restrictions. Full support.

Fog No
restrictions. Full support.

FogCoordinate 15,000
coordinates. 15,000 coordinates.

If the values of the text
aspects character set,

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex F Full profile

fullProfile.html[8/1/2020 9:59:32 AM]

FontStyle No
restrictions.

family, style cannot be
simultaneously
supported, the order of
precedence shall be: 1)
character set 2) family 3)
style. Browser must
display all characters in
ISO 8859-1 character set
(see 2.[I8859-1]).

ForcePhysicsModel No
restrictions. Full support.

GeneratedCubeMapTexture No
restrictions. Full support.

GeoCoordinate 15,000 points. 15,000 points.

GeoElevationGrid 16,000
heights. 16,000 heights.

GeoLocation Restrictions as
for all groups.

Full support except as for
all groups.

GeoLOD Restrictions as
for all groups. Full support.

GeoMetadata No
restrictions. Full support.

GeoOrigin No
restrictions. Full support.

GeoPositionInterpolator 1000 key-
value pairs. 1000 key-value pairs.

GeoProximitySensor No
restrictions. Full support.

GeoTouchSensor No
restrictions. Full support.

GeoTransform Restrictions as
for all groups.

Full support except as for
all groups.

GeoViewpoint No
restrictions. Full support.

Group Restrictions as
for all groups.

Full support except as for
all groups.

HAnimDisplacer No
restrictions. Full support.

No

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex F Full profile

fullProfile.html[8/1/2020 9:59:32 AM]

HAnimHumanoid restrictions. Full support.

HAnimJoint No
restrictions. Full support.

HAnimSegment No
restrictions. Full support.

HAnimSite No
restrictions. Full support.

ImageCubeMapTexture No
restrictions. Full support.

ImageTexture

JPEG (2.
[JPEG]) and
PNG (2.
[I15948])
format.
Restrictions as
for
PixelTexture.

JPEG (2.[JPEG]) and PNG
(2.[I15948]) format.
Support as for
PixelTexture.

ImageTexture3D No
restrictions. Full support.

IndexedFaceSet

10 vertices per
face. 5000
faces. Less
than 15,000
indices.

10 vertices per face.
5000 faces. 15,000
indices in any index field.

IndexedLineSet

15,000 total
vertices.
15,000 indices
in any index
field.

15,000 total vertices.
15,000 indices in any
index field.

IndexedQuadSet No
restrictions. Full support.

IndexedTriangleFanSet

15,000 total
vertices.
15,000 indices
in any index
field.

15,000 total vertices.
15,000 indices in any
index field.

IndexedTriangleSet

15,000 total
vertices.
15,000 indices
in any index
field.

15,000 total vertices.
15,000 indices in any
index field.

15,000 total
vertices. 15,000 total vertices.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex F Full profile

fullProfile.html[8/1/2020 9:59:32 AM]

IndexedTriangleStripSet 15,000 indices
in any index
field.

15,000 indices in any
index field.

Inline No
restrictions.

Full support except as for
all groups.

IntegerSequencer No
restrictions. Full support.

IntegerTrigger No
restrictions. Full support.

IsoSurfaceVolumeData

Minimum
dimensions:
512 width, 512
height, 512
depth.

Full support.

KeySensor No
restrictions. Full support.

Layer No
restrictions. Full support.

LayerSet At least six
layers. Full support.

Layout No
restrictions. Full support.

LayoutGroup No
restrictions. Full support.

LayoutLayer No
restrictions. Full support.

LinePickSensor No
restrictions. Full support.

LineProperties No
restrictions. Full support.

LineSet 15,000 total
vertices. 15,000 total vertices.

LoadSensor No
restrictions. Full support.

LocalFog No
restrictions. Full support.

LOD Restrictions as
for all groups.

At least first 4
level/range combinations
interpreted, and support

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex F Full profile

fullProfile.html[8/1/2020 9:59:32 AM]

as for all groups.

Material No
restrictions. Full support

Matrix3VertexAttribute No
restrictions. Full support.

Matrix4VertexAttribute No
restrictions. Full support.

MetadataBoolean No
restrictions. Full support.

MetadataDouble No
restrictions. Full support.

MetadataFloat No
restrictions. Full support.

MetadataInteger No
restrictions. Full support.

MetadataSet No
restrictions. Full support.

MetadataString No
restrictions. Full support.

MotorJoint No
restrictions. Full support.

MovieTexture

MPEG1-
Systems and
MPEG1-Video
formats (see
2.[I14496-1]).

MPEG1-Systems and
MPEG1-Video formats
(see 2.[I14496-1]).
Display one active movie
texture.

MultiTexture No
restrictions.

At least two textures
displayed per node with
any number specified.

Full support.

MultiTextureCoordinate 15,000
coordinates. 15,000 coordinates.

MultiTextureTransform Restrictions as
for all groups.

addChildren optionally
supported.
removeChildren
optionally supported.
Otherwise, full support
except as for all groups.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex F Full profile

fullProfile.html[8/1/2020 9:59:32 AM]

NavigationInfo No
restrictions. Full support.

Normal 15,000
normals 15,000 normals.

NormalInterpolator

15,000
normals per
keyValue.
Restrictions as
for all
interpolators.

15,000 normals per
keyValue. Support as for
all interpolators.

NurbsCurve 1500 control
points. Order 30.

NurbsCurve2D 1500 control
points Order 30.

NurbsOrientationInterpolator
Restrictions as
for all
interpolators.

Full support except as for
all interpolators.

NurbsPatchSurface 1500 control
points. Order 30.

NurbsPositionInterpolator
Restrictions as
for all
interpolators.

Full support except as for
all interpolators.

NurbsSet No
restrictions. Full support.

NurbsSurfaceInterpolator
Restrictions as
for all
interpolators.

Full support except as for
all interpolators.

NurbsSweptSurface 1500 control
points. Order 30.

NurbsSwungSurface 1500 control
points. Order 30.

NurbsTextureCoordinate 1500 control
points. Order 30.

NurbsTrimmedSurface
1500 control
points. 10
contours.

Order 30. 10 contours.

OrientationChaser No
restrictions. Full support.

OrientationDamper No
restrictions. Full support.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex F Full profile

fullProfile.html[8/1/2020 9:59:32 AM]

OrientationInterpolator
Restrictions as
for all
interpolators.

Full support except as for
all interpolators.

OrthoViewpoint No
restrictions. Full support.

PackagedShader No
restrictions. Full support.

ParticleSystem No
restrictions. Full support.

PickableGroup No
restrictions. Full support.

PixelTexture 512 width. 512
height.

512 width. 512 height.
Display fully transparent
and fully opaque pixels.

PixelTexture3D No
restrictions. Full support.

PlaneSensor No
restrictions. Full support.

PointEmitter No
restrictions. Full support.

PointLight No
restrictions. Full support.

PointPickSensor No
restrictions. Full support.

PointSet 5000 points. 5000 points.

Polyline2D 15,000
vertices. 15,000 vertices.

PolylineEmitter No
restrictions. Full support.

Polypoint2D 5000 points. 5000 points.

PositionChaser No
restrictions. Full support.

PositionChaser2D No
restrictions. Full support.

PositionDamper No
restrictions. Full support.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex F Full profile

fullProfile.html[8/1/2020 9:59:32 AM]

PositionDamper2D No
restrictions. Full support.

PositionInterpolator
Restrictions as
for all
interpolators.

Full support except as for
all interpolators.

PositionInterpolator2D
Restrictions as
for all
interpolators.

Full support except as for
all interpolators.

PrimitivePickSensor No
restrictions. Full support.

ProgramShader No
restrictions. Full support.

ProjectionVolumeStyle No
restrictions. Full support.

ProximitySensor No
restrictions. Full support.

QuadSet No
restrictions. Full support.

ReceiverPDU No
restrictions. Full support.

Rectangle2D No
restrictions. Full support.

RigidBody No
restrictions. Full support.

RigidBodyCollection No
restrictions. Full support.

ScalarChaser No
restrictions. Full support.

ScalarDamper No
restrictions. Full support.

ScalarInterpolator
Restrictions as
for all
interpolators.

Full support except as for
all interpolators.

ScreenFontStyle No
restrictions. Full support.

ScreenGroup No
restrictions. Full support.

25 fields of each access

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex F Full profile

fullProfile.html[8/1/2020 9:59:32 AM]

Script
25 fields of
each access
type.

type.
ECMAScript and Java
required.

SegmentedVolumeData

Minimum
dimensions:
512 width, 512
height, 512
depth.

Full support.

ShadedVolumeStyle No
restrictions. Full support.

ShaderPart No
restrictions. Full support.

ShaderProgram No
restrictions. Full support.

Shape No
restrictions. Full support.

SignalPDU No
restrictions. Full support

SilhouetteEnhancementVolumeStyle No
restrictions. Full support.

SingleAxisHingeJoint No
restrictions. Full support.

SliderJoint No
restrictions. Full support.

Sound No
restrictions. Full support

Sphere No
restrictions. Full support.

SphereSensor No
restrictions. Full support.

SplinePositionInterpolator No
restrictions. Full support.

SplinePositionInterpolator2D No
restrictions. Full support.

SplineScalarInterpolator No
restrictions. Full support.

SpotLight No
restrictions. Full support.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex F Full profile

fullProfile.html[8/1/2020 9:59:32 AM]

SquadOrientationInterpolator No
restrictions. Full support.

StaticGroup No
restrictions. Full support.

StringSensor
100 characters
per string. 100
strings.

Full support. 100
characters per string.
100 strings.

SurfaceEmitter No
restrictions. Full support.

Switch Restrictions as
for all groups.

Full support except as for
all groups.

TexCoordChaser2D No
restrictions. Full support.

TexCoordDamper2D No
restrictions. Full support.

Text
100 characters
per string. 100
strings.

100 characters per
string. 100 strings.

TextureBackground No
restrictions.

All fields fully supported.
All texture node types
supported in texture
fields.

TextureCoordinate 15,000
coordinates. 15,000 coordinates.

TextureCoordinate3D 15,000
coordinates. 15,000 coordinates.

TextureCoordinate4D 15,000
coordinates. 15,000 coordinates.

TextureCoordinateGenerator No
restrictions. Full support.

TextureProperties No
restrictions. Full support.

TextureTransform No
restrictions. Full support.

TextureTransform3D No
restrictions. Full support.

TextureTransformMatrix3D No
restrictions. Full support.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex F Full profile

fullProfile.html[8/1/2020 9:59:32 AM]

TimeSensor No
restrictions. Full support.

TimeTrigger No
restrictions. Full support.

TouchSensor No
restrictions. Full support.

Transform Restrictions as
for all groups.

Full support except as for
all groups.

TransformSensor No
restrictions. Full support.

TransmitterPDU No
restrictions. Full support.

TriangleFanSet 15,000
coordinates. Full support.

TriangleSet 15,000
coordinates. Full support.

TriangleSet2D 15,000
coordinates. Full support.

TriangleStripSet 15,000
coordinates. Full support.

TwoSidedMaterial No
restrictions. Full support.

UniversalJoint No
restrictions. Full support.

Viewpoint No
restrictions. Full support

ViewpointGroup No
restrictions. Full support.

Viewport No
restrictions. Full support.

VisibilitySensor No
restrictions. Always visible.

VolumeData

Minimum
dimensions:
512 width, 512
height, 512
depth.

Full support.

No

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex F Full profile

fullProfile.html[8/1/2020 9:59:32 AM]

VolumeEmitter restrictions. Full support.

VolumePickSensor No
restrictions. Full support.

WindPhysicsModel No
restrictions. Full support.

WorldInfo No
restrictions. Full support.

 F.6 Other limitations
Table F.4 specifies other aspects of X3D functionality which are supported by this
profile. Note that general items refer only to those specific nodes listed in Table F.3.

Table F.4 — Other limitations

Item X3D File Limit Minimum Browser Support

All groups 500 children 500 children. Ignore bboxCenter and
bboxSize.

All interpolators 1000 key-value
pairs 1000 key-value pairs.

All lights 8 simultaneous
lights 8 simultaneous lights.

Names for
DEF/PROTO/field 50 utf8 octets 50 utf8 octets.

All url fields 10 URLs
10 URLs. URN's ignored.
Support `http', `file', and `ftp' protocols.
Support relative URLs where relevant.

Top-level fields 20 fields 20 fields

Top-level
functions 20 functions 20 functions

PROTO/
EXTERNPROTO

30 fields of each
access type 30 fields of each access type

 EXTERNPROTO n/a
URL references to X3D files conforming
to the current profile/component
configuration.

PROTO
definition
nesting depth

5 levels 5 levels.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex F Full profile

fullProfile.html[8/1/2020 9:59:32 AM]

SFBool No restrictions Full support.

SFColor No restrictions Full support.

SFColorRGBA No restrictions Full support.

SFDouble No restrictions Full support. Range ±1e±12. Precision
1e−7.

SFFloat No restrictions. Full support.

SFImage 512 width. 512
height. 512 width. 512 height.

SFInt32 No restrictions. Full support.

SFMatrix3d No restrictions. Full support.

SFMatrix3f No restrictions. Full support.

SFMatrix4d No restrictions. Full support.

SFMatrix4f No restrictions. Full support.

SFNode No restrictions. Full support.

SFRotation No restrictions. Full support.

SFString 30,000 utf8
octets. 30,000 utf8 octets.

SFTime No restrictions. Full support.

SFVec2d 15,000 values. 15,000 values.

SFVec2f 15,000 values. 15,000 values.

SFVec3d 15,000 values. 15,000 values.

SFVec3f 15,000 values. 15,000 values.

SFVec4d 15,000 values. 15,000 values.

SFVec4f 15,000 values. 15,000 values.

MFColor 15,000 values. 15,000 values.

MFColorRGBA 15,000 values. 15,000 values.

MFDouble 1000 values. 1000 values.

MFFloat 1,000 values. 1,000 values.

MFInt32 20,000 values. 20,000 values.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex F Full profile

fullProfile.html[8/1/2020 9:59:32 AM]

MFMatrix3d 256 values. 256 values.

MFMatrix3f 256 values. 256 values.

MFMatrix4d 256 values. 256 values.

MFMatrix4f 256 values. 256 values.

MFNode 500 values. 500 values.

MFRotation 1,000 values. 1,000 values.

MFString
30,000 utf8 octets
per string, 10
strings.

30,000 utf8 octets per string, 10 strings.

MFTime 1,000 values. 1,000 values.

MFVec2d 15,000 values. 15,000 values.

MFVec2f 15,000 values. 15,000 values.

MFVec3d 15,000 values. 15,000 values.

MFVec3f 15,000 values. 15,000 values.

MFVec4d 15,000 values. 15,000 values.

MFVec4f 15,000 values. 15,000 values.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 7 Core component

core.html[8/1/2020 9:59:35 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

7 Core component

 7.1 Introduction

7.1.1 Name

The name of this component is "Core". This name shall be used when referring to this
component in the COMPONENT statement (see 7.2.5.4 Component statement).

7.1.2 Overview

This clause describes the Core component of this part of ISO/IEC 19775. The Core
component supplies the base functionality for the X3D run-time system, including the
abstract base node type, field types, the event model, and routing. Table 7.1 lists the
major topics in this clause.

 Table 7.1 — Topics

7.1 Introduction
7.1.1 Name
7.1.2 Overview

7.2 Concepts
7.2.1 Overview of the core
7.2.2 Bindable children nodes
7.2.3 Sensors
7.2.4 Metadata

7.2.4.1 Overview
7.2.4.2 Data types for metadata
7.2.4.3 Integration with X3D worlds
7.2.4.4 Assigning metadata to an entire X3D world

7.2.5 Abstract X3D structure
7.2.5.1 Organization
7.2.5.2 Header statement
7.2.5.3 PROFILE statement
7.2.5.4 COMPONENT statement

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 7 Core component

core.html[8/1/2020 9:59:35 AM]

7.2.5.5 UNIT statement
7.2.5.6 META statement
7.2.5.7 ROUTE statement
7.2.5.8 PROTO statement
7.2.5.9 EXTERNPROTO statement

7.3 Abstract types
7.3.1 X3DBindableNode
7.3.2 X3DChildNode
7.3.3 X3DInfoNode
7.3.4 X3DMetadataObject
7.3.5 X3DNode
7.3.6 X3DPrototypeInstance
7.3.7 X3DSensorNode

7.4 Node reference
7.4.1 MetadataBoolean
7.4.2 MetadataDouble
7.4.3 MetadataFloat
7.4.4 MetadataInteger
7.4.5 MetadataSet
7.4.6 MetadataString
7.4.7 WorldInfo

7.5 Support levels

Table 7.1 — Topics
Table 7.2 — Core component support levels

 7.2 Concepts

 7.2.1 Overview of the core

The Core component provides the minimum functionality required by all X3D-compliant
implementations. The Core component supplies the following abstract constructs:

a. X3D field types descended from the abstract type X3DField;
b. the base abstract node types X3DNode and X3DPrototypeInstance;
c. commonly used interfaces such as X3DBindableNode and X3DUrlObject;
d. the X3D event model and routing;
e. abstract file structure; and
f. prototyping.

The Core component is a prerequisite component for all other X3D components.

The Core component may be supported at a variety of levels, allowing for a range of
implementations that are conformant to the X3D architecture, object model and event
model. For more information on these topics, see 4. Concepts.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 7 Core component

core.html[8/1/2020 9:59:35 AM]

7.2.2 Bindable children nodes

Several X3D nodes, such as Background, TextureBackground, Fog, NavigationInfo, and
Viewpoint are bindable children nodes, inheriting from the abstract node type
X3DBindableNode. These nodes have the unique behaviour that only one of each type
can be bound per layer (i.e., affect the user's experience) at any instant in time. The
browser shall maintain an independent, separate stack for each type of bindable node in
each layer. If there is no LayerSet node defined, there shall be only one set of binding
stacks that apply to all nodes in the scene graph. Each of these nodes includes a
set_bind inputOnly field and an isBound outputOnly field. The set_bind inputOnly field is
used to move a given node to and from its respective top of stack. A TRUE value sent to
the set_bind inputOnly field moves the node to the top of the stack; sending a FALSE
value removes it from the stack. The isBound event is output when a given node is:

a. moved to the top of the stack;
b. removed from the top of the stack;
c. pushed down from the top of the stack by another node being placed on top.

That is, isBound events are sent when a given node becomes, or ceases to be, the
active node. The node at the top of the stack (the most recently bound node) is the
active node for its type and is used by the browser to set the world state. If the stack is
empty (i.e., either the X3D file has no bindable nodes for a given type or the stack has
been popped until empty), the default field values for that node type are used to set
world state. The results are undefined if a multiply instanced (DEF/USE) bindable node
is bound.

Bindable nodes only affect the binding stacks of the layer in which they are defined.

The following rules describe the behaviour of the binding stack for a node of type
<bindable node>, (Background, TextureBackground, Fog, NavigationInfo, or
Viewpoint):

d. During read, the first encountered <bindable node> in each layer is bound by
pushing it to the top of the <bindable node> stack for that layer. Nodes contained
within files referenced by Inline nodes, within the strings passed to the
Browser.createX3DFromString() method, or within X3D files passed to the
Browser.createX3DFromURL() method (see Part 2 of ISO/IEC 19775) are not
candidates for the first encountered <bindable node>. The first node within a
locally defined prototype instance is a valid candidate for the first encountered
<bindable node>. The first encountered <bindable node> sends an isBound TRUE
event.

e. When a set_bind TRUE event is received by a <bindable node>,
1. If it is not on the top of the stack: the current top of stack node sends an

isBound FALSE event. The new node is moved to the top of the stack and
becomes the currently bound <bindable node>. The new <bindable node>
(top of stack) sends an isBound TRUE event.

2. If the node is already at the top of the stack, this event has no effect.
f. When a set_bind FALSE event is received by a <bindable node> in the stack, it is

removed from the stack. If it was on the top of the stack,
1. it sends an isBound FALSE event;

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 7 Core component

core.html[8/1/2020 9:59:35 AM]

2. the next node in the stack becomes the currently bound <bindable node>
(i.e., pop) and issues an isBound TRUE event.

g. If a set_bind FALSE event is received by a node not in the stack, the event is
ignored and isBound events are not sent.

h. When a node replaces another node at the top of the stack, the isBound TRUE and
FALSE output events from the two nodes are sent simultaneously (i.e., with identical
timestamps).

i. If a bound node is deleted, it behaves as if it received a set_bind FALSE event (see f
above).

The results are undefined if a bindable node is bound and is the child of an LOD, Switch,
or any node or prototype that disables its children. If a bindable node is bound that
results in collision with geometry, the browser shall perform its self-defined navigation
adjustments as if the user navigated to this point (see 23.3.2 Collision).

7.2.3 Sensors

Sensors are nodes that generate events based on external inputs to the scene graph,
such as user input, changes to the viewing environment, messages from the network or
ticks of the system clock. X3D defines the following types of
sensors:

a. Pointing device sensors (see 20 Point device sensor component),
b. Environmental sensors (see 22 Environmental sensor component),
c. Key device sensors (see 21 Key device sensor component),
d. Load sensors (see 9 Networking component),
e. Time sensors (see 8 Time component), and
f. Picking sensors (see 38 Picking sensor component).

Sensors are children nodes in the hierarchy and therefore may be parented by grouping
nodes as described in 10.2.1 Grouping and children node types.

Each type of sensor defines when an event is generated. The state of the scene graph
after several sensors have generated events shall be as if each event is processed
separately, in order. If sensors generate events at the same time, the state of the
scene graph will be undefined if the results depend on the ordering of the events.

It is possible to create dependencies between various types of sensors.

EXAMPLE A TouchSensor may result in a change to a VisibilitySensor node's transformation, which in turn may
cause the VisibilitySensor node's visibility status to change.

For a detailed description of how dependencies among sensors are handled during
execution, see 4.4.8.3 Execution model.

7.2.4 Metadata

7.2.4.1 Overview

Metadata is information that is associated with the objects of the X3D world but is not a

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 7 Core component

core.html[8/1/2020 9:59:35 AM]

direct part of the world representation. This part of ISO/IEC 19775 defines an abstract
interface X3DMetadataObject that identifies a node as containing metadata and
metadata nodes that specify metadata values in various data types.

7.2.4.2 Data types for metadata

This part of ISO/IEC 19775 specifies four basic representation types: strings, single-
precision and double-precision floating point values, booleans, and integers. Each piece
of metadata has two additional strings that describe:

a. the metadata standard (if any) from which the metadata specification emanates,
and

b. the identification for the particular piece of metadata being provided.

The MetadataSet node is provided to support cases when a specific set of metadata
requires more than a single data type.

NOTE Since a metadata node is derived from X3DNode, the metadata node may itself have metadata.

7.2.4.3 Integration with X3D worlds

The X3DNode abstract node type specifies an SFNode field metadata that may only be
populated with nodes derived from X3DMetadataObject. If the metadata field is empty,
no metadata is associated with the node. Since all nodes in X3D are derived from
X3DNode, metadata may be placed anywhere in an X3D world.

Metadata is not included as part of the depiction of an X3D world. However, metadata
nodes may have a DEF name and the values of the fields of a metadata node may be
accessed by SAI services and can be accessed using routing.

The content of the value field of a metadata node is not interpreted by the X3D
browser.

Metadata may also be attached to other X3D nodes by setting the metadata field of that
node to a node derived from the X3DMetadataNode abstract node type.

7.2.4.4 Assigning metadata to an entire X3D world

The META statement (see 7.2.5.5 META statement) may be used to assign metadata to
the entire world. The content of the META statement is accessible using the SAI. If it is
desired that metadata information that applies to the entire world be provided for
access through routing, a WorldInfo node containing the metadata in its metadata field
may be inserted as a root node.

7.2.5 Abstract X3D structure

7.2.5.1 Organization

An X3D world is conceptually defined as a sequence of statements organized
conceptually as a file. The first item in the file is the Header statement. The second item
in the file is the PROFILE statement. The PROFILE statement may be optionally followed

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 7 Core component

core.html[8/1/2020 9:59:35 AM]

by one or more COMPONENT, UNIT and/or META statements in that order. There may
be multiple of each of the COMPONENT, UNIT, and/or META statements. The remainder
of the file consists of the other elements defined in this part of ISO/IEC 19775.

ROUTE statements are used to specify the pathways for allowed transmission of events.
These statements link a field in one node to a field of the same field type in another
node.

PROTO statements are used to specify new node types. Such statements assign a name
to the new node type along with a declaration of the interface for the new node type.
This is followed by a definition for the node type functionality.

EXTERNPROTO statements are used to specify an interface to PROTO or EXTERNPROTO
statements located externally to the local file.

Any additional X3D content loaded into the scene via Inline nodes or scenes loaded
using createX3DFromStream, createX3DFromString, or createX3DFromUrl, shall be
declared as having a profile that has an equal or smaller set of required functionality;
i.e., there can be no components explicitly declared, or implied by the profile in that
content, that requires functionality not declared in the original profile and component
declarations for the containing scene. Any UNIT statements within the additional
contained external X3D content are ignored and the units specified in the root file are
used.

Although an X3D world is described as being contained in a file, the file may be
conceptual and created dynamically during run-time as described in Part 2 of ISO/IEC
19775.

7.2.5.2 Header statement

The Header statement is an encoding-dependent statement containing the following
elements:

a. identification of the standard being supported (for this standard, this is "X3D");
b. version of the standard being supported (for this version of this part of ISO/IEC

19775, the version number is "3.2");
c. identification of the character encoding being supported (for this standard, this

shall be "UTF-8"), and
d. optional comments that may apply to the file.

While the exact representation of this information is dependent on the encoding, this
information shall always be stored as human-readable text.

7.2.5.3 PROFILE statement

Every X3D application shall declare a profile at the beginning of execution. This
declaration tells the browser the exact set of components and their support levels that
are required for the application to run, allowing for a browser to dynamically load the
appropriate components if it so desires, and providing a mechanism for strict
conformance should the browser choose to enforce it. If a browser supports the
combination of declared profile and components (see 7.2.5.4 COMPONENT statement),

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 7 Core component

core.html[8/1/2020 9:59:35 AM]

it may proceed with presenting the world; otherwise, it shall fail.

The profile is declared via a PROFILE statement immediately following the Header
statement at the top of the file. The form of the PROFILE statement is:

PROFILE <name>

where name is a string that does not contain whitespace.

The following profiles are defined in this standard:

a. Core (see A Core profile),
b. Interchange (see B Interchange profile),
c. Interactive (see C Interactive profile),
d. MPEG-4 interactive (see D MPEG-4 interactive profile),
e. Immersive (see E Immersive profile),
f. Full (see F Full profile), and
g. CADInterchange (see H CAD interchange profile).

The profile name is implicitly qualified by the version number of the standard (see
7.2.5.2 Header statement). Browsers shall use both the profile name and the version
number to determine the specific characteristics of the profile.

7.2.5.4 COMPONENT statement

X3D applications may explicitly declare additional components required for the
application to run. This is useful for combining features that do not appear together in a
predefined profile, such as adding humanoid animation support to the Immersive
profile. If a browser supports the combination of declared profile and components, it
may proceed with presenting the world; otherwise, it shall fail.

Declaring a component in a file shall only add support for nodes and functionality
defined in that component at the requested support level. Nodes that are defined as
part of the prerequisite components (see 4.5.3 Base Components) shall not be
automatically included. A user shall declare all components and levels for the nodes
and/or functionality being used either explicitly through the use of the COMPONENT
statement or implicitly through the PROFILE statement.

Components are declared by COMPONENT statements at the top of the file, immediately
following the PROFILE statement but preceding any other content. The form of the
component statement is:

COMPONENT <name> <level>

where <name> is a string that does not contain whitespace, and <level> is a positive
integer.

If support for a component at the desired level is implied by the application's declared
profile, the declaration for that component is unnecessary but may be included.

7.2.5.5 UNIT statement

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 7 Core component

core.html[8/1/2020 9:59:35 AM]

X3D applications may explicitly alter the initial base units within an X3D world by
inserting UNIT statements defining the characteristics of the new default base units. At
most one UNIT statement shall be provided for each base unit type. Only the UNIT
statements in the root file apply to an X3D world. If no UNIT statements are provided,
the initial base units as specified in 4.3.6 Standard units and coordinate system shall
apply.

UNIT statements contained in X3D files referenced by Inline nodes or contained in X3D
files consisting of EXTERNPROTO bodies shall be used to align effected units to the base
units of the root file before the referenced X3D file content is incorporated in the X3D
world.

UNIT statements may only be contained in X3D worlds created for X3D version 3.3 or
later (as specified in the Header statement). If a version of 3.2 or earlier is specified in
conjunction with UNIT statements, the browser shall fail.

A change in a base unit is specified by UNIT statements at the top of the file preceding
any element content but in the statement order specified in 7.2.5.1 Organization. The
form of the UNIT statement is:

UNIT <category> <name> <conversionFactor>

where <category> is a string specifying one of the categories in Table 4.2, <name> is
a string that does not contain whitespace that provides a name for the new default base
unit, and <conversion_factor> is a positive double precision value that converts the
new default base unit to the initial base unit specified in Table 4.2. Direct modification
of conversion factors for derived units is not allowed.

7.2.5.6 META statement

X3D applications may explicitly declare metadata about the world being defined. This is
done by adding one or more META statements that contain such information. Such
statements do not affect the scene graph but simply provide additional information in
the world.

Metadata that applies to the entire file may be specified by META statements at the top
of the file preceding any element content but in the statement order specified in 7.2.5.1
Organization. The form of the META statement is:

META <key> <data>

where <key> is a string that identifies the metadata and <data> is a string that defines
the value for the metadata identified by <key>.

7.2.5.7 ROUTE statement

X3D applications specify connections between fields of one node to fields of other nodes
using the ROUTE statement. See 4.4.8.2 Routes for a general discussion of routes.

ROUTE statements may appear anywhere in the file and have the following form:

ROUTE <fromNodeName> <fromFieldName> <toNodeName> <toFieldName>

where <fromNodeName> identifies the node that will generate an event,

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 7 Core component

core.html[8/1/2020 9:59:35 AM]

<fromFieldName> is the name of the field in the generating node from which the event
will eminate, <toNodeName> identifies the node that will receive an event, and
<toFieldName> identifies the field in the destination node that will receive the event.

7.2.5.8 PROTO statement

New node types may be defined by X3D applications through use of the PROTO
statement as specified in 4.4.4 Prototype semantics.

PROTO statements may appear anywhere in the file and have the following form:

PROTO <protoName> <protoInterfaceDeclaration> <protoDefinition>

The <protoName> specifies the name for the new node type.

The <protoInterfaceDeclaration> specifies a list of field definitions. Each field definition
specifies the data type, access type, and name for the field. For initializeOnly and
inputOutput fields, the default value is also specified. See 4.4.4.2 PROTO interface
declaration semantics for details.

The <protoDefinition> consists of a list of nodes the first of which is used to specify the
node type for the prototype. This list may instantiate other prototypes provided that the
definitions of the referenced prototypes precede this PROTO statement. See 4.4.4.3
PROTO definition semantics for details.

7.2.5.9 EXTERNPROTO statement

Externally defined new node types may be used by X3D applications by referencing
their definition using the EXTERNPROTO statement as specified in 4.4.5 External
prototype semantics.

EXTERNPROTO statements may appear anywhere in the file and have the following
form:

EXTERNPROTO <externprotoName> <externprotoInterfaceDeclaration> <externprotoURL>

The <externprotoName> specifies the name for the new node type.

The <externprotoInterfaceDeclaration> specifies a list of field definitions. Each field
definition specifies the data type, access type, and name for the field. The default value
for intializeOnly and inputOutput field is derived as specified in 4.4.5.2 EXTERNPROTO
interface semantics.

The <externprotoURL> specifies the location of the definition for the externally defined
prototype. See 4.4.5.3 EXTERNPROTO URL semantics for details.

 7.3 Abstract types

7.3.1 X3DBindableNode
X3DBindableNode : X3DChildNode {
 SFBool [in] set_bind
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFTime [out] bindTime
 SFBool [out] isBound

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 7 Core component

core.html[8/1/2020 9:59:35 AM]

}

X3DBindableNode is the abstract basenode type for all bindable children nodes,
including Background, TextureBackground, Fog, NavigationInfo and Viewpoint. For
complete discussion of bindable behaviors, see 7.2.2 Bindable children nodes.

 7.3.2 X3DChildNode
X3DChildNode : X3DNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

This abstract node type indicates that the concrete nodes that are instantiated based on
it may be used in children, addChildren, and removeChildren fields.

More details on the children, addChildren, and removeChildren fields can be found in
10.2.1 Grouping and children node types.

7.3.3 X3DInfoNode
X3DInfoNode : X3DChildNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

This is the base node type for all nodes that contain only information without visual
semantics.

7.3.4 X3DMetadataObject
X3DMetadataObject {
 SFString [in,out] name "" (Required)
 SFString [in,out] reference ""
}

This abstract interface is the basis for all metadata nodes. The interface is inherited by
all metadata nodes.

The specification of a non-empty value for the name field is required.

The specification of the reference field is optional. If provided, it identifies the metadata
standard or other specification that defines the name field. If the reference field is not
provided or is empty, the meaning of the name field is considered implicit to the
characters in the string.

7.3.5 X3DNode
X3DNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

This abstract node type is the base type for all nodes and node types in the X3D
system.

7.3.6 X3DPrototypeInstance
X3DPrototypeInstance : X3DNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 7 Core component

core.html[8/1/2020 9:59:35 AM]

This abstract node type is the base type for all prototype instances in the X3D system.
Any user-defined nodes declared with PROTO or EXTERNPROTO are instantiated using
this base type. An X3DPrototypeInstance may be place anywhere in the scene graph
where it is legal to place the first node declared within the prototype instance. For
example, if the base type of first node is X3DAppearanceNode, that prototype may be
instantiated anywhere in the scene graph that allows for an appearance node (EXAMPLE
Shape).

 7.3.7 X3DSensorNode
X3DSensorNode : X3DChildNode {
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [out] isActive
}

This abstract node type is the base type for all sensors.

 7.4 Node reference

7.4.1 MetadataBoolean
MetadataBoolean : X3DNode, X3DMetadataObject {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFString [in,out] name ""
 SFString [in,out] reference ""
 MFBool [in,out] value []
}

The metadata provided by this node is contained in the Boolean values of the value
field.

7.4.2 MetadataDouble
MetadataDouble : X3DNode, X3DMetadataObject {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFString [in,out] name ""
 SFString [in,out] reference ""
 MFDouble [in,out] value []
}

The metadata provided by this node is contained in the double-precision floating point
numbers of the value field.

7.4.3 MetadataFloat
MetadataFloat : X3DNode, X3DMetadataObject {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFString [in,out] name ""
 SFString [in,out] reference ""
 MFFloat [in,out] value []
}

The metadata provided by this node is contained in the single-precision floating point
numbers of the value field.

7.4.4 MetadataInteger
MetadataInteger : X3DNode, X3DMetadataObject {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFString [in,out] name ""
 SFString [in,out] reference ""
 MFInt32 [in,out] value []
}

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 7 Core component

core.html[8/1/2020 9:59:35 AM]

The metadata provided by this node is contained in the integers of the value field.

7.4.5 MetadataSet
MetadataSet : X3DNode, X3DMetadataObject {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFString [in,out] name ""
 SFString [in,out] reference ""
 MFNode [in,out] value [] [X3DMetadataObject]
}

The metadata provided by this node is contained in the metadata nodes of the value
field.

7.4.6 MetadataString
MetadataString : X3DNode, X3DMetadataObject {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFString [in,out] name ""
 SFString [in,out] reference ""
 MFString [in,out] value []
}

The metadata provided by this node is contained in the strings of the value field.

7.4.7 WorldInfo
WorldInfo : X3DInfoNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFString [] info []
 SFString [] title ""
}

The WorldInfo node contains information about the world. This node is strictly for
documentation purposes and has no effect on the visual appearance or behaviour of the
world. The title field is intended to store the name or title of the world so that browsers
can present this to the user (perhaps in the window border). Any other information
about the world can be stored in the info field, such as author information, copyright,
and usage instructions.

 7.5 Support levels
The Core component provides two levels of support as specified in Table 7.2. Level 1
provides the minimum basis for all profiles and components. Level 2 adds support for
prototypes.

 Table 7.2 — Core component support levels

Level Prerequisites Nodes/Features Support

1 None

X3DBindableNode
(abstract) n/a

 X3DChildNode (abstract) n/a

X3DField (abstract) n/a

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 7 Core component

core.html[8/1/2020 9:59:35 AM]

 X3DInfoNode (abstract) n/a

 X3DMetadataObject
(abstract) n/a

X3DNode (abstract) n/a

X3DPrototypeInstance
(abstract) n/a

X3DSensorNode
(abstract) n/a

X3DUrlObject (abstract) n/a

 MetadataDouble All fields are fully
supported.

 MetadataFloat All fields are fully
supported.

 MetadataInteger All fields are fully
supported.

 MetadataSet All fields are fully
supported.

 MetadataString All fields are fully
supported.

 WorldInfo All fields are fully
supported.

Statements:
 Header
 PROFILE
 COMPONENT
 UNIT
 META

Full support.

Field types All field types.

Event model As specified in 4.4.8
Event Model.

Routing Full support.

Prototyping Optionally supported.

2 None

All Level 1 Core objects As supported in Level 1.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 7 Core component

core.html[8/1/2020 9:59:35 AM]

Prototyping Full support.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 28 DIS component

dis.html[8/1/2020 9:59:38 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

28 Distributed interactive simulation (DIS)
component

 28.1 Introduction

28.1.1 Name

The name of this component is "DIS". This name shall be used when referring to this
component in the COMPONENT statement (see 7.2.5.4 Component statement).

28.1.2 Overview

This clause describes the Distributed Interactive Simulation (DIS) component of this
International Standard. Table 28.1 provides links to the major topics in this clause.

Table 28.1 — Topics

28.1 Introduction
28.1.1 Name
28.1.2 Overview

28.2 Concepts
28.2.1 Overview of DIS
28.2.2 Network communications
28.2.3 Common DIS fields

28.3 Node reference
28.3.1 DISEntityManager
28.3.2 DISEntityTypeMapping
28.3.3 EspduTransform
28.3.4 ReceiverPdu
28.3.5 SignalPdu
28.3.6 TransmitterPdu

28.4 Support levels

Table 28.1 — Topics
Table 28.2 — DIS component support levels

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 28 DIS component

dis.html[8/1/2020 9:59:38 AM]

 28.2 Concepts

28.2.1 Overview of DIS

IEEE 1278 (see 2.[IEEE1278]) is an IEEE communications standard for physically based
distributed simulations. Known by the name Distributed Interactive Simulation (DIS),
the standard defines the binary layout of a series of messages used to transmit
simulation information. Often used by military applications, IEEE 1278 covers a wide
range of data, including entity location, velocity, and orientation, and more obscure
features such as electronic warfare and supply logistics. In addition to its original focus
on military simulations, DIS is also used in civilian applications.

The DIS component consists of the following X3D nodes:

DISEntityManager,
DISEntityTypeMapping,
EspduTransform,
ReceiverPdu,
SignalPdu, and
TransmitterPdu.

Together, these nodes provide the means to send and receive DIS-compliant messages,
called Protocol Data Units (PDUs), across the network. Together these nodes support
seven DIS PDU message types: Collision, Detonate, Entity State, Fire, Receiver, Signal
and Transmitter. Numerous other DIS PDUs are defined by the DIS protocol, but
corresponding X3D mappings are not defined.

28.2.2 Network communications

DIS messages are typically transmitted on User Datagram Protocol (UDP) (see [UDP])
sockets. Multicast, unicast or broadcast transport mechanisms may be used for network
communications. Each of the X3D DIS nodes communicates via a UDP socket, usually
multicast-enabled, and uses it to read and/or write DIS messages. These messages can
be used to communicate and to modify both position and orientation of virtual entities
in the X3D scene among multiple hosts across the network. Each DIS implementation is
responsible for managing sockets. New entities are registered by the DIS node to
send/receive network updates. "Entities" are a high-level abstraction; in the case of a
position update, the actual X3D scene-graph object modified may be a Transform node
(as for EspduTransform), and the geometry for an animated entity is contained in the
corresponding children.

28.2.3 Common DIS fields

The DIS nodes have a number of descriptive fields in common relating to the desired
behavior of the DIS node. Common fields include message header and content
information conforming to the DIS standard, network status, and configuration data
needed to establish or modify network communications. Since nodes in the DIS

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 28 DIS component

dis.html[8/1/2020 9:59:38 AM]

component can receive data from the network, these nodes are also sensors. Thus,
these nodes implement the X3DSensorNode interface and include both enabled and
isActive fields.

Common fields relating to description of the desired behavior of the DIS node are:
isActive, timestamp, networkMode, isStandAlone, isNetworkReader, isNetworkWriter,
readInterval, and writeInterval.

The isActive field indicates if the node has received a DIS message (when output as
TRUE) or not (when output as FALSE). Since DIS entities can be considered inactive after
some period of time (five seconds is specified as the default in IEEE 1278) either event
may be received by listening nodes. An implementation may use a different value.

The timestamp field provides the time (SFTime) at which the DIS message arrived,
referenced to local system time.

The networkMode field indicates if the X3D DIS node is operating in one of three
distinct ways: independently from the network, as a sender writing updates, or as a
receiver reading updates.

networkMode standAlone only connects dynamic behavior via local ROUTEs and
does not send/receive PDUs to/from the network.
networkMode networkReader reads messages at readInterval seconds from the
network, which can modify fields in the node upon receipt. In this mode, the entity
geometry in the DIS node (e.g., EspduTransform) acts as a remote copy of the
entity that sent the PDUs.
networkMode networkWriter sends messages at writeInterval seconds to the
network. In this mode, the entity geometry in the DIS node (e.g.,
EspduTransform) acts as the master copy of the entity originating state updates.

Fields isStandAlone, isNetworkReader, and isNetworkWriter are respectively sent as
appropriate TRUE or FALSE events during initialization of the DIS node and whenever
networkMode is changed. These fields match the state of networkMode. One and only
one of these three fields can be TRUE at any given time.

The readInterval field is a time in seconds between checking for receipt of DIS
messages. Setting the readInterval to zero disables the reading of DIS messages. The
writeInterval is a time in seconds between message transmissions by the node. Setting
the writeInterval to zero disables the transmission of DIS messages by the node.

Common fields relating to standard identification of DIS entities are: siteID,
applicationID, and entityID.

The siteID and applicationID fields are used to create the DIS PDU Simulation Address
record. The intent for each simulation exercise is for each DIS site to be assigned a
unique identifier, and each simulation application at a DIS site assigned an application
identifier unique within that site. Both fields are 16-bit, unsigned numbers. A common
practice is to assign the four octets of a participant's Internet Protocol (IP) host address
to siteID. The entityID field further identifies the DIS entity that is the subject of the
particular PDU (EXAMPLE an Entity State PDU to update the location and orientation of a
particular simulation entity). The entityID is an unsigned, 16-bit number.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 28 DIS component

dis.html[8/1/2020 9:59:38 AM]

Each entity in a DIS application is assigned a triplet identifier (siteID, applicationID and
entityID fields) that is unique across all entities in that application and in the particular
exercise. The entity identifier triplet is valid for the duration of the exercise.

Common fields relating to DIS network communications are: address, port,
multicastRelayHost, multicastRelayPort, rtpHeaderExpected and rtpHeaderHeard.

The address field identifies the multicast address for the message transmission
(EXAMPLE "224.2.181.145" or "localhost"). The port field identifies the multicast port
(EXAMPLE 62040) for sending or receiving DIS messages.

Fields multicastRelayHost, multicastRelayPort, rtpHeaderExpected and rtpHeaderHeard
provide networking extensions to the IEEE DIS protocol (see 2.[IEEE1278]) intended to
make DIS more compatible with Internet conventions for unicast and multicast routing
over wide-area networks (WANs). If wide-area multicast is needed but not available
locally, the multicastRelayHost and multicastRelayPort fields are provided as a fallback
server address and associated port, used for creating a unicast tunnel connection to a
multicast-connected relay server. Field rtpHeaderExpected indicates that the Real Time
Protocol (see 2.[RFC1889]) header is expected to be prepended to the DIS PDU
message to be sent or received by the node (when the field is set to TRUE. Field
rtpHeaderHeard indicates that the RTP header has been prepended to the incoming DIS
message.

The geoSystem field is used to define the spatial reference frame and is described in
25.2.3 Specifying a spatial reference frame.

The geometry of the nodes in children is to be specified in base length units in X3D
coordinates relative to the location specified by the geoCoords field. The geoCoords field
should be provided in the format described in 25.2.3 Specifying a spatial reference
frame.

The geoCoords field can be used to dynamically update the geospatial location of the
model; for example, for example an event could might be sent from a
GeoPositionInterpolator node.

 28.3 Node reference

28.3.2 DISEntityManager
DISEntityManager : X3DChildNode {
 SFString [in,out] address "localhost"
 SFInt32 [in,out] applicationID 1 [0,65535]
 MFNode [in,out] mapping [] [DISEntityTypeMapping]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFInt32 [in,out] port 0 [0,65535]
 SFInt32 [in,out] siteID 0 [0,65535]
 MFNode [out] addedEntities
 MFNode [out] removedEntities
}

A DISEntityManager node notifies content when new entities arrive or current entities
leave.

The mapping field provides a mechanism for automatically creating an X3D model for a
new entity arriving. If a new entity matches one of the nodes, an instance of the
provided URL is created and added as a child to the EspduTransform specified in the

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 28 DIS component

dis.html[8/1/2020 9:59:38 AM]

addedEntities field. See 28.3.2 DISEntityTypeMapping for details on matching DIS
parameters to URLs.

The addedEntities field contains any new entities added last frame. These will be
EspduTransform nodes.

The removedEntities field contains any entities removed last frame, either from a
timeout or from an explicit RemoveEntityPDU action. This will contain a reference to the
EspduTransform node.

28.3.2 DISEntityTypeMapping
DISEntityTypeMapping : X3DInfoNode, X3DUrlObject {
 SFString [in,out] description ""
 SFBool [in,out] load TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFTime [in,out] refresh 0.0 [0,∞)
 MFString [in,out] url [] [URI]
 SFInt32 [] category 0 [0,255]
 SFInt32 [] country 0 [0,65535]
 SFInt32 [] domain 0 [0,255]
 SFInt32 [] extra 0 [0,255]
 SFInt32 [] kind 0 [0,255]
 SFInt32 [] specific 0 [0,255]
 SFInt32 [] subcategory 0 [0,255]
}

A DISEntityTypeMapping node provides a mapping from DIS Entity type information to
an X3D model. This model provides a visual and behavioral representation of the entity
for usage in X3D simulations. The mappings are done by selecting the most specific
record that fits the entity. A value of 0 is considered a wildcard. All fields after the first
zero shall be zero as well.

The fields are checked in the following order: kind, domain, country, category,
subcategory, specific, extra.

EXAMPLE Given an entity whose entity type record was: kind=1, domain=2, country=3, category=4,
subcategory=5, specific=6, extra=7. If the mapping field of the DISEntityManager contained these nodes:

 DISEntityTypeMapping {
 domain 1
 kind 2
 country 3
 url ["model-a.x3d"]
 }
 DISEntityTypeMapping {
 domain 1
 kind 2
 country 3
 category 4
 url ["model-b.x3d"]
 }

Then, an entity using the second node with a url of "model-b.x3d" is used as its the most specific mapping.

28.3.3 EspduTransform
EspduTransform : X3DGroupingNode, X3DSensorNode {
 MFNode [in] addChildren
 MFNode [in] removeChildren
 SFFloat [in] set_articulationParameterValue0 (-∞,∞)
 SFFloat [in] set_articulationParameterValue1 (-∞,∞)
 SFFloat [in] set_articulationParameterValue2 (-∞,∞)
 SFFloat [in] set_articulationParameterValue3 (-∞,∞)
 SFFloat [in] set_articulationParameterValue4 (-∞,∞)
 SFFloat [in] set_articulationParameterValue5 (-∞,∞)
 SFFloat [in] set_articulationParameterValue6 (-∞,∞)
 SFFloat [in] set_articulationParameterValue7 (-∞,∞)
 SFString [in,out] address "localhost"
 SFInt32 [in,out] applicationID 1 [0,65535]
 SFInt32 [in,out] articulationParameterCount 0 [0,78]
 MFInt32 [in,out] articulationParameterDesignatorArray [] [0,255]

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 28 DIS component

dis.html[8/1/2020 9:59:38 AM]

 MFInt32 [in,out] articulationParameterChangeIndicatorArray [] [0,255]
 MFInt32 [in,out] articulationParameterIdPartAttachedToArray [] [0,65535]
 MFInt32 [in,out] articulationParameterTypeArray []
 MFFloat [in,out] articulationParameterArray [] (-∞,∞)
 SFVec3f [in,out] center 0 0 0 (-∞,∞)
 MFNode [in,out] children []
 SFInt32 [in,out] collisionType 0 [0,255]
 SFInt32 [in,out] deadReckoning 0 [0,255]
 SFVec3f [in,out] detonationLocation 0 0 0 (-∞,∞)
 SFVec3f [in,out] detonationRelativeLocation 0 0 0 (-∞,∞)
 SFInt32 [in,out] detonationResult 0 [0,255]
 SFBool [in out] bboxDisplay FALSE
 SFBool [in,out] enabled TRUE
 SFInt32 [in,out] entityCategory 0 [0,255]
 SFInt32 [in,out] entityCountry 0 [0,65535]
 SFInt32 [in,out] entityDomain 0 [0,255]
 SFInt32 [in,out] entityExtra 0 [0,255]
 SFInt32 [in,out] entityID 0 [0,65535]
 SFInt32 [in,out] entityKind 0 [0,255]
 SFInt32 [in,out] entitySpecific 0 [0,255]
 SFInt32 [in,out] entitySubCategory 0 [0,255]
 SFInt32 [in,out] eventApplicationID 1 [0,65535]
 SFInt32 [in,out] eventEntityID 0 [0,65535]
 SFInt32 [in,out] eventNumber 0 [0,65355]
 SFInt32 [in,out] eventSiteID 0 [0,65535]
 SFBool [in,out] fired1 FALSE
 SFBool [in,out] fired2 FALSE
 SFInt32 [in,out] fireMissionIndex 0 [0,65535]
 SFFloat [in,out] firingRange 0.0 (0,∞)
 SFInt32 [in,out] firingRate 0 [0,65535]
 SFInt32 [in,out] forceID 0 [0,255]
 SFInt32 [in,out] fuse 0 [0,65535]
 SFVec3d [in,out] geoCoords 0 0 0 (-∞,∞)
 SFVec3f [in,out] linearVelocity 0 0 0 (-∞,∞)
 SFVec3f [in,out] linearAcceleration 0 0 0 (-∞,∞)
 SFString [in,out] marking ""
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFString [in,out] multicastRelayHost ""
 SFInt32 [in,out] multicastRelayPort 0
 SFInt32 [in,out] munitionApplicationID 1 [0,65535]
 SFVec3f [in,out] munitionEndPoint 0 0 0 (-∞,∞)
 SFInt32 [in,out] munitionEntityID 0 [0,65535]
 SFInt32 [in,out] munitionQuantity 0 [0,65535]
 SFInt32 [in,out] munitionSiteID 0 [0,65535]
 SFVec3f [in,out] munitionStartPoint 0 0 0 (-∞,∞)
 SFString [in,out] networkMode "standAlone" ["standAlone"|
 "networkReader"|
 "networkWriter"]
 SFInt32 [in,out] port 0 [0,65535]
 SFTime [in,out] readInterval 0.1 [0,∞)
 SFRotation [in,out] rotation 0 0 1 0 (-∞,∞)|[-1,1]
 SFVec3f [in,out] scale 1 1 1 (-∞,∞)
 SFRotation [in,out] scaleOrientation 0 0 1 0 (-∞,∞)|[-1,1]
 SFInt32 [in,out] siteID 0 [0,65535]
 SFVec3f [in,out] translation 0 0 0 (-∞,∞)
 SFBool [in out] visible TRUE
 SFInt32 [in,out] warhead 0 [0,65535]
 SFTime [in,out] writeInterval 1.0 [0,∞)
 SFFloat [out] articulationParameterValue0_changed 0.0 (-∞,∞)
 SFFloat [out] articulationParameterValue1_changed 0.0 (-∞,∞)
 SFFloat [out] articulationParameterValue2_changed 0.0 (-∞,∞)
 SFFloat [out] articulationParameterValue3_changed 0.0 (-∞,∞)
 SFFloat [out] articulationParameterValue4_changed 0.0 (-∞,∞)
 SFFloat [out] articulationParameterValue5_changed 0.0 (-∞,∞)
 SFFloat [out] articulationParameterValue6_changed 0.0 (-∞,∞)
 SFFloat [out] articulationParameterValue7_changed 0.0 (-∞,∞)
 SFTime [out] collideTime 0 [0,∞)
 SFTime [out] detonateTime 0 [0,∞)
 SFTime [out] firedTime 0 [0,∞)
 SFBool [out] isActive FALSE
 SFBool [out] isCollided FALSE
 SFBool [out] isDetonated FALSE
 SFBool [out] isNetworkReader FALSE
 SFBool [out] isNetworkWriter FALSE
 SFBool [out] isRtpHeaderHeard FALSE
 SFBool [out] isStandAlone FALSE
 SFTime [out] timestamp 0 [0,∞)
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or −1 −1 −1
 MFString [] geoSystem ["GD","WE"] [see 25.2.3]
 SFBool [] rtpHeaderExpected FALSE
}

EspduTransform is a X3DGroupingNode that can contain most nodes, and also
implements the X3DBoundedObject interface. EspduTransform integrates functionality
of the following DIS PDUs: EntityStatePDU, CollisionPDU, DetonationPDU, FirePDU,
CreateEntity, and RemoveEntity. The following description identifies the fields of the
EspduTransform node that are associated with the content of these PDUs.

As an X3DGroupingNode, EspduTransform has addChildren and removeChildren events

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 28 DIS component

dis.html[8/1/2020 9:59:38 AM]

to permit modification to the subordinate structure of the scene graph. The
removeChildren event removes nodes from the EspduTransform's children field. Any
nodes in the removeChildren event that are not in the EspduTransform's children list
are ignored. Adding a node to the children field will add that node to the
EspduTransform's set of children. Adding any node to the EspduTransform's children
field that is already in that child list is illegal. Adding any node to the EspduTransform's
children that is an ancestor of that grouping is illegal.

Fields in the EspduTransform node that were not previously described in 28.2.3
Common DIS fields are: translation, rotation, center, scale, scaleOrientation,
bboxCenter, bboxSize, articulationParameterCount,
articulationParameterDesignatorArray, articulationParameterChangeIndicatorArray,
articulationParameterIdPartAttachedToArray, articulationParameterTypeArray,
articulationParameterArray, set_articulationParameterValue0,
set_articulationParameterValue1, set_articulationParameterValue2,
set_articulationParameterValue3, set_articulationParameterValue4,
set_articulationParameterValue5, set_articulationParameterValue6,
set_articulationParameterValue7, articulationParameterValue0_changed,
articulationParameterValue1_changed, articulationParameterValue2_changed,
articulationParameterValue3_changed, articulationParameterValue4_changed,
articulationParameterValue5_changed, articulationParameterValue6_changed,
articulationParameterValue7_changed, marking, forceID, entityKind, entityDomain,
entityCountry, entityCategory, entitySubCategory, entitySpecific, entityExtra,
linearVelocity, linearAcceleration, deadReckoning, isCollided, collidedTime,
eventApplicationID, eventSiteID, eventEntityID, collisionType, eventNumber, fired1,
fired2, firedTime, munitionStartPoint, munitionEndPoint, fireMissionIndex,
munitionApplicationID, munitionSiteID, munitionEntityID, warhead, fuse,
munitionQuantity, firingRate, firingRange, isDetonated, detonateTime,
detonationLocation, detonationRelativeLocation, and detonationResult.

The Entity State PDU provides notification of a new position and orientation of an entity,
which directly corresponds to the functionality of the X3D Transform node. The
translation field corresponds to the new position in the DIS coordinate system. It is
important to distinguish between the X3D coordinate system and the DIS coordinate
system. If (x, y, z) are the coordinates of a point in the X3D coordinate system,
corresponding DIS coordinates for the same point would be (x, −z, y). Note that only
X3D coordinates are used by the X3D scene. The EspduTransform node internally
performs all conversions to/from DIS coordinates when writing/reading DIS PDUs
to/from the network.

The rotation field provides the rotation of the entity, where the rotation is performed
relative to the value of the center field. The scale field provides scaling factors along the
x, y, z axes, while the scaleOrientation field provides scaling factors for the specified
rotation. The translation, rotation, scale, and center fields corresponds directly with
functionality of the Transform node. The bboxCenter and bboxSize fields (of the
X3DBoundedObject interface) specify the center and size, respectively, of a cube
bounding the entity geometry contained in the EspduTransform grouping node,
corresponding to the same fields of an X3D Transform node.

Articulation parameter inputOnly events and outputOnly events are provided for the
articulationParameters array in order to enable simple routing of primary events of

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 28 DIS component

dis.html[8/1/2020 9:59:38 AM]

interest into (and out of) the array. As an example, if eight articulation parameters
were needed for an EspduTransform controlling the movable parts of a race-car model,
each of these articulation parameters might be individually routed as necessary. Events
into (and out of) articulationParameter subscripts [8] through [78] are accomplished
either by a separate Script node mechanism, or else by complete routing/replacement
using an MFFloat event.

The articulationParameterCount field (8-bit unsigned integer) indicates the number of
parameters that are being used to describe articulation of various segments of the
entity model. For example, the orientation of a turret together with the inclination of
the gun for a tank entity may be described by two articulation parameters, or the
orientation of various segments in a humanoid model may be provided by several
articulation parameters. The maximum number of articulated parameter records in an
Entity State PDU is constrained to 78 by the maximum length of a PDU.

For X3D authoring convenience in ROUTEing events to (or from) articulation
parameters, the first eight articulation parameter values may be accessed by
accessType inputOnly/outputOnly fields (set_articulationParameterValue0, ...,
set_articulationParameterValue7 and articulationParameterValue0_changed, ...,
articulationParameterValue7_changed).

Fields articulationParameterDesignatorArray,
articulationParameterChangeIndicatorArray,
articulationParameterIdPartAttachedToArray, articulationParameterTypeArray are arrays
that correspond to additional values provided in each articulation parameter record.
Elements in these arrays correspond to each articulation parameter in sequential order.

The Parameter Type Designator entries in the
articulationParameterDesignatorArray indicate if the the parameter record is for an
articulated or attached part. It is represented by an 8-bit enumeration.
The Change Indicator entries in the articulationChangeIndicatorArray indicate the
change of any parameter for the associated articulated part. This is specified by an
8-bit unsigned integer. The value is initially set to zero for each exercise and is
sequentially incremented by one for each change in the articulation parameters.
The proper indicator is updated automatically by an X3D DIS implementation upon
receipt of a set_articulationParameterValue event.
The ID - Part Attached To entries in the
articulationParameterIdPartAttachedToArray identify the articulated part to which
this articulation parameter is attached. The value is specified by a 16-bit unsigned
integer, and is set to zero if the articulated part is attached directly to the entity.
The Parameter Type entries in the articulationParameterTypeArray are specified by
32-bit enumeration values.
The Parameter Value entries in the articulationParameterArray are specified by a
64-bit field. The definition of the 64 bits is determined based on the type of
parameter indicated above.

The marking field is a SFString value (with a maximum of 11 characters) corresponding
to a selection from an enumerated set of markings in the DIS standard (for full
compliance) or an arbitrary string for non-compliant applications using the
EspduTransform node.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 28 DIS component

dis.html[8/1/2020 9:59:38 AM]

The forceID and entityKind fields are 8-bit identification enumerations. The
entityDomain field (8-bit enumeration) identities the domain of operation of the entity
(e.g., subsurface, surface, land), except for munition entities. For munition entities, this
field specifies the domain of the target. The entityCountry field (16-bit enumeration)
specifies the country to which the design of the entity is attributed. The entityCategory
field (8-bit enumeration) identifies the main category that describes the entity. The
entitySubCategory field (8-bit enumeration) specifies a subcategory based on the
identified category value. The entitySpecific field (8-bit enumeration) provides specific
information about the entity based on the identified subcategory field. The entityExtra
field (8-bit enumeration) provides additional information about the entity. The DIS
specification also allows identification of an Alternative Entity Type containing the same
fields (Entity Kind, Domain, Country, Category, Subcategory, Specific, Extra) as
described above.

Enumeration values are provided directly, or in additional references, as specified by
IEEE 1278 (see 2.[IEEE1278]).

The linearVelocity and linearAcceleration fields provide the linear velocity and
acceleration vectors, respectively, for dead reckoning calculations. The dead reckoning
algorithm to be applied is identified in the deadReckoning field (8-bit enumeration).

The CollisionPDU is sent to notify an entity that a collision has occurred. The issuing
entity is identified in the entityID field described in 28.2.3 Common DIS fields. The
isCollided field is a Boolean value indicating if a collision (TRUE) has occurred. The
collideTime field gives the time (SFTime) at which the collision was determined to have
occurred. In a CollisionPDU message, the eventSiteID, eventApplicationID,
eventEntityID triplet uniquely identifies the entity colliding with the issuing entity (when
known). The collisionType field (8-bit enumeration) identifies the type of collision that
occurred.

The eventNumber field is set to one for each exercise and incremented by one for each
fire event, collision event, or electromagnetic mission event.

The FirePDU notifies the simulation that an entity has fired a weapon. The firing entity
is identified in the entityID field described in 28.2.3 Common DIS fields. Field fired1
(set to TRUE) indicates the primary weapon was fired; field fired2 (set to TRUE) indicates
the entity's secondary weapon was fired. The firedTime field gives the time (SFTime) at
which the firing occurred. Fields munitionStartPoint and munitionEndPoint describe the
path of the munition from firing weapon to detonation or impact. The fireMissionIndex
field identifies the fire mission, if known. The firingRange field specifies the range (in
meters) that an entity's fire control system has assumed in computing the fire control
solution.

In a FirePDU message, the EventSiteID, EventApplicationID, EventEntityID triplet
uniquely identifies the target entity, when known. For the FirePDU and DetonationPDU
messages, the munitionSiteID, munitionApplicationID, munitionEntityID triplet uniquely
identifies the munition entity (if known).

The FirePDU and DetonationPDU messages provide burst descriptor information in the
warhead (16-bit enumeration), fuse (16-bit enumeration), munitionQuantity (16-bit
unsigned integer), and firingRate (16-bit unsigned integer) fields.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 28 DIS component

dis.html[8/1/2020 9:59:38 AM]

The DetonationPDU provides notification that a munition has detonated or impacted so
that other entities can determine possible damage from the detonation. The detonated
field indicates if detonation has occurred (TRUE). The detonateTime field gives the time
(SFTime) at which the detonation is determined to have occurred. This enables other
entities to determine their position relative to the detonation at the time the detonation
occurred.

The DetonationPDU provides the detonationLocation in world coordinates, as well as the
detonationRelativeLocation, the location of the detonation or impact in the target
entity's coordinate system. The detonationResult field (8-bit enumeration) provides
information on the outcome of the detonation event.

The CreateEntityPDU notifies other entities of a new entity in the simulation. The siteID,
applicationID, entityID triplet described in 28.2.3 Common DIS fields, uniquely
identifies the new entity. A CreateEntityPdu is sent upon startup or creation of a new
entity.

The RemoveEntityPDU notifies other entities of the removal of an entity from the
simulation. The siteID, applicationID, entityID triplet described in 28.2.3 Common DIS
fields, uniquely identifies the entity to be removed. A RemoveEntityPDU is sent upon
shutdown or removal of an existing entity.

28.3.4 ReceiverPdu
ReceiverPdu : X3DNetworkSensorNode, X3DBoundedObject {
 SFString [in,out] address "localhost"
 SFInt32 [in,out] applicationID 1 [0,65535]
 SFBool [in out] bboxDisplay FALSE
 SFBool [in,out] enabled TRUE
 SFInt32 [in,out] entityID 0 [0,65535]
 SFVec3d [in,out] geoCoords 0 0 0 (-∞,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFString [in,out] multicastRelayHost ""
 SFInt32 [in,out] multicastRelayPort 0
 SFString [in,out] networkMode "standAlone" ["standAlone"|
 "networkReader"|
 "networkWriter"]
 SFInt32 [in,out] port 0 [0,65535]
 SFInt32 [in,out] radioID 0 [0,65535]
 SFFloat [in,out] readInterval 0.1 [0,∞)
 SFFloat [in,out] receivedPower 0.0 [0,∞)
 SFInt32 [in,out] receiverState 0 [0,65535]
 SFBool [in,out] rtpHeaderExpected FALSE
 SFInt32 [in,out] siteID 0 [0,65535]
 SFInt32 [in,out] transmitterApplicationID 1 [0,65535]
 SFInt32 [in,out] transmitterEntityID 0 [0,65535]
 SFInt32 [in,out] transmitterRadioID 0 [0,65535]
 SFInt32 [in,out] transmitterSiteID 0 [0,65535]
 SFBool [in out] visible TRUE
 SFInt32 [in,out] whichGeometry 1 [-1,∞)
 SFFloat [in,out] writeInterval 1.0 [0,∞)
 SFBool [out] isActive FALSE
 SFBool [out] isNetworkReader FALSE
 SFBool [out] isNetworkWriter FALSE
 SFBool [out] isRtpHeaderHeard FALSE
 SFBool [out] isStandAlone FALSE
 SFTime [out] timestamp 0
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) [0,∞) [0,∞) or −1 −1 −1
 MFString [] geoSystem ["GD","WE"] [see 25.2.3]
}

ReceiverPdu is an X3DChildNode node, and also implements the X3DBoundedObject
interface. The ReceiverPdu transmits the state of radio frequency (RF) receivers
modeled in the simulation. Fields in the ReceiverPdu node that were not previously
described in Common DIS Fields are: whichGeometry, radioID, receivedPower,
receiverState, transmitterSiteID, transmitterApplicationID, transmitterEntityID, and
transmitterRadioID.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 28 DIS component

dis.html[8/1/2020 9:59:38 AM]

The radioID field (16-bit unsigned integer) identifies a particular radio within a given
entity (entityID). The radioID is assigned sequentially, starting with 1. The combination
of Entity ID and Radio ID uniquely identify a radio within a simulation exercise. The
receivedPower field (32-bit flowing point) indicates the RF power received, after
applying any propagation loss and antenna gain. The field value is in units of decibel-
milliwatts (dBm). The receiverState (16-bit enumeration) indicates if the receiver is
currently idle or busy via one of the following enumerated values:

0 = off,
1 = on but not receiving, or
2 = on and receiving.

The transmitterEntityID (16-bit unsigned integer) identifies the transmitter entity that
has emitted the signal being received. The transmitterRadioID field (16-bit unsigned
integer) identifies the particular radio within the transmitter entity
(transmitterEntityID).

The transmitterSiteID field (16-bit unsigned integer) provides the unique DIS site
identifier for the transmitter entity. The transmitterApplicationID (16-bit unsigned
integer) provides the application identifier for the transmitter entity that is unique
within the DIS site (transmitterSiteID).

The whichGeometry field indicates to the rendering software what geometry to draw for
the receiverPdu node: −1 for no geometry; 0 for text trace; 1 for default geometry for
this node. Additional alternative geometry modes may optionally be supported by
browsers. Lack of support for higher modes reverts to whichGeometry value of 1.

The bboxCenter and bboxSize fields (of the X3DBoundedObject interface) specify the
center and size, respectively, of a cube bounding the display geometry (if any) for this
node.

28.3.5 SignalPdu
SignalPdu : X3DNetworkSensorNode, X3DBoundedObject {
 SFString [in,out] address "localhost"
 SFInt32 [in,out] applicationID 1 [0,65535]
 MFInt32 [in,out] data [] [0,255]
 SFBool [in out] bboxDisplay FALSE
 SFInt32 [in,out] dataLength 0 [0,65535]
 SFBool [in,out] enabled TRUE
 SFInt32 [in,out] encodingScheme 0 [0,65535]
 SFInt32 [in,out] entityID 0 [0,65535]
 SFVec3d [in,out] geoCoords 0 0 0 (-∞,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFString [in,out] multicastRelayHost ""
 SFInt32 [in,out] multicastRelayPort 0
 SFString [in,out] networkMode "standAlone" ["standAlone"|
 "networkReader"|
 "networkWriter"]
 SFInt32 [in,out] port 0 [0,65535]
 SFInt32 [in,out] radioID 0 [0,65535]
 SFFloat [in,out] readInterval 0.1 [0,∞)
 SFBool [in,out] rtpHeaderExpected FALSE
 SFInt32 [in,out] sampleRate 0 [0,65535]
 SFInt32 [in,out] samples 0 [0,65535]
 SFInt32 [in,out] siteID 0 [0,65535]
 SFInt32 [in,out] tdlType 0 [0,65535]
 SFBool [in out] visible TRUE
 SFInt32 [in,out] whichGeometry 1 [-1,∞)
 SFFloat [in,out] writeInterval 1.0 [0,∞)
 SFBool [out] isActive
 SFBool [out] isNetworkReader
 SFBool [out] isNetworkWriter
 SFBool [out] isRtpHeaderHeard
 SFBool [out] isStandAlone
 SFTime [out] timestamp
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or −1 −1 −1

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 28 DIS component

dis.html[8/1/2020 9:59:38 AM]

 MFString [] geoSystem ["GD","WE"] [see 25.2.3]
}

SignalPdu is an X3DChildNode node, and also implements the X3DBoundedObject
interface. Transmission of voice, audio or other data is communicated by issuing a
Signal PDU from the SignalPdu node. Fields in the SignalPdu node that were not
previously described in Common DIS Fields are: radioID, encodingScheme, tdlType,
sampleRate, dataLength, samples, data, andwhichGeometry.

The radioID field identifies a particular radio within a given entity (entityID). The
radioID (16-bit unsigned integer) is assigned sequentially, starting with 1. The
combination of Entity ID and Radio ID uniquely identify a radio within a simulation
exercise. The encodingScheme field (16-bit enumeration) designates both an Encoding
Class enumerated value (2 most significant bits):

0 = Encoded Voice;
1 = Raw Binary Data;
2 = Application-Specific Data;
3 = Database Index.

and an Encoding Type enumerated value (14 least significant bits):

1 = 8-bit mu-law;
2 = CVSD per MIL-STD-188-113;
3 = ADPCM per CCITT G.721;
4 = 16-bit linear PCM;
5 = 8-bit linear PCM;
6 = Vector Quantization.

The tdlType field (16-bit enumeration) specifies the Tactical Data Link (TDL) type as an
enumerated value when the Encoding Class is voice, raw binary, application-specific, or
database index representation of a TDL message. The field is set to zero when it is not
representing a TDL message.

The sampleRate field (32-bit unsigned integer) gives either (1) the sample rate in
samples per second if the Encoding Class is encoded audio or (2) the data rate in bits per
second for data transmissions. If the Encoding Class is database index, sampleRate is set
to zero.

The samples field (16-bit unsigned integer) gives the number of samples in the PDU if
the Encoding Class is encoded voice; otherwise, the field is set to zero.

The dataLength field (16-bit unsigned integer) specifies the number of bits of digital
voice audio or digital data being sent in the Signal PDU. If the Encoding Class is database
index, the dataLength field is set to the value 96.

The data field specifies the audio or digital data conveyed by the radio transmission.
The interpretation of the field depends on the value of the encodingScheme and tdlType
fields. Refer to IEEE 1278 (2.[IEEE1278]) for details.

The whichGeometry field indicates to the rendering software what geometry to draw for
the SignalPdu node: −1 for no geometry; 0 for text trace; 1 for default geometry for
this node. Additional alternative geometry modes may optionally be supported by

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 28 DIS component

dis.html[8/1/2020 9:59:38 AM]

browsers. Lack of support for higher modes reverts to whichGeometry value of 1.

The bboxCenter and bboxSize fields (of the X3DBoundedObject interface) specify the
center and size, respectively, of a cube bounding the display geometry (if any) for this
node.

28.3.6 TransmitterPdu
TransmitterPdu : X3DNetworkSensorNode, X3DBoundedObject {
 SFString [in,out] address "localhost"
 SFVec3f [in,out] antennaLocation 0 0 0 (-∞,∞)
 SFInt32 [in,out] antennaPatternLength 0 [0,65535]
 SFInt32 [in,out] antennaPatternType 0 [0,65535]
 SFInt32 [in,out] applicationID 1 [0,65535]
 SFInt32 [in,out] cryptoKeyID 0 [0,65535]
 SFInt32 [in,out] cryptoSystem 0 [0,65535]
 SFBool [in out] bboxDisplay FALSE
 SFBool [in,out] enabled TRUE
 SFInt32 [in,out] entityID 0 [0,65535]
 SFInt32 [in,out] frequency 0
 SFVec3d [in,out] geoCoords 0 0 0 (-∞,∞)
 SFInt32 [in,out] inputSource 0 [0,255]
 SFInt32 [in,out] lengthOfModulationParameters 0 [0,255]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFInt32 [in,out] modulationTypeDetail 0 [0,65535]
 SFInt32 [in,out] modulationTypeMajor 0 [0,65535]
 SFInt32 [in,out] modulationTypeSpreadSpectrum 0 [0,65535]
 SFInt32 [in,out] modulationTypeSystem 0 [0,65535]
 SFString [in,out] multicastRelayHost ""
 SFInt32 [in,out] multicastRelayPort 0
 SFString [in,out] networkMode "standAlone" ["standAlone"|
 "networkReader"|
 "networkWriter"]
 SFInt32 [in,out] port 0 [0,65535]
 SFFloat [in,out] power 0.0 [0,∞)
 SFInt32 [in,out] radioEntityTypeCategory 0 [0,255]
 SFInt32 [in,out] radioEntityTypeCountry 0 [0,65535]
 SFInt32 [in,out] radioEntityTypeDomain 0 [0,255]
 SFInt32 [in,out] radioEntityTypeKind 0 [0,255]
 SFInt32 [in,out] radioEntityTypeNomenclature 0 [0,255]
 SFInt32 [in,out] radioEntityTypeNomenclatureVersion 0 [0,65535]
 SFInt32 [in,out] radioID 0 [0,255]
 SFFloat [in,out] readInterval 0.1 [0,∞)
 SFVec3f [in,out] relativeAntennaLocation 0 0 0 (-∞,∞)
 SFBool [in,out] rtpHeaderExpected FALSE
 SFInt32 [in,out] siteID 0 [0,65535]
 SFFloat [in,out] transmitFrequencyBandwidth 0.0 (-∞,∞)
 SFInt32 [in,out] transmitState 0 [0,255]
 SFBool [in out] visible TRUE
 SFInt32 [in,out] whichGeometry 1 [-1,∞)
 SFFloat [in,out] writeInterval 1.0 [0,∞)
 SFBool [out] isActive FALSE
 SFBool [out] isNetworkReader FALSE
 SFBool [out] isNetworkWriter FALSE
 SFBool [out] isRtpHeaderHeard FALSE
 SFBool [out] isStandAlone FALSE
 SFTime [out] timestamp 0
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) [0,∞) [0,∞) or −1 −1 −1
 MFString [] geoSystem ["GD","WE"] [see 25.2.3]
}

TransmitterPdu is an X3DChildNode node, and also implements the X3DBoundedObject
interface. The TransmitterPdu provides detailed information about a radio transmitter.
Fields in the TransmitterPdu node that were not previously described in Common DIS
Fields are: radioID, radioEntityTypeKind, radioEntityTypeDomain,
radioEntityTypeCountry, radioEntityTypeCategory, radioEntityTypeNomenclature,
radioEntityTypeNomenclatureVersion, transmitState, inputSource, antennaLocation,
antennaPatternType, antennaPatternLength, frequency, transmitFrequencyBandwidth,
power, modulationTypeSpreadSpectrum, modulationTypeMajor, modulationTypeDetail,
modulationTypeSystem, lengthOfModulationParameters, cryptoSystem, cryptoKeyID,
relativeAntennaLocation, and whichGeometry.

The radioID field identifies a particular radio within a given entity (entityID). The
radioID (16-bit unsigned integer) is assigned sequentially, starting with 1. The
combination of Entity ID and Radio ID uniquely identify a radio within a simulation

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 28 DIS component

dis.html[8/1/2020 9:59:38 AM]

exercise.

The radio entity type is described by a combination of fields: radioEntityTypeKind,
radioEntityTypeDomain, radioEntityTypeCountry, radioEntityTypeCategory,
radioEntityTypeNomenclatureVersion, and radioEntityTypeNomenclature. The
radioEntityTypeKind is an 8-bit enumeration (e.g., value of 7 indicates Entity Kind of
"Radio"). The radioEntityTypeDomain field (8-bit enumeration) designates the domain
of operation of the radio enumerated value:

0 = other;
1 = land;
2 = air;
3 = surface;
4 = subsurface;
5 = space.

The radioEntityTypeCountry field (16-bit enumeration) identifies the country to which
the design of the radio entity is attributed (see 2.[IEEE1278]).

The radioEntityTypeCategory field (8-bit enumeration) specifies the main category
describing the radio entity. The radioEntityTypeNomenclature (16-bit enumeration)
specifies the nomenclature for a particular communications device. Nomenclatures are a
combination of letters and/or numbers arranged in a specific sequence to provide a
short method of identification. The radioEntityTypeNomenclatureVersion field designates
the specific modification or individual unit type of a series and/or family of equipment.

The transmitterState field (8-bit enumeration) indicates the operational state of the
transmitter entity enumerated value:

0 = off,
1 = on but not transmitting, or
2 = on and transmitting.

The inputSource (8-bit enumeration) specifies which position or data port in the entity
utilizing the radio is providing the input audio or data being transmitted enumerated
value:

0 = other,
1 = pilot,
2 = copilot,
3 = first officer,
4 = driver,
5 = loader,
6 = gunner,
7 = commander,
8 = digital data device, or
9 = intercom.

The antennaLocation field provides the location of the transmitter antenna in the DIS
coordinate system.

NOTE IEEE 1278 (see 2.[IEEE1278]) allocates 64-bit floating point values for the components of the antenna

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 28 DIS component

dis.html[8/1/2020 9:59:38 AM]

location vector, whereas it is represented here as SFVec3f for maximum interoperability with X3D.

The relativeAntennaLocation field provides an offset from the location of the transmitter
entity to simulate placement of antennas some distance from the transmitter
equipment.

The antennaPatternType field (16-bit enumeration) indicates the type of representation
for the radiation pattern from the antenna enumerated value:

0 = omnidirectional;
1 = beam;
2 = spherical harmonic.

The value of this field determines the interpretation of the Antenna Pattern Parameter
field of the DIS Transmitter PDU. The antennaPatternLength field (16-bit unsigned
integer) specifies the length of the Antenna Pattern Parameters field in octets (value is
a multiple of 8).

The frequency field specifies the center frequency (in Hertz) being used by the radio for
transmission. Note that IEEE 1278 allocates a 64-bit unsigned integer to represent
frequency values, whereas it is limited to SFInt32 in X3D. The
transmitFrequencyBandwidth (32-bit floating point) identifies the bandpass of the
transmitting radio entity. The power field (32-bit floating point) provides the average
power (in units of dBm) of the radio entity transmission.

Information about the type of modulation used for radio transmission is represented in
the Transmitter PDU by several fields. These fields identify the signal parameters that
are used to determine whether two radios may interoperate. The
modulationTypeSpreadSpectrum field indicates the spread spectrum technique or
combination of techniques in use enumerated value:

0 = frequency hopping;
1 = pseudo-noise;
2 = time hopping;
3-15 are to be determined.

The modulationTypeMajor (16-bit enumeration) provides the major classification of the
modulation type enumerated value:

0 = other;
1 = amplitude;
2 = amplitude and angle;
3 = angle;
4 = combination;
5 = pulse;
6 = unmodulated.

The modulationTypeDetail field (16-bit enumerations) contains detailed information
depending on the Major Modulation Type (modulationTypeMajor). The
modulationTypeSystem field (16-bit enumeration) specifies the interpretation of the
modulation parameter field(s) in the Transmitter PDU (enumerated value):

0 = other;

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 28 DIS component

dis.html[8/1/2020 9:59:38 AM]

1 = generic;
2 = HQ;
3 = HQII;
4 = HQIIA;
5 = SINCGARS;
6 = CCTT SINCGARS.

The cryptoSystem field (16-bit enumeration) identifies the crypto equipment used
enumerated value:

0 = other;
1 = KY-28;
2 = KY-58;
3 = Narrow Spectrum Secure Voice (NSVE);
4 = Wide Spectrum Secure Voice (WSVE);
5 = SINCGARS ICOM.

The cryptoKeyID field (16-bit unsigned integer) indicates whether the crypto equipment
is in the baseband encryption mode or the diphase encryption mode (high order bit of
the 16-bit field) and provides the key identifier (lower order 15 bits). If the key
identifiers of the transmitter and receiver match, they are considered to be using the
same encryption key (note that this is not an actual crypto key).

The whichGeometry field indicates to the rendering software what geometry to draw for
the TransmitterPdu node: −1 for no geometry; 0 for text trace; 1 for default geometry
for this node. Additional alternative geometry modes may optionally be supported by
browsers. Lack of support for higher modes reverts to whichGeometry value of 1.

The bboxCenter and bboxSize fields (of the X3DBoundedObject interface) specify the
center and size, respectively, of a cube bounding the display geometry (if any) for this
node.

 28.4 Support levels
The DIS component provides two levels of support as specified in Table 28.2.

Table 28.2 — DIS component support levels

Level Prerequisites Nodes/Features Support

1

Core 1
Time 1
Grouping 3
Networking 3
Rendering 1
Shape 1
Geometry3D 1
Interpolator 1
Point device sensor
1
Navigation 1

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 28 DIS component

dis.html[8/1/2020 9:59:38 AM]

 EspduTransform All fields fully
supported.

 ReceiverPDU All fields fully
supported.

 SignalPDU All fields fully
supported.

 TransmitterPDU All fields fully
supported.

2

Core 1
Time 1
Grouping 3
Networking 3
Rendering 1
Shape 1
Geometry3D 1
Interpolator 1
Point device sensor
1
Navigation 1

 All Level 1 DIS nodes. All fields fully
supported.

 DISEntityManager All fields fully
supported.

 DISEntityTypeMapping All fields fully
supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex G Recommended navigation behaviours

behaviours.html[8/1/2020 9:59:40 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

Annex G Recommended navigation behaviours

(informative)

 G.1 Introduction and table of contents
This annex describes basic X3D scene navigation recommended practice. This
recommended practice describes a browser-independent standardized keyboard
interface which implements X3D frequently used scene interactivity. Features that imply
interactivity are fundamental in X3D. The author expects to be able to specify multiple
viewpoints in a predicable sequence, the ability to point and select, and to enable
continuous navigation within the scene. Likewise the interactor expects to be able to
exercise scene functionality using predictable methods.

This recommended practice is intended to allow use of a core subset of the functionality
of an X3D browser, not unnecessarily limit interactive functionality which may be
provided by a browser.

Table G.1 lists the major topics in this annex.

 Table G.1 — Topics

G.1 Introduction and table of contents
G.2 Select from multiple viewpoints
G.3 Emulate pointing device
G.4 Select or activate pointing device
G.5 Disable/enable keyboard

Table G.1 Topics

 G.2 Select from multiple viewpoints
User navigation in X3D environments includes definition of multiple viewpoints. Where
the user is allowed to freely select between viewpoints, typical controls allow simple

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex G Recommended navigation behaviours

behaviours.html[8/1/2020 9:59:40 AM]

selection of:

Home (Initial) ViewPoint,
Last (Final) Viewpoint,
Next Viewpoint in Sequence, and
Previous Viewpoint in Sequence.

This annex recommends using the following keys:

HOME Initial Viewpoint
PGDN Next Viewpoint
PGUP Previous Viewpoint
END Final Viewpoint

 G.3 Emulate pointing device
The pointing device is used to control navigation through the scene. Where the user is
allowed to interact using the pointing device, typical controls allow up/down/right/left
pointing device movement to control movement of the viewpoint.

The objective is not to actually move the screen tracking cursor, but to allow navigation
control as if the tracking cursor or pointer is moved under control of the pointing
device.

This annex recommends using the following (arrow) keys to emulate relative tracking
pointer movement as follows:

UP Up
DOWN Down
LEFT Left
RIGHT Right

Movement left/right/up/down refers to motion of the user's view while navigating.

Activation of these keys causes movement of the viewpoint according to currently
selected navigation type:

WALK: forward/backward/left/right
FLY: forward/backward/left/right
EXAMINE: orbit up/down/left/right around center of rotation
 with camera pointed at center of rotation

 G.4 Select or activate pointing device
The pointing device is used to provide a means of selecting of a scene element. Where
the user is allowed to use this, the following action is recommended: activate pointing
device (left mouse click).

This annex recommends using the following key:

ENTER Left Mouse Click

 G.5 Disable/enable keyboard
It is recommended that the browser provide a means for the author to enable and
disable the keyboard.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex G Recommended navigation behaviours

behaviours.html[8/1/2020 9:59:40 AM]

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 8 Time component

time.html[8/1/2020 9:59:41 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

8 Time component

 8.1 Introduction

8.1.1 Name

The name of this component is "Time". This name shall be used when referring to this
component in the COMPONENT statement (see 7.2.5.4 Component statement).

8.1.2 Overview

This clause describes the Time component of this part of ISO/IEC 19775. This includes a
definition of the TimeSensor node, the fundamental means for connecting the X3D
world to the time base of the browser. Table 8.1 links to the major topics in this clause.

Table 8.1 — Topics

8.1 Introduction
8.1.1 Name
8.1.2 Overview

8.2 Concepts
8.2.1 Time model
8.2.2 Time origin
8.2.3 Discrete and continuous changes
8.2.4 Time-dependent nodes

8.2.4.1 Overview
8.2.4.2 Time cycles
8.2.4.3 Time activation
8.2.4.4 Pausing time

8.3 Abstract types
8.3.1 X3DTimeDependentNode

8.4 Node reference
8.4.1 TimeSensor

8.5 Support levels

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 8 Time component

time.html[8/1/2020 9:59:41 AM]

Figure 8.1 — Examples of time-dependent node execution

Table 8.1 — Topics
Table 8.2 — Time component support levels

 8.2 Concepts

 8.2.1 Time model

The browser controls the passage of time in a world by causing TimeSensor nodes to
generate events as time passes. Specialized browsers or authoring applications may
cause time to pass more quickly or slowly than in the real world, but typically the times
generated by TimeSensor nodes will approximate "real" time. A world's creator should
make no assumptions about how often a TimeSensor will generate events but can
safely assume that each time event generated will have a timestamp greater than any
previous time event.

 8.2.2 Time origin

Time (0.0) is equivalent to 00:00:00 GMT January 1, 1970. Absolute times are specified
in SFTime or MFTime fields as double-precision floating point numbers representing
seconds. Negative absolute times are interpreted as happening before 1970.

Processing an event with timestamp t may only result in generating events with
timestamps greater than or equal to t.

 8.2.3 Discrete and continuous changes

This International Standard does not distinguish between discrete events (such as those
generated by a TouchSensor) and events that are the result of sampling a conceptually
continuous set of changes (such as the fraction events generated by a TimeSensor). An
ideal X3D implementation would generate an infinite number of samples for continuous
changes, each of which would be processed infinitely quickly.

Before processing a discrete event, all continuous changes that are occurring at the
discrete event's timestamp shall behave as if they generate events at that same
timestamp.

Beyond the requirements that continuous changes be up-to-date during the processing
of discrete changes, the sampling frequency of continuous changes is implementation
dependent. Typically, a TimeSensor affecting a visible (or otherwise perceptible) portion
of the world will generate events once per frame, where a frame is a single rendering of
the world or one time-step in a simulation.

 8.2.4 Time-dependent nodes

8.2.4.1 Overview

AudioClip, MovieTexture, and TimeSensor are examples of nodes that are of

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 8 Time component

time.html[8/1/2020 9:59:41 AM]

X3DTimeDependentNode type and that activate, pause, resume, and deactivate
instantiations of themselves at specified times. Each of these node types contains the
inputOutput fields: startTime, pauseTime, resumeTime, stopTime, and loop,
elapsedTime, isActive, and isPaused. The values of the inputOutput fields are used to
determine when an instantiated node becomes active or inactive and enters or exits a
paused state. Also, under certain conditions, these instantiated nodes ignore events to
some of their inputOutput fields. A node ignores an input event by not accepting the
new value and not generating an xxx_changed event. An abstract time-dependent node
type can be realized as any one of AudioClip, MovieTexture, or TimeSensor.

 8.2.4.2 Time cycles

Time-dependent nodes execute in cycles. A cycle is defined by field data within the
node. If, at the end of a cycle, the value of loop is FALSE, execution is terminated (see
below for events at termination). Conversely, if loop is TRUE at the end of a cycle, a
time-dependent node continues execution into the next cycle. Thus, a time-dependent
node with loop TRUE at the end of every cycle continues cycling forever if
startTime ≥ stopTime, or until stopTime if startTime < stopTime, or until the conditions
to pause are set.

The elapsedTime outputOnly field delivers the current elapsed time since the
TimeSensor was activated and running, cumulative in seconds and not counting any
time while in a paused state.

 8.2.4.3 Time activation

The default values for each of the time-dependent nodes are specified such that any
node with default values is already inactive and resumed (and, therefore, will generate
no events upon loading). A time-dependent node can be defined such that it will be
active upon reading by specifying loop TRUE. This use of a non-terminating time-
dependent node should be used with caution since it incurs continuous overhead on the
simulation.

A time-dependent node generates an isActive TRUE event when it becomes active and
generates an isActive FALSE event when it becomes inactive. These are the only times at
which an isActive event is generated. In particular, isActive events are not sent at each
tick of a simulation.

A time-dependent node is inactive until its startTime is reached. When time now
becomes greater than or equal to startTime, an isActive TRUE event is generated and the
time-dependent node becomes active (now refers to the time at which the browser is
simulating and displaying the virtual world). When a time-dependent node is read from
a X3D file and the ROUTEs specified within the X3D file have been established, the node
should determine if it is active and, if so, generate an isActive TRUE event and begin
generating any other necessary events. However, if a node would have become inactive
at any time before the reading of the X3D file, no events are generated upon the
completion of the read.

An active time-dependent node will become inactive when stopTime is reached if
stopTime > startTime. The value of stopTime is ignored if stopTime ≤ startTime. Also,
an active time-dependent node will become inactive at the end of the current cycle if

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 8 Time component

time.html[8/1/2020 9:59:41 AM]

loop is FALSE. If an active time-dependent node receives a set_loop FALSE event,
execution continues until the end of the current cycle or until stopTime (if
stopTime > startTime), whichever occurs first. The termination at the end of cycle can
be overridden by a subsequent set_loop TRUE event.

Any set_startTime events to an active time-dependent node are ignored. Any
set_stopTime event where stopTime ≤ startTime sent to an active time-dependent node
is also ignored. A set_stopTime event where startTime < stopTime ≤ now sent to an
active time-dependent node results in events being generated as if stopTime has just
been reached. That is, final events, including an isActive FALSE, are generated and the
node becomes inactive. The stopTime_changed event will have the set_stopTime value.
Other final events are node-dependent (see 8.4.1 TimeSensor).

A time-dependent node may be restarted while it is active by sending a set_stopTime
event equal to the current time (which will cause the node to become inactive) and a
set_startTime event, setting it to the current time or any time in the future. These
events will have the same time stamp and should be processed as set_stopTime, then
set_startTime to produce the correct behaviour.

 8.2.4.4 Pausing Time

While an active time-dependent node is paused, it generates TRUE isPaused and
pauseTime_changed events and ceases to generate all other output events, while
maintaining (or "freezing") its state (holding the last output values and the clock's
internal time when the pausing conditions are met).

An active time-dependent node may be paused when its SFTime fields are such that
now ≥ pauseTime > resumeTime. When a time-dependent node is paused, the time-
dependent node shall send out a TRUE event on isPaused and a pauseTime_changed
event reporting the simulation time when the node was paused.

An active but paused time-dependent node shall resume at the first simulation tick
when now ≥ resumeTime > pauseTime. The time-dependent node then resumes
generating its output events from the paused state at the simulation tick. A
resumeTime_changed event is also generated reporting the simulation time when the
node was resumed.

Figure 8.1 illustrates the behavior of several common cases of time-dependent nodes.
In each case, the initial conditions of startTime, stopTime, loop, and the time-
dependent node's cycle interval are labelled, the red region denotes the time period
during which the time-dependent node is active, the arrows represent input events
received by, and output events sent by, the time-dependent node, and the horizontal
axis represents time.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 8 Time component

time.html[8/1/2020 9:59:41 AM]

Figure 8.1 — Examples of time-dependent node execution

 8.3 Abstract types

8.3.1 X3DTimeDependentNode
X3DTimeDependentNode : X3DChildNode {
 SFString [in,out] description ""
 SFBool [in,out] enabled FALSE
 SFBool [in,out] loop FALSE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFTime [in,out] pauseTime 0 (-∞,∞)
 SFTime [in,out] resumeTime 0 (-∞,∞)
 SFTime [in,out] startTime 0 (-∞,∞)
 SFTime [in,out] stopTime 0 (-∞,∞)
 SFTime [out] elapsedTime
 SFBool [out] isActive
 SFBool [out] isPaused
}

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 8 Time component

time.html[8/1/2020 9:59:41 AM]

This abstract node type is the base node type from which all time-dependent nodes are
derived.

The description field specifies a textual description for intended purpose of the node.
This information is beneficial for authoring, and may be used by optional browser-
specific user interfaces that present users with more detailed information about active
time-dependent behavior.

The enabled field enables and disables operation in a manner appropriate for the
associated node.

See 8.2 Concepts for a detailed discussion of fields in time-dependent nodes.

 8.4 Node reference

 8.4.1 TimeSensor
TimeSensor : X3DTimeDependentNode, X3DSensorNode {
 SFTime [in,out] cycleInterval 1 (0,∞)
 SFString [in,out] description ""
 SFBool [in,out] enabled TRUE
 SFBool [in,out] loop FALSE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFTime [in,out] pauseTime 0 (-∞,∞)
 SFTime [in,out] resumeTime 0
 SFTime [in,out] startTime 0 (-∞,∞)
 SFTime [in,out] stopTime 0 (-∞,∞)
 SFTime [out] cycleTime
 SFTime [out] elapsedTime
 SFFloat [out] fraction_changed
 SFBool [out] isActive
 SFBool [out] isPaused
 SFTime [out] time
}

TimeSensor nodes generate events as time passes. TimeSensor nodes can be used for
many purposes including:

a. driving continuous simulations and animations;
b. controlling periodic activities (e.g., one per minute);
c. initiating single occurrence events such as an alarm clock.

The TimeSensor node contains two discrete outputOnly fields: isActive and cycleTime.
The isActive outputOnly field sends TRUE when the TimeSensor node begins running, and
FALSE when it stops running. The cycleTime outputOnly field sends a time event at
startTime and at the beginning of each new cycle (useful for synchronization with other
time-based objects). The remaining outputOnly fields generate continuous events. The
fraction_changed outputOnly field, an SFFloat in the closed interval [0,1], sends the
completed fraction of the current cycle. The time outputOnly field sends the absolute
time for a given simulation tick.

If the enabled field is TRUE, the TimeSensor node is enabled and may be running. If a
set_enabled FALSE event is received while the TimeSensor node is running, the sensor
performs the following actions:

d. evaluates and sends all relevant outputs;
e. sends a FALSE value for isActive;
f. disables itself.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 8 Time component

time.html[8/1/2020 9:59:41 AM]

Input events on the fields of the TimeSensor node (e.g., set_startTime) are processed
and their corresponding outputOnly fields (e.g., startTime_changed) are sent regardless
of the state of the enabled field. The remaining discussion assumes enabled is TRUE.

The loop, startTime, stopTime and isActive fields and their effects on the TimeSensor
node are discussed in detail in 8.2 Concepts. The "cycle" of a TimeSensor node lasts for
cycleInterval seconds. The value of cycleInterval shall be greater than zero.

A cycleTime outputOnly field can be used for synchronization purposes such as sound
with animation. The value of a cycleTime event will be equal to the time at the
beginning of the current cycle. A cycleTime event is generated at the beginning of every
cycle, including the cycle starting at startTime. The first cycleTime event for a
TimeSensor node can be used as an alarm (single pulse at a specified time).

When a TimeSensor node becomes active, it generates an isActive = TRUE event and
begins generating time, fraction_changed, and cycleTime events which may be routed
to other nodes to drive animation or simulated behaviours. The behaviour at read time
is described below. The time event sends the absolute time for a given tick of the
TimeSensor node (SFTime/MFTime fields and events represent the number of seconds
since midnight GMT January 1, 1970).

fraction_changed events output a floating point value in the closed interval [0, 1]. At
startTime the value of fraction_changed is 0. After startTime, the value of
fraction_changed in any cycle will progress through the range (0.0, 1.0]. At
startTime + N × cycleInterval, for N = 1, 2, ..., (i.e., at the end of every cycle), the
value of fraction_changed is 1.

Let now represent the time at the current simulation tick. Then the time and
fraction_changed output-only fields can then be computed as:

time = now

temp = (now - startTime) / cycleInterval
 f = fractionalPart(temp)

 if (f == 0.0 && now > startTime) fraction_changed = 1.0
 else fraction_changed = f

where fractionalPart(x) is a function that returns the fractional part, (that is, the digits
to the right of the decimal point), of a nonnegative floating point number.

A TimeSensor node can be set up to be active at read time by specifying loop TRUE (not
the default) and stopTime less than or equal to startTime (satisfied by the default
values). The time events output absolute times for each tick of the TimeSensor node
simulation. The time events shall start at the first simulation tick greater than or equal
to startTime. time events end at stopTime, or at startTime + N × cycleInterval for some
positive integer value of N, or loop forever depending on the values of the other fields.
An active TimeSensor node shall stop at the first simulation tick when
now ≥ stopTime > startTime.

No guarantees are made with respect to how often a TimeSensor node generates time
events, but a TimeSensor node shall generate events at least at every simulation tick.
TimeSensor nodes are guaranteed to generate final time and fraction_changed events.
If loop is FALSE at the end of the Nth cycleInterval and was TRUE at
startTime + M cycleInterval for all 0 < M < N, the final time event will be generated
with a value of (startTime + N × cycleInterval) or stopTime (if stopTime > startTime),

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 8 Time component

time.html[8/1/2020 9:59:41 AM]

whichever value is less. If loop is TRUE at the completion of every cycle, the final event is
generated as evaluated at stopTime (if stopTime > startTime) or never.

An active TimeSensor node ignores set_cycleInterval and set_startTime events. An
active TimeSensor node also ignores set_stopTime events for set_stopTime less than or
equal to startTime. For example, if a set_startTime event is received while a
TimeSensor node is active, that set_startTime event is ignored (the startTime field is
not changed, and a startTime_changed event is not generated). If an active TimeSensor
node receives a set_stopTime event that is less than the current time, and greater than
startTime, it behaves as if the stopTime requested is the current time and sends the
final events based on the current time (note that stopTime is set as specified in the
field).

A TimeSensor read from a X3D file shall generate isActive TRUE, time and
fraction_changed events if the sensor is enabled and all conditions for a TimeSensor to
be active are met.

 8.5 Support levels
The Time component provides four levels of support as specified in Table 8.2. Level 1
provides basic support for TimeSensor. Level 2 adds support for all of the fields of the
TimeSensor node.

 Table 8.2 — Time component support levels

Level Prerequisites Nodes/Features Support

1 Core 1

 X3DTimeDependentNode
(abstract) n/a

 TimeSensor

pause optionally
supported.
isPaused optionally
supported. resumeTime
optionally supported.

2 Core 1

Level 1 supported node All fields as supported by
Level 1.

TimeSensor All fields fully supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 29 Scripting component

scripting.html[8/1/2020 9:59:43 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

29 Scripting component

 29.1 Introduction

29.1.1 Name

The name of this component is "Scripting". This name shall be used when referring to
this component in the COMPONENT statement (see 7.2.5.4 Component statement).

29.1.2 Overview

This clause describes the scripting component of this part of ISO/IEC 19775. This
includes how Script nodes are used to effect changes in X3D worlds. Table 29.1
provides links to the major topics in this clause.

 Table 29.1 — Topics

29.1 Introduction
29.1.1 Name
29.1.2 Overview

29.2 Concepts
29.2.1 Overview
29.2.2 Script execution
29.2.3 Initialize() and shutdown()
29.2.4 EventsProcessed()
29.2.5 PrepareEvents()
29.2.6 Scripts with direct outputs
29.2.7 Asynchronous scripts
29.2.8 Script languages
29.2.9 Event handling
29.2.10 Accessing fields and events

29.3 Abstract types
29.3.1 X3DScriptNode

29.4 Node reference

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 29 Scripting component

scripting.html[8/1/2020 9:59:43 AM]

29.4.1 Script
29.5 Support levels

Table 29.1 — Topics
Table 29.2 — Script component support levels

 29.2 Concepts

29.2.1 Overview

Authors often require that X3D worlds change dynamically in response to user inputs,
external events, and the current state of the world. The proposition "if the vault is
currently closed AND the correct combination is entered, open the vault" illustrates the
type of problem which may need addressing. These kinds of decisions are expressed
programmatically using the Scene Access Interface (SAI) specified in Part 2 of ISO/IEC
19775. The programmatic elements are provided internally from Script nodes (see
29.4.1 Script) or externally from other application programs. These application
programs are called scripting environments. In both cases, the scripting environment
can receive events, process them, and send new events. Scripting environments can
keep track of information between subsequent executions (i.e., retaining internal state
over time).

This clause describes the general mechanisms and semantics of all scripting access. 2.
[I19775-2] defines a set of abstract scripting services and specific languages bound to
those services. For internal scripting, event processing is performed by a program or
script contained in (or referenced by) the Script node's url field. This program or script
may be written in any programming language that the browser supports.

 29.2.2 Script execution

A Script node is activated when it receives an event. The browser shall then execute the
program in the Script node's url field (passing the program to an external interpreter if
necessary). The program can perform a wide variety of actions including sending out
events (and thereby changing the scene), performing calculations, and communicating
with servers elsewhere on the Internet. A detailed description of the ordering of event
processing is contained 4.4.8 Event model.

Script nodes may also be executed at initialization and shutdown as specified in 29.2.3
initialize() and shutdown(). Some scripting languages may allow the creation of
separate processes from scripts, resulting in continuous execution (see 29.2.7
Asynchronous scripts).

Script nodes receive events in timestamp order. Any events generated as a result of
processing an event are given timestamps corresponding to the event that generated
them. Conceptually, it takes no time for a Script node to receive and process an event,
even though in practice it does take some amount of time to execute a Script.

When a set_url event is received by a Script node that contains a script that has been
previously initialized for a different URL, the shutdown() service of the current script is

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 29 Scripting component

scripting.html[8/1/2020 9:59:43 AM]

called (see 29.2.3 initialize() and shutdown(). Until the new script becomes available,
the script shall behave as though it has no executable content. When the new script
becomes available, the Initialize() service is invoked. The limiting case is when the URL
contains inline code that can be immediately executed upon receipt of the set_url event
(EXAMPLE ecmascript: protocol). In this case, it can be assumed that the old code is
unloaded and the new code loaded instantaneously, after any dynamic route requests
have been performed.

29.2.3 initialize() and shutdown()

The scripting language binding may define an initialize() method. This method shall be
invoked before the browser presents the world to the user and before any events are
processed by any nodes in the same X3D file as the Script node containing this script.
Events generated by the initialize() method shall have timestamps less than any other
events generated by the Script node. This allows script initialization tasks to be
performed prior to the user interacting with the world.

Likewise, the scripting language binding may define a shutdown() method. This method
shall be invoked when the corresponding Script node is deleted or the world containing
the Script node is unloaded or replaced by another world. This method may be used as
a clean-up operation, such as informing external mechanisms to remove temporary
files. No other methods of the script may be invoked after the shutdown() method has
completed, though the shutdown() method may invoke methods or send events while
shutting down. Events generated by the shutdown() method that are routed to nodes
that are being deleted by the same action that caused the shutdown() method to
execute will not be delivered. The deletion of the Script node containing the shutdown()
method is not complete until the execution of its shutdown() method is complete.

29.2.4 eventsProcessed()

The scripting language binding may define an eventsProcessed() method that is called
after one or more events are received. This method allows scripts that do not rely on
the order of events received to generate fewer events than an equivalent script that
generates events whenever events are received. If it is used in some other time-
dependent way, eventsProcessed() may be nondeterministic, since different browser
implementations may call eventsProcessed() at different times.

For a single event cascade, a given Script node's eventsProcessed() method shall be
called at most once. Events generated from an eventsProcessed() method are given the
timestamp of the last event processed.

29.2.5 prepareEvents()

The scripting language binding may define a prepareEvents() method that is called only
once per timestamp. prepareEvents() is called before any ROUTE processing and allows
a Script to collect any asynchronously generated data, such as input from a network
queue or the results of calling field listeners, and generate events to be handled by the
browser's normal event processing sequence as if it were a built-in sensor node.

 29.2.6 Scripts with direct outputs

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 29 Scripting component

scripting.html[8/1/2020 9:59:43 AM]

Script nodes that have access to other nodes (via SFNode and MFNode fields) and that
have their directOutput field set to TRUE may directly post events to those nodes. They
may also read the last value sent from any of the node's fields.

When setting a value in another node, implementations shall set values in other nodes
by sending input events to the corresponding fields. These events shall be part of the
current event cascade (see 4.4.8.3 Execution model).

 29.2.7 Asynchronous scripts

Some languages supported by X3D browsers may allow Script nodes to spontaneously
generate events, allowing users to create Script nodes that function like new
X3DSensorNode nodes. In these cases, the Script is generating the initial events that
causes the event cascade, and the scripting language and/or the browser shall
determine an appropriate timestamp for that initial event. Such events are then sorted
into the event stream and processed like any other event, following all of the same
rules including those for looping.

 29.2.8 Script languages

The Script node's url field shall allow for both inline scripting and script reference via a
URL. The MIME-type of the returned data defines the language type. Additionally,
instructions can be included in-line using scripting language protocols as defined in
9.2.3 Scripting language protocols for the specific language (from which the language
type is inferred).

EXAMPLE The following Script node has one field named start and three different URL values specified in the url
field: Java, ECMAScript, and inline ECMAScript:

Script {
 field SFBool start
 url ["http://foo.com/fooBar.class",
 "http://foo.com/fooBar.js",
 "ecmascript:function start(value, timestamp) { ... }"
]
}

When a start event is received by the Script node, one of the scripts found in the url field is executed. The Java
platform bytecode is the first choice, the ECMAScript code is the second choice, and the inline ECMAScript code
the third choice.

A description of order of preference for multiple valued URL fields may be found in 9.3.2
X3DUrlObject.

 29.2.9 Event handling

Events received by the Script node are passed to the appropriate scripting language
method in the script. The method's name depends on the language type used. In some
cases, it is identical to the name of the field; in others, it is a general callback method
for all events (see the scripting language annexes for details). The method is passed
two arguments: the event value and the event timestamp.

 29.2.10 Accessing fields and events

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 29 Scripting component

scripting.html[8/1/2020 9:59:43 AM]

The fields of a Script node are accessible from scripting language methods. Events can
be routed to fields of Script nodes and the fields of Script nodes can be routed to fields
of other nodes. Another Script node with access to this node can access the fields just
like any other node (see 29.2.6 Scripts with direct outputs).

It is recommended that user-defined field names defined in Script nodes follow the
naming conventions described in 2.[I19775-2]

The field values can be read or written and are persistent across method call, and
changes to a field can notify the node through its update method. See 5 Field type
reference for more information on field types.

 29.3 Abstract types

29.3.1 X3DScriptNode (abstract)
X3DScriptNode : X3DChildNode, X3DURLObject {
 SFString [in,out] description ""
 SFBool [in,out] load TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFTime [in,out] refresh 0.0 [0,∞)
 MFString [in,out] url [] [URI]
}

This abstract node type is the base type for all scripting nodes.

 29.4 Node reference

 29.4.1 Script
Script : X3DScriptNode {
 SFString [in,out] description ""
 SFBool [in,out] load TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFTime [in,out] refresh 0.0 [0,∞)
 MFString [in,out] url [] [URI]
 SFBool [] directOutput FALSE
 SFBool [] mustEvaluate FALSE
 # And any number of:
 fieldType [in] fieldName
 fieldType [in,out] fieldName initialValue
 fieldType [out] fieldName
 fieldType [] fieldName initialValue
}

The Script node is used to program behaviour in a scene. Script nodes typically:

a. signify a change or user action;
b. receive events from other nodes;
c. contain a program module that performs some computation;
d. effect change somewhere else in the scene by sending events.

Each Script node has associated programming language code, referenced by the url
field, that is executed to carry out the Script node's function. That code is referred to as
the "script" in the rest of this description. Details on the url field can be found in 9.2.1
URLs.

Browsers are not required to support any specific language. Detailed information on
scripting languages is described in 29.2 Concepts. Browsers supporting a scripting
language for which a language binding is specified shall adhere to that language binding

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 29 Scripting component

scripting.html[8/1/2020 9:59:43 AM]

(see ISO/IEC 19777).

Sometime before a script receives the first event it shall be initialized (any language-
dependent or user-defined initialize() is performed). The script is able to receive and
process events that are sent to it. Each event that can be received shall be declared in
the Script node using the same syntax as is used in a prototype definition:

 inputOnly type name

The type can be any of the standard X3D fields (as defined in 5 Field type reference).
Name shall be an identifier that is unique for this Script node.

The Script node is able to generate events in response to the incoming events. Each
event that may be generated shall be declared in the Script node using the following
syntax:

 outputOnly type name

If the Script node's mustEvaluate field is FALSE, the browser may delay sending input
events to the script until its outputs are needed by the browser. If the mustEvaluate
field is TRUE, the browser shall send input events to the script as soon as possible,
regardless of whether the outputs are needed. The mustEvaluate field shall be set to
TRUE only if the Script node has effects that are not known to the browser (such as
sending information across the network). Otherwise, poor performance may result.

Once the script has access to a X3D node (via an SFNode or MFNode value either in one
of the Script node's fields or passed in as an attribute), the script is able to read the
contents of that node's fields. If the Script node's directOutput field is TRUE, the script
may also send events directly to any node to which it has access, and may dynamically
establish or break routes. If directOutput is FALSE (the default), the script may only
affect the rest of the world via events sent through its fields. The results are undefined
if directOutput is FALSE and the script sends events directly to a node to which it has
access.

A script is able to communicate directly with the X3D browser to get information such
as the current time and the current world URL. This is strictly defined generally by the
SAI services (see Part 2 of ISO/IEC 19775) and by the language bindings of the SAI
(see ISO/IEC 19777) for the specific scripting language being used.

The location of the Script node in the scene graph has no affect on its operation.

EXAMPLE If a parent of a Script node is a Switch node with whichChoice set to "−1" (i.e., ignore its children), the
Script node continues to operate as specified (i.e., it receives and sends events).

If the refresh field results in a new script getting loaded or the prior script getting
reloaded, then all fields are re-initialized to their initially defined values, and the
initialize() method is invoked, if provided, as defined in 29.2.3 initialize() and
shutdown().

WARNING Automatically reloading content can have security considerations and needs
to be considered carefully.

 29.5 Support levels

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 29 Scripting component

scripting.html[8/1/2020 9:59:43 AM]

The Scripting component provides one level of support as specified in Table 29.2.

 Table 29.2 — Scripting component support levels

Level Prerequisites Nodes/Features Support

1 Core 1

X3ScriptNode (abstract) n/a

Script node All fields fully supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex H CADInterchange profile

CADInterchange.html[8/1/2020 9:59:50 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

Annex H

(normative)

CADInterchange profile

 H.1 General
This annex defines the X3D components that comprise the CADInterchange profile. This
annex includes not only the nodes that shall be supported but also which fields in the
supported nodes may be ignored.

This profile is targeted towards:

Distillation of computer-aided design (CAD) data to downstream applications.
Appropriately supporting Geometry and Appearance capabilities data for CAD.

 H.2 Topics
Table H.1 provides links to the major topics in this annex.

 Table H.1 — Topics

H.1 General
H.2 Topics in this annex
H.3 Component support
H.4 Conformance criteria
H.5 Node set
H.6 Other limitations

Table H.1 — Topics
Table H.2 — Components and levels
Table H.3 — Nodes for conforming to the CADInterchange profile
Table H.4 — Other limitations
Table H.5 — Node set

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex H CADInterchange profile

CADInterchange.html[8/1/2020 9:59:50 AM]

 H.3 Component support
Table H.2 lists the components and their levels which shall be supported in the
CADInterchange profile. Tables H.2 and H.3 describe limitations on required support for
nodes and fields contained within these components.

Table H.2 — Components and levels

Component Level Reference

Core 1 7.5 Support levels

Networking 2 9.5 Support levels

Grouping 1 10.5 Support levels

Rendering 4 11.5 Support levels

Shape 2 12.5 Support levels

Lighting 1 17.5 Support levels

Texturing 2 18.5 Support levels

Navigation 2 23.4 Support levels

Shaders 1 31.5 Support levels

CADGeometry 2 32.5 Support levels

 H.4 Conformance criteria
Conformance to this profile shall include conformance criteria defined by the
specifications for those components and levels listed in Table H.2.

In Tables H.3 and H.4, the first column defines the item for which conformance is being
defined. In some cases, general limits are defined but are later overridden in specific
cases by more restrictive limits. The second column defines the requirements for an
X3D file conforming to the CADInterchange profile; if an X3D file contains any items
that exceed these limits, it may not be possible for an X3D browser conforming to the
CADInterchange profile to successfully parse that X3D file. The third column defines the
minimum complexity for an X3D scene that an X3D browser conforming to the
CADInterchange profile shall be able to present to the user. Fields flagged as "not
supported" may be supported by browsers which conform to the CADInterchange
profile. The word "ignore" in the minimum browser support column refers only to the
display of the item; in particular, set_ events to ignored inputOutput fields shall still
generate corresponding _changed events.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex H CADInterchange profile

CADInterchange.html[8/1/2020 9:59:50 AM]

 H.5 Node set
Table H.3 lists the nodes which shall be supported in the CADInterchange profile and
specifies any fields in these nodes for which this profile requires less than full support.

Table H.3 — Nodes for conforming to the CADInterchange profile

Item X3D File
Limit

Minimum Browser
Support

Anchor No restrictions. Full support.

Appearance No restrictions. fillProperties not supported.

CADAssembly No restrictions. Full support.

CADFace No restrictions. Full support.

CADLayer No restrictions. Full Support

CADPart No restrictions. Full support.

Billboard No restrictions. Can treat as just a grouping
node, no runtime requirements

Collision No restrictions. Can treat as just a grouping
node, no runtime requirements

Color 5,592,405
colours. 5,592,405 colours.

ColorRGBA 4,194,304
colours. 4,194,304 colours

Coordinate 16,777,216
points 16,777,216 points.

DirectionalLight No restrictions. Full support.

FragmentShader No restrictions. Full support.

Group Restrictions as
for all groups.

addChildren not supported.
removeChildren not supported.
Otherwise as for all groups.

ImageTexture

JPEG (2.
[JPEG]) and
PNG (2.
[I15948])
format.

JPEG (2.[JPEG]) and PNG (2.
[I15948]) format.

5,592,405 total
vertices. 5,592,405 total vertices.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex H CADInterchange profile

CADInterchange.html[8/1/2020 9:59:50 AM]

IndexedLineSet 5,592,405
indices in any
index field.

5,592,405 indices in any index
field.

IndexedQuadSet

5,592,405 total
faces.
5,592,405
indices in any
index field.

5,592,405 total faces. 5,592,405
indices in any index field.

IndexedTriangleFanSet

5,592,405 total
faces.
5,592,405
indices in any
index field.

5,592,405 total faces. 5,592,405
indices in any index field.

IndexedTriangleSet

5,592,405 total
faces.
5,592,405
indices in any
index field.

5,592,405 total faces. 5,592,405
indices in any index field.

IndexedTriangleStripSet

5,592,405 total
faces.
5,592,405
indices in any
index field.

5,592,405 total faces. 5,592,405
indices in any index field.

Inline No restrictions. Optional support for load field.
Other fields full support.

LineProperties No restrictions. Full support.

LineSet 5,592,405 total
vertices. 5,592,405 total vertices.

LOD No restrictions.
Runtime switching not required.
An implementation can select
one level and display

Material No restrictions. Full support.

MetadataBoolean No restrictions. Full support.

MetadataDouble No restrictions. Full support.

MetadataFloat No restrictions. Full support.

MetadataInteger No restrictions. Full support.

MetadataSet No restrictions. Full support.

MetadataString No restrictions. Full support.

MultiShader No restrictions. Full support.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex H CADInterchange profile

CADInterchange.html[8/1/2020 9:59:50 AM]

MultiTexture No restrictions.

At least one texture displayed
per node with any number
specified.

Full support.

MultiTextureCoordinate 15,000
coordinates. 15,000 coordinates.

MultiTextureTransform No restrictions. Full support.

NavigationInfo No restrictions.

avatarSize optionally supported.
speed optionally supported. type
optionally supported.
visibilityLimit optionally
supported.

Normal 5,592,405
normals 5,592,405 normals.

PixelTexture 512 width. 512
height.

512 width. 512 height. Display
fully transparent and fully
opaque pixels.

PointSet 5,592,405
points. 5,592,405 points.

QuadSet

5,592,405 total
faces.
5,592,405
indices in any
index field.

5,592,405 total faces. 5,592,405
indices in any index field.

Shader No restrictions. Full support.

ShaderAppearance No restrictions. Full support.

Shape No restrictions. Full support.

TextureCoordinate 5,592,405
coordinates. 5,592,405 coordinates.

TextureCoordinateGenerator No restrictions. Full support.

TextureTransform No restrictions. Full support.

Transform Restrictions as
for all groups.

addChildren not supported.
removeChildren not supported.
Otherwise, full support except as
for all groups.

TriangleFanSet

5,592,405
triangles per
fan. 5,592,405

5,592,405 triangles per fan.
5,592,405 total triangles.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex H CADInterchange profile

CADInterchange.html[8/1/2020 9:59:50 AM]

total triangles.

TriangleSet 5,592,405
triangles 5,592,405 triangles

TriangleStripSet

5,592,405
triangles per
strip.
5,592,405 total
triangles

5,592,405 triangles per strip.
5,592,405 total triangles.

Viewpoint No restrictions. Full support.

VertexShader No restrictions. Full support.

WorldInfo No restrictions. Full support.

 H.6 Other limitations
Table H.4 specifies other aspects of X3D functionality which are supported by this
profile. Note that general items refer only to those specific nodes listed in Table H.3.

Table H.4 — Other limitations

Item X3D File Limit Minimum Browser
Support

All groups 16777216 children. 16777216 children.

All lights 8 simultaneous lights. 8 simultaneous lights.

Names for
DEF/field 50 utf8 octets. 50 utf8 octets.

All url fields 10 URLs.

10 URLs. URN's ignored.
Support "http", "file", and "ftp"
protocols.
Support relative URLs where
relevant.

SFBool No restrictions. Full support.

SFColor No restrictions. Full support.

SFColorRGBA No restrictions. Full support.

SFDouble No restrictions. Full support. Range ±1e±12.
Precision 1e-7.

SFFloat No restrictions. Full support.

SFImage 512 width. 512 height. 512 width. 512 height.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex H CADInterchange profile

CADInterchange.html[8/1/2020 9:59:50 AM]

SFInt32 No restrictions. Full support.

SFNode No restrictions. Full support.

SFRotation No restrictions. Full support.

SFString 30,000 utf8 octets. 30,000 utf8 octets.

SFTime No restrictions. Full support.

SFVec2d 15,000 values. 15,000 values.

SFVec2f 15,000 values. 15,000 values.

SFVec3d 15,000 values. 15,000 values.

SFVec3f 15,000 values. 15,000 values.

MFColor 15,000 values. 15,000 values.

MFColorRGBA 15,000 values. 15,000 values.

MFDouble 1000 values. 1000 values.

MFFloat 1,000 values. 1,000 values.

MFInt32 20,000 values. 20,000 values.

MFNode 500 values. 500 values.

MFRotation 1,000 values. 1,000 values.

MFString 30,000 utf8 octets per string,
10 strings.

30,000 utf8 octets per string, 10
strings.

MFTime 1,000 values. 1,000 values.

MFVec2d 15,000 values. 15,000 values.

MFVec2f 15,000 values. 15,000 values.

MFVec3d 15,000 values. 15,000 values.

MFVec3f 15,000 values. 15,000 values.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 9 Networking component

networking.html[8/1/2020 9:59:52 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

9 Networking component

 9.1 Introduction

9.1.1 Name

The name of this component is "Networking". This name shall be used when referring to
this component in the COMPONENT statement (see 7.2.5.4 Component statement).

9.1.2 Overview

This clause describes the Networking component of this part of ISO/IEC 19775. This
component defines the node types and other features used to access file-based and
streaming resources on the World Wide Web. Table 9.1 lists the major topics in this
clause.

 Table 9.1 — Topics

9.1 Introduction
9.1.1 Name
9.1.2 Overview

9.2 Concepts
9.2.1 URLs
9.2.2 Relative URLs
9.2.3 Scripting language protocols
9.2.4 Browser options
9.2.5 IMPORT statement
9.2.6 EXPORT statement

9.3 Abstract types
9.3.1 X3DNetworkSensorNode
9.3.2 X3DUrlObject

9.4 Node reference
9.4.1 Anchor
9.4.2 Inline
9.4.3 LoadSensor

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 9 Networking component

networking.html[8/1/2020 9:59:52 AM]

9.5 Support levels

Table 9.1 — Topics
Table 9.2 — Browser options
Table 9.3 — Networking component support levels

 9.2 Concepts

 9.2.1 URLs

A URL (Uniform Resource Locator), described in 2.[RFC1738], is a form of Universal
Resource Identifier (URI) that specifies a file located on a particular server and
accessed through a specified protocol (such as file:, http: or https:). In this part of
ISO/IEC 19775, the upper-case term URL refers to a Uniform Resource Locator, while
the italicized lower-case version url refers to a field which may contain URLs or in-line
encoded data.

Higher levels of this component extend the URL support of a browser to additional
forms of URI, such as supporting URNs (Uniform Resource Name), which are another
form of URI. A URN allows an abstract resolution mechanism to be invoked to locate a
resource (see 2.[RFC2141]). This allows a resource to be located on the local machine
or a platform dependent resource to be located using the URN along with platform-
specific identifiers.

For levels that support URNs, the url field shall also support the Web3D Consortium
URN Namespace (see 2.[RFC3541]) and also support the Universal Media Library that
may be accessed using that namespace. A URN allows an abstract resolution
mechanism to be invoked to locate a resource (see 2.[RFC2141]). This allows a
resource to located on the local machine or a platform dependent resource to be located
using the URN along with platform specific identifiers. A component extension can
extend the URL support of a browser by supporting other URN naming schemes. More
information on the url field may be found in 9.3.2 X3DUrlObject.

More general information on URLs is described in 2.[RFC1738].

 9.2.2 Relative URLs

Relative URLs are handled as described in 2.[RFC1808]. All name scopes (see 4.4.7
Run-time name scope) maintain a base URI which is used for all relative URLs within
that name scope. Whenever a node with a relative URL is defined, that node may only
reference assets available within its name scope. It has no advance knowledge of how it
may or may not be included by an Inline node or referenced by an external prototype
instantiation. The base document for EXTERNPROTO statements or nodes that contain a
URL field is:

a. The X3D file in which an EXTERNPROTO is declared, namely the value of the
externprotoURL field specified in 7.2.5.9 EXTERNPROTO statement.

b. The X3D file in which the parent PROTO is declared, if the statement is inside the
body of a prototype declaration, namely the value of the protoDefinition field

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 9 Networking component

networking.html[8/1/2020 9:59:52 AM]

specified in 7.2.5.8 PROTO statement.
c. The X3D file in which a Script is defined.
d. Otherwise, the X3D file from which the statement is read.

9.2.3 Scripting language protocols

Components can add scripting support to an X3D browser. An example of this is the
Scripting component which introduces a Script node. The Script node's url field may
support custom protocols for the various scripting languages. For example, a script url
prefixed with ecmascript: (or the deprecated javascript:) shall contain ECMAScript
source, with line terminators allowed in the string. The details of each language protocol
are defined in the parts of ISO/IEC 19777, which define the bindings for each language.
Browsers that conform to a profile that supports scripting are not required to support
both the Java and ECMAScript scripting languages. Browsers shall adhere to the
protocol defined in the corresponding part of ISO/IEC 19777 for any scripting language
that is supported.

EXAMPLE The following illustrates the use of mixing custom protocols and standard protocols in a single url field
(order of precedence determines priority):

#X3D V3.0 utf8
Script {
 url ["ecmascript: ...", # custom in-line ECMAScript code
 "http://bar.com/foo.js", # ECMAScript file reference
 "http://bar.com/foo.class"] # Java platform bytecode file reference
}

The "..." represents in-line ECMAScript source code.

9.2.4 Browser options

X3D supports configuring the browser via a set of options. These options are values
passed to the browser at start-up time that control its run-time operation. Browser
options may be set as HTML PARAM values within an EMBED or OBJECT tag if the X3D
browser is running as an embedded control within a World Wide Web browser, or
through an application-specific mechanism such as a configuration file or system
registry entry if the browser is running within some other containing application.

Support for browser options is not required but is strongly recommended. Some
browsers may not support all available options, due to limitations in the underlying
rendering system.

Table 9.2 lists the available X3D Browser options.

Table 9.2 — Browser options

Name Description Type/valid
range Default

Antialiased

Render using
hardware
antialiasing if
available

Boolean False

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 9 Networking component

networking.html[8/1/2020 9:59:52 AM]

Dashboard
Display browser
navigation user
interface

Boolean

Specified by
bound
NavigationInfo
in content

EnableInlineViewpoints

Viewpoints from
Inline nodes are
included in list of
viewpoints if made
available by the
Inline node.

Boolean True

MotionBlur Render animations
with motion blur Boolean False

PrimitiveQuality

Render quality
(tesselation level)
for Box, Cone,
Cylinder, Sphere

Low,
Medium, High Medium

QualityWhenMoving Render quality while
camera is moving

Low,
Medium,
High, Same
(as while
stationary)

Same

Shading Specify shading
mode for all objects

Wireframe,
Flat,
Gouraud,
Phong

Gouraud

SplashScreen
Display browser
splash screen on
startup

Boolean Implementation-
dependent

TextureQuality Quality of texture
map display

Low,
Medium, High Medium

9.2.5 IMPORT statement

The IMPORT statement is used within an X3D file to specify nodes, which are defined
within Inline files or programmatically created content, that are to be brought into the
namespace of the containing file for the purposes of event routing. Once a node is
imported, events may be sent to its fields via ROUTEs, or routed from any fields of the
node which have output events. The IMPORT statement has the following components:

a. The name of the Inline node that contains the node to be imported
b. The name of the node to import
c. An optional name to be used as an alias for the imported node within the run-time

name scope, to help prevent name clashes within the parent scene containing the
IMPORT statement.

The IMPORT statement has the following semantics:

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 9 Networking component

networking.html[8/1/2020 9:59:52 AM]

d. Once imported, events may be routed to or from the imported node in exactly the
same manner as any node defined with DEF.

e. Nodes imported into an X3D scene using the IMPORT statement may not be
instanced via the USE statement.

f. Only nodes that are exported from within the Inline via an EXPORT statement may
be imported using a corresponding IMPORT statement.

The following example illustrates the use of the IMPORT statement (Classic VRML
encoding syntax):

DEF I1 Inline {
 url "someurl.x3d"
}
 . . .

IMPORT I1.rootTransform AS I1Root
DEF PI PositionInterpolator { ... }
ROUTE PI.value_changed TO I1Root.set_translation

In the above example, rootTransform is defined as a Transform node in the file
someurl.x3d and exported via an EXPORT statement (see 4.4.6.3 EXPORT semantics).
The optional AS keyword defines an alias for rootTransform so that within the containing
scene the node is referenced using the DEF name I1Root.

9.2.6 EXPORT statement

The EXPORT statement is used within an X3D file to specify nodes that may be
imported into other scenes when Inlining that file. Only named nodes exported with an
EXPORT statement are eligible to be imported into another file. The EXPORT statement
has the following components:

a. The DEF name of the node to be exported
b. An optional name to be used as an alias for the exported node when importing it

into other files

The EXPORT statement has the following semantics:

c. Once imported into a containing scene, events may be routed to or from an
exported node in exactly the same manner as any node defined with DEF.

d. Exported nodes imported into a containing scene may not be instanced via the USE
statement.

e. Exportation may not be propagated across multiple files; that is, a node imported
into one scene using the IMPORT statement may not then be further exported into
another scene using the EXPORT statement.

f. Nodes shall not be exported from the body of a PROTO declaration.

The following example illustrates the use of the EXPORT statement (Classic VRML
encoding):

DEF T1 Transform {
 ...
}
 . . .

EXPORT T1 AS rootTransform

In the above example, node T1 is exported for use by other X3D scenes. The optional AS

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 9 Networking component

networking.html[8/1/2020 9:59:52 AM]

keyword defines the exported name of T1 as rootTransform (i.e., other scenes may import
the node only using the name rootTransform).

 9.3 Abstract types

 9.3.1 X3DNetworkSensorNode

X3DNetworkSensorNode : X3DSensorNode {
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [out] isActive
}

This abstract node type is the basis for all sensors that generate events based on
network activity.

9.3.2 X3DUrlObject

X3DUrlObject {
 SFString [in,out] description ""
 SFBool [in,out] load TRUE
 SFTime [in,out] refresh 0.0 [0,∞)
 MFString [in,out] url [] [URI]
}

This abstract interface is inherited by all nodes that contain data located on the World
Wide Web, such as AudioClip, ImageTexture and Inline.

The description field specifies a textual description for the url asset. This information
may be used by browser-specific user interfaces that wish to present users with more
detailed information about the linked content.

The load field allows deferring when the Inline scene is read and displayed, in profiles
that support that field. In profiles that do not support the load field, url content is
loaded immediately.

The refresh field defines the interval in seconds that are necessary before an automatic
reload of the current url asset is performed. If the preceding file loading fails or the load
field is FALSE, no refresh is performed. If performed, a refresh attempts to reload the
currently loaded entry of the url list. If a refresh fails to reload the currently loaded url
entry, the browser retries the other entries in the url list.

WARNING Automatically reloading content can have security considerations and needs
to be considered carefully.

All url fields can hold multiple string values. The strings in these fields indicate multiple
locations to search for data in the order listed. If the browser cannot locate or interpret
the data specified by the first location, it shall try the second and subsequent locations
in order until a location containing interpretable data is encountered. X3D browsers only
have to interpret a single string. If no interpretable locations are found, the node type
defines the resultant default behaviour.

Each specified URL shall refer to a valid X3D file that contains a list of children nodes,
prototypes and routes at the top level as described in 10.2.1 Grouping and children
node types. The results are undefined if the URL refers to a file that is not an X3D file,
or if the X3D file contains an invalid scene. a supported file type, or if the file contains

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 9 Networking component

networking.html[8/1/2020 9:59:52 AM]

invalid content.

It shall be an error to specify a file in the URL field that has a set of component
definitions that is not a subset of the components of the containing world. In addition,
the components shall not be of a higher support level than those used by the containing
world, either implicitly or through the PROFILE declaration or additional COMPONENT
statements. When the world indicated by the url field requests capabilities greater than
its parent, the following actions shall occur:

an error shall be generated,
the URL shall be treated as not interpretable as specified in 9.3.2 X3DUrlObject,
and
the next URL shall be loaded and checked in accordance with 9.2 Concepts.

For more information on URLs, see 9.2.1 URLs.

 9.4 Node reference

 9.4.1 Anchor
Anchor : X3DGroupingNode,X3DUrlObject {
 MFNode [in] addChildren
 MFNode [in] removeChildren
 SFBool [in out] bboxDisplay FALSE
 MFNode [in,out] children [] [X3DChildNode]
 SFString [in,out] description ""
 SFBool [in,out] load TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFString [in,out] parameter []
 SFTime [in,out] refresh 0.0 [0,∞)
 MFString [in,out] url [] [URI]
 SFBool [in out] visible TRUE
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or −1 −1 −1
}

The Anchor grouping node retrieves the content of a URL when the user activates (such
as, clicks) some geometry contained within the Anchor node's children. If the URL
points to a valid X3D file, that world replaces the world of which the Anchor node is a
part (except when the parameter field, described below, alters this behaviour). If non-
X3D data is retrieved, the browser shall determine how to handle that data; typically, it
will be passed to an appropriate non-X3D browser.

Exactly how a user activates geometry contained by the Anchor node depends on the
pointing device and is determined by the X3D browser. Typically, clicking with the
pointing device will result in the new scene replacing the current scene. An Anchor node
with an empty url does nothing when its children are chosen. A description of how
multiple Anchors and pointing-device sensors are resolved on activation is contained in
20.2 Concepts.

More details on the children, addChildren, and removeChildren fields can be found in
10.2 Concepts.

The description field in the Anchor node specifies a textual description of the Anchor
node. This information may be used by browser-specific user interfaces that wish to
present users with more detailed information about the Anchor.

The load and refresh fields have no effect.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 9 Networking component

networking.html[8/1/2020 9:59:52 AM]

The parameter field may be used to supply any additional information to be interpreted
by the browser. Each string shall consist of "keyword=value" pairs. For example, some
browsers allow the specification of a "target" for a link to display a link in another part
of an HTML document. The parameter field is then:

Anchor {
 parameter ["target=name_of_frame"];
 ...
}

An Anchor node may be used to bind the initial Viewpoint node in a world by specifying
a URL ending with "#ViewpointName" where "ViewpointName" is the DEF name of a
viewpoint defined in the X3D file.

EXAMPLE

Anchor {
 url "http://www.school.edu/X3D/someScene.wrl#OverView";
 children Shape { geometry Box {} };
}

specifies an anchor that loads the X3D file "someScene.wrl" and binds the initial user
view to the Viewpoint node named "OverView" when the Anchor node's geometry (Box)
is activated. If the named Viewpoint node is not found in the X3D file, the X3D file is
loaded using the default Viewpoint node binding stack rules (see 23.3.5 Viewpoint).

If the url field is specified in the form "#ViewpointName" (i.e., no file name), the
Viewpoint node with the given name ("ViewpointName") in the Anchor's run-time name
scope(s) shall be bound (set_bind TRUE). The results are undefined if there are multiple
nodes derived from X3DViewpointNode with the same name in the Anchor's run-time
name scope(s). The results are undefined if the Anchor node is not part of any run-time
name scope or is part of more than one run-time name scope. See 4.4.7 Run-time
name scope for a description of run-time name scopes. See 23.3.5 Viewpoint, for the
X3DViewpointNode transition rules that specify how browsers shall interpret the
transition from the old node derived from X3DViewpointNode to the new one. For
example:

Anchor {
 url "#Doorway";
 children Shape { geometry Sphere {} };
}

binds the viewer to the viewpoint defined by the "Doorway" viewpoint in the current
world when the sphere is activated. In this case, if the node derived from
X3DViewpointNode is not found, no action occurs on activation.

More details on the url field are contained in 9.2.1 URLs.

NOTE Viewpoint functionality is in addition to the X3DUrlObject interface characteristics.

The bboxCenter and bboxSize fields specify a bounding box that encloses the Anchor's
children. This is a hint that may be used for optimization purposes. The results are
undefined if the specified bounding box is smaller than the actual bounding box of the
children at any time. The default bboxSize value, (-1, -1, -1), implies that the bounding
box is not specified and if needed shall be calculated by the browser. More details on
the bboxCenter and bboxSize fields can be found in 10.2.2 Bounding boxes.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 9 Networking component

networking.html[8/1/2020 9:59:52 AM]

 9.4.2 Inline
Inline : X3DChildNode, X3DBoundedObject, X3DUrlObject {
 SFBool [in out] bboxDisplay FALSE
 SFString [in,out] description ""
 SFBool [in,out] load TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFTime [in,out] refresh 0.0 [0,∞)
 MFString [in,out] url [] [URI]
 SFBool [in out] visible TRUE
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or −1 −1 −1
}

The Inline node embeds an X3D scene stored at a location on the World Wide Web into
the current scene. Exactly when the Inline scene is read and displayed is defined by the
value of the load field The load field controls when the Inline scene is read and
displayed, in profiles that support that field. In profiles that do not support the load
field, exactly when the scene is read and displayed is not defined (such as, reading the
scene may be delayed until the Inline node's bounding box is visible available to the
viewer).

The run-time system can support any number of 3D model resource types as long as
those follow the abstract model definition (see 2.[RFC2077]), provide a registered
content type (e.g. model/x3d-xml, model/gltf-bin, model/stl, etc.), and can be determined
with some form of content negotiation (see 2.[RFC2616]). The run-time system must
support at least one X3D type (e.g. model/x3d-xml) but can also support and negotiate
any number of X3D encodings and (optionally) non-X3D representation formats.
Support for loading glTF assets also requires support for Shape component level 3.

Once the Inline scene is loaded, its children are added to the current scene and are
treated as children of the Inline for rendering and interaction; however the children are
not exposed to the current scene for routing and DEF name access unless their names
have been explicitly imported into the scene using the IMPORT statement (see 4.4.6.2
IMPORT semantics).

NOTE When Inline is used to load a child scene, processing of the Inline content is as specified in the respective
PROFILE, COMPONENT, UNIT, IMPORT, and EXPORT statements.

The visible field specifies whether or not the content within a node is visually displayed.
The value of this field has no effect on animation behaviors, collision behaviors, event
passing, or other non-visual characteristics.

If the load field is set to TRUE (the default field value), the X3D file specified by the url
field is loaded immediately. If the load field is set to FALSE, no action is taken. It is
possible to explicitly load the URL at a later time by sending a TRUE event to the load
field (such as, the result of a ProximitySensor or other sensor firing an event). If a FALSE
event is sent to the load field of a previously loaded Inline, the contents of the Inline
will be unloaded from the scene graph.

An event sent to url can be used to change the scene that is inlined by the Inline node.
If this value is set after the Inline is already loaded, its contents will be unloaded and
the scene to which the new URL points will be loaded.

The user is able to specify a bounding box for the Inline node using the bboxCenter and
bboxSize fields. This is a hint to the browser and could may be used for optimization
purposes such as culling.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 9 Networking component

networking.html[8/1/2020 9:59:52 AM]

Security precaution: it is an error for a model to Inline itself, directly or indirectly, in
order to avoid nonterminating recursion loops. X3D players SHALL NOT honor self-
referential loading of model loops in order to avoid security vulnerabilities.

 9.4.3 LoadSensor
LoadSensor : X3DNetworkSensorNode {
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFTime [in,out] timeOut 0
 MFNode [in,out] watchList [] [X3DUrlObject]
 SFBool [out] isActive
 SFBool [out] isLoaded
 SFTime [out] loadTime
 SFFloat [out] progress
}

The LoadSensor monitors the progress and success of downloading URL elements over
a network. Only nodes that contain a valid URL field (i.e., descendants of
X3DUrlObject), may be specified in the watchList field. Multiple nodes may be watched
with a single LoadSensor.

The timeOut field specifies the maximum time for which the LoadSensor will monitor
loading, starting from when the sensor becomes active. A value of 0 for the timeOut
field indicates an indefinite time out period; i.e., the LoadSensor will wait until loading
has completed either with success or failure.

The watchList field contains one or more URL objects to monitor. Only nodes that
contain a valid URL field (i.e., descendants of X3DUrlObject), may be specified as
elements of watchList. If multiple values are specified for this field, output events are
generated only when all of the children have loaded or at least one has failed. If
individual load status information is desired for different nodes, multiple LoadSensor
nodes may be used, each with a single watchList element.

If an Anchor node is part of a watchList field value, isLoaded reports success for this
node as follows. There are three cases that Anchor node can handle:

1. binding to a Viewpoint node in the current scene,
2. loading a replacement world or file asset, and
3. launching a separate window for a file asset.

When binding to a viewpoint (item a above), the asset is loaded when the Viewpoint is
bound. When loading a replacement world or asset (item b above), no action is taken
because the current world is lost. When launching a separate window or asset (item c
above), the load is considered complete when the operating system or web browser
acknowledges the load request.

The isActive field generates events when loading of the LoadSensor's watchList
elements begins and ends. An isActive TRUE event is generated when the first element
begins loading. An isActive FALSE event is generated when loading has completed, either
with a successful load of all objects or a failed load of one of the objects, or when the
timeout period is reached as specified in the timeout field.

The isLoaded field generates events when loading of the LoadSensor's watchList has
completed. An isLoaded TRUE event is generated when all of the elements have been
loaded. An isLoaded FALSE event is generated when one or more of the elements has

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 9 Networking component

networking.html[8/1/2020 9:59:52 AM]

failed to load, or when the timeout period is reached as specified in the timeout field. If
all elements in the watchlist are already loaded by the time the LoadSensor is
processed, the LoadSensor shall generate an isLoaded event with value TRUE and a
progress event with value 1 at the next event cascade.

The loadTime event is generated when loading of the LoadSensor's watchList has
successfully completed. If loading fails or the timeout period is reached, a loadTime
event is not generated.

The progress field generates events as loading progresses. The value of progress is a
floating-point number between 0 and 1 inclusive. A value of 1 indicates complete
loading of all watchList elements. The exact meaning of all other values (i.e., whether
these indicate a percentage of total bytes, a percentage of total number of files, or
some other measurement) and the frequency with which progress events are generated
are browser-dependent. Regardless, the browser shall in all cases guarantee that a
progress value of 1 is generated upon successful load of all URL objects.

The following example defines a LoadSensor that monitors the progress of loading two
different ImageTexture nodes:

Shape {
 appearance Appearance {
 material Material {
 texture DEF TEX1 ImageTexture { url "Amypic.png" }
 }
 }
 geometry Sphere {}
}
Shape {
 appearance Appearance {
 material Material {
 texture DEF TEX2 ImageTexture { url "Bmypic.png" }
 }
 }
 geometry Sphere {}
}
DEF LS LoadSensor {
 watchList [USE TEX1, USE TEX2]
}
ROUTE LS.loadTime TO MYSCRIPT.loadTime

The events this would generate are:

Success of all children:
isLoaded = true
loadTime = now
progress = 1
isActive = false

Timeout of any children, failure of any children, or no network present:
isLoaded = false
isActive = false

For watchList elements that allow dynamic reloading of their contents, any reload of
that element (EXAMPLE changing the url field of an ImageTexture or setting the load
field of an Inline), resets the LoadSensor so that it monitors those elements based on
the new values and resets its timeout period if one was specified.

For streamed media types, the first frame of data available means successful load of
the URL object (i.e., the browser can render one frame of a movie or start playing an
audio file).

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 9 Networking component

networking.html[8/1/2020 9:59:52 AM]

 9.5 Support levels
The Networking component provides three levels of support as specified in Table 9.3.

 Table 9.3 — Networking component support levels

Level Prerequisites Nodes/Features Support

1 Core 1

 X3DUrlObject (Abstract) n/a

X3DNetworkSensorNode
(Abstract) n/a

 Protocols file: protocol only.

 Name resolution Fully-specified URLs.

2 Core 1
Grouping 1

 Level 1 supported nodes Support as specified for
Level 1.

Anchor All fields fully supported.

Inline
All fields except load
which is optionally
supported.

Protocols file: and http: and https
protocols are required.

Name resolution Relative URLs; URNs.

3 Core 1
Grouping 1

 Level 2 supported nodes Support as specified for
Level 2.

Inline All fields fully supported.

LoadSensor All fields fully supported.

Statements:
 IMPORT
 EXPORT

Full support.

Browser options Implementation-
dependent.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 9 Networking component

networking.html[8/1/2020 9:59:52 AM]

4 Core 1
Grouping 1

 Level 3 supported nodes Support as specified for
Level 3.

 Protocols https: protocol is
required.

 Communication security
HTTP and HTTPS
username/password is
required.

 Model support
Support for .gltf
(model/gltf+json) and .bin
(application/octet-stream)

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 30 Event utilities component

eventUtilities.html[8/1/2020 9:59:54 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

30 Event Utilities component

 30.1 Introduction

30.1.1 Name

The name of this component is "EventUtilities". This name shall be used when referring
to this component in the COMPONENT statement (see 7.2.5.4 Component statement).

30.1.2 Overview

This clause describes the Event Utilities component of this part of ISO/IEC 19775. This
includes Trigger and Sequencer node types that gives authors the capability to gate,
convert, or sequence numerous event-types for common interactive applications
without the use of a Script node. Table 30.1 provides links to the major topics in this
subclause.

Table 30.1 — Topics

30.1 Introduction
30.1.1 Name
30.1.2 Overview

30.2 Concepts
30.2.1 Overview of event utility nodes
30.2.2 Mutating events of Single Field (SF) event types
30.2.3 Triggering events between Single Field (SF) event types
30.2.4 Sequencing Single Field (SF) events

30.3 Abstract types
30.3.1 X3DSequencerNode
30.3.2 X3DTriggerNode

30.4 Node reference
30.4.1 BooleanFilter
30.4.2 BooleanSequencer
30.4.3 BooleanToggle
30.4.4 BooleanTrigger

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 30 Event utilities component

eventUtilities.html[8/1/2020 9:59:54 AM]

30.4.5 IntegerSequencer
30.4.6 IntegerTrigger
30.4.7 TimeTrigger

30.5 Support levels

Table 30.1 — Topics
Table 30.2 — Event utilities component support levels

 30.2 Concepts

 30.2.1 Overview of event utility nodes

The Event Utilities component consists of 3 basic concepts:

a. mutating events of Single Field (SF) events of a given type,
b. triggering Single Field (SF) events of a given type from events of other types, and
c. sequencing Single Field (SF) events along a timeline (as a discrete value

generator).

These nodes may be composed using ROUTEs to create powerful authoring scenarios
without writing script code. This is especially useful in profiles where interactivity would
be otherwise significantly limited due to lack of a Script node.

The location of event utility nodes in the transformation hierarchy has no effect on their
operation. For example, if a parent of a BooleanSequencer is a Switch node with
whichChoice set to −1 (i.e., ignore its children), the BooleanSequencer continues to
operate as specified (i.e., receives and sends events).

30.2.2 Mutating events of Single Field (SF) event types

Mutator nodes allow content authors to alter values of a given type. In this part of
ISO/IEC 19775, the BooleanFilter node accepts a single Boolean input event and
generates either a TRUE or FALSE output event based on the value of its input; it also
generates an event equal to the negation of its input. These events allow for the
creation of conditional behaviors that would otherwise require a script.

30.2.3 Triggering events between Single Field (SF) event-
types

Trigger nodes that generate an output event of a given type based on an input event of
a different type are all derived from the X3DTriggerNode abstract node type. This part
of ISO/IEC 19775 specifies the following types of X3DTriggerNode nodes:

a. BooleanTrigger
b. IntegerTrigger
c. TimeTrigger

The BooleanTrigger node generates a Boolean output event upon receiving a time input

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 30 Event utilities component

eventUtilities.html[8/1/2020 9:59:54 AM]

event.

The IntegerTrigger node generates an integer output event upon receiving a Boolean
input event. The value of the integer can be specified.

The TimeTrigger node generates a time output event upon receiving a Boolean input
event.

EXAMPLE Routing the isActive field of a TouchSensor to the TimeTrigger allows the content creator to start a
TimeSensor when the isActive field generates an event.

30.2.4 Sequencing Single Field (SF) events

Sequencer nodes allow content authors to generate a specific sequence of discrete
events over the course of a TimeSensor's output. They are derived from the abstract
node type X3DSequencerNode and thus share the signature fields of set_fraction
(SFFloat [in]) and key (MFFloat [in,out]).

The set_fraction inputOnly field receives an SFFloat event and causes the sequencing
function to evaluate, resulting in a value_changed output event with the same
timestamp as the set_fraction event. The sequencer node sends only one
value_changed output event per key[i] interval. The usage of the keyValue and output
fields are dependent on the type of the Sequencer.

BooleanSequencer and IntegerSequencer output a single-value field to value_changed.
Each value in the keyValue field corresponds in order to the parameter value in the key
field. Results are undefined if the number of values in the key field of a sequencer is not
the same as the number of values in the keyValue field.

The specified X3D sequencer nodes are designed for discrete events along a timeline.
Each of these nodes defines a piecewise-linear function, f(t), on the interval (−infinity,
+infinity). The piecewise-linear function is defined by n values of t, called key, and the
n corresponding values of f(t), called keyValue. The keys shall be monotonically non-
decreasing, otherwise the results are undefined. The keys are not restricted to any
interval.

Each of these nodes evaluates f(t) given any value of t (via the fraction field) as
follows: Let the n keys t0, t1, t2, ..., tn-1 partition the domain (-infinity, +infinity) into
the n+1 subintervals given by (−infinity, t0), [t0, t1), [t1, t2), ... , [tn-1, +infinity). Also,
let the n values v0, v1, v2, ..., vn-1 be the values of f(t) at the associated key values.
The discrete value sequencing function, f(t), is defined to be:

 f(t) = vn, if tn ≤ t < tn-1
 = v0, if t ≤ t0,
 = vn−1, if t ≥ tn−1

 30.3 Abstract types

 30.3.1 X3DSequencerNode

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 30 Event utilities component

eventUtilities.html[8/1/2020 9:59:54 AM]

X3DSequencerNode : X3DChildNode {
 SFBool [in] next
 SFBool [in] previous
 SFFloat [in] set_fraction (-∞,∞)
 MFFloat [in,out] key [] (-∞,∞)
 MF<type> [in,out] keyValue []
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 [S|M]F<type> [out] value_changed
}

This abstract node type is the base node type from which all Sequencers are derived.
30.2.4 Sequencing Single Field (SF) events contains a detailed discussion of Sequencer
nodes.

Receipt of a next event with value TRUE triggers the next output value in keyValue array
by issuing a value_changed event with that value. Receipt of a previous event with
value TRUE triggers previous output value in keyValue array. Sending a FALSE event to the
next or previous fields has no effect. These trigger events "wrap around" after reaching
the boundary of keyValue array; i.e., next goes to initial element after last, and
previous goes to last element after first.

 30.3.2 X3DTriggerNode
X3DTriggerNode : X3DChildNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

This abstract node type is the base node type from which all trigger nodes are derived.
30.2.3 Triggering events between Single Field (SF) event-types contains a detailed
discussion of Triggers.

 30.4 Node Reference

 30.4.1 BooleanFilter
BooleanFilter : X3DChildNode {
 SFBool [in] set_boolean
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [out] inputFalse
 SFBool [out] inputNegate
 SFBool [out] inputTrue
}

BooleanFilter filters Boolean events, allowing for selective routing of TRUE or FALSE values
and negation.

When the set_boolean event is received, the BooleanFilter node generates two events:
either inputTrue or inputFalse, based on the Boolean value received; and inputNegate,
which contains the negation of the value received.

 30.4.2 BooleanSequencer
BooleanSequencer : X3DSequencerNode {
 SFBool [in] next
 SFBool [in] previous
 SFFloat [in] set_fraction
 MFFloat [in,out] key [] (-∞,∞)
 MFBool [in,out] keyValue []
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [out] value_changed
}

BooleanSequencer generates sequential value_changed events selected from the

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 30 Event utilities component

eventUtilities.html[8/1/2020 9:59:54 AM]

keyValue field when driven from a TimeSensor clock. Among other actions, it can
enable/disable lights and sensors, or bind/unbind viewpoints and other
X3DBindableNode nodes using set_bind events.

The keyValue field is made up of a list of FALSE and TRUE values.

A BooleanSequencer shall be instanced for every node enabled or bound.

 30.4.3 BooleanToggle
BooleanToggle : X3DChildNode {
 SFBool [in] set_boolean
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [in,out] toggle FALSE
}

BooleanToggle stores a Boolean value for toggling on/off. When a set_boolean TRUE
event is received, the BooleanToggle negates the value of the toggle field and
generates the corresponding toggle field output event. set_boolean FALSE events are
ignored.

The BooleanToggle can be reset to a specific state by directly setting the value of the
inputOutput toggle field.

 30.4.4 BooleanTrigger
BooleanTrigger : X3DTriggerNode {
 SFTime [in] set_triggerTime
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [out] triggerTrue
}

BooleanTrigger is a trigger node that generates Boolean events upon receiving time
events.

The triggerTrue event is generated when the BooleanTrigger receives a set_triggerTime
event. The value of triggerTrue shall always be TRUE.

 30.4.5 IntegerSequencer
IntegerSequencer : X3DSequencerNode {
 SFBool [in] next
 SFBool [in] previous
 SFFloat [in] set_fraction
 MFFloat [in,out] key [] (-∞,∞)
 MFInt32 [in,out] keyValue [] (-∞,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFInt32 [out] value_changed
}

The IntegerSequencer node generates sequential discrete value_changed events
selected from the keyValue field in response to each set_fraction, next, or previous
event.

 30.4.6 IntegerTrigger
IntegerTrigger : X3DTriggerNode {
 SFBool [in] set_boolean
 SFInt32 [in,out] integerKey -1 (-∞,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFInt32 [out] triggerValue
}

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 30 Event utilities component

eventUtilities.html[8/1/2020 9:59:54 AM]

IntegerTrigger handles single field Boolean events to set an integer value for the output
event. This is useful for connecting environmental events to the Switch node's
whichChoice field.

Upon receiving a set_boolean event, the IntegerTrigger node will generate a
triggerValue event with the current value of integerKey. The value of set_boolean shall
be ignored.

30.4.7 TimeTrigger
TimeTrigger : X3DTriggerNode {
 SFBool [in] set_boolean
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFTime [out] triggerTime
}

TimeTrigger is a trigger node that generates time events upon receiving Boolean
events.

The triggerTime event is generated when the TimeTrigger receives a set_boolean event.
The value of triggerTime shall be the time at which set_boolean is received. The value
of set_boolean shall be ignored.

 30.5 Support levels
The Event Utilities component provides one level of support as specified in Table 30.2.
Level 1 provides the full support for all nodes defined above.

Table 30.2 — Event utilities component support levels

Level Prerequisites Nodes/Features Support

1 Core 1
Grouping 1

 X3DSequencerNode
(abstract)

All fields fully
supported.

 X3DTriggerNode (abstract) All fields fully
supported.

 BooleanFilter All fields fully
supported.

 BooleanSequencer All fields fully
supported.

BooleanToggle All fields fully
supported.

BooleanTrigger All fields fully
supported.

All fields fully

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 30 Event utilities component

eventUtilities.html[8/1/2020 9:59:54 AM]

 IntegerSequencer supported.

 IntegerTrigger All fields fully
supported.

 TimeTrigger All fields fully
supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex I OpenGL shading language (GLSL) binding

shaders_glsl.html[8/1/2020 9:59:55 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

Annex I

(normative)

OpenGL shading language (GLSL) binding

 I.1 General

This annex defines the mapping of concepts of the programmable shaders component
to the OpenGL Shading Language (GLSL) (see [GLSL]). It applies to a ComposedShader
node that sets the language field to "GLSL".

 I.2 Topics
Table I.1 provides links to the major topics in this annex.

 Table I.1 — Topics

I.1 General
I.2 Topics
I.3 Interaction with Other Nodes and Components

I.3.1 Vertex Shader
I.3.2 Fragment Shader
I.3.3 LoadSensor
I.3.4 VertexAttributes

I.4 Data Type Mapping
I.4.1 Node fields
I.4.2 X3D Field types to OpenGL Data Types

I.5 Event Model
I.5.1 Changing URL fields
I.5.2 Changing the object field
I.5.3 Changing the attrib field
I.5.4 Relinking Programs

Table I.1 — Topics

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex I OpenGL shading language (GLSL) binding

shaders_glsl.html[8/1/2020 9:59:55 AM]

Table I.2 — Mapping of X3D texture node types to GLSL sampler types
Table I.3 — Mapping of X3D Field type to GLSL data type

 I.3 Interaction with other nodes and components

I.3.1 Vertex shader

The vertex shader replaces the fixed functionality of the vertex processor. The GLSL
specification (see [GLSL]) states that the following functionality is disabled if a vertex
shader is supplied:

a. The model view matrix is not applied to vertex coordinates.
b. The projection matrix is not applied to vertex coordinates.
c. The texture matrices are not applied to texture coordinates.
d. The normals are not transformed to eye coordinates.
e. The normals are not rescaled or normalized.
f. Texture coordinates are not generated automatically.
g. Per-vertex lighting is not performed.
h. Color material lighting is not performed.
i. Point size distance attenuation is not performed.

I.3.2 Fragment shader

The fragment shader replaces the fixed functionality of the fragment processor. The
GLSL specification (see [GLSL]) states that the following functionality is disabled if a
fragment shader is supplied:

a. Textures are not applied.
b. Fog is not applied.

I.3.3 LoadSensor

The LoadSensor node (See 9.4.3 LoadSensor) has two output fields isActive and
isLoaded. The isLoaded field behaviour is unchanged.

The isActive field is defined to issue a TRUE event when all the following conditions have
been satisfied:

a. the content identified by the url field has been successfully loaded;
b. a valid OpenGL program object handle has been created for the shader object (

GLhandleARB in OpenGL 1.5 and uint in OpenGL 2.0);
c. the shader source has been set without error; and
d. the shader has been successfully compiled, without error.

The LoadSensor node does not have any interaction with the process of linking multiple
shader objects into a complete shader program.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex I OpenGL shading language (GLSL) binding

shaders_glsl.html[8/1/2020 9:59:55 AM]

I.3.4 Vertex attributes

Each vertex attribute node directly maps the name field to the uniform variable of the
same name. If the name is not available as a uniform variable in the provided shader
source, the values of the node shall be ignored.

The browser implementation shall automatically assign appropriate internal index
values for each attribute.

 I.4 Data type mapping

I.4.1 Node fields

Fields that are of type SFNode/MFNode are ignored unless the value is of type
X3DTextureNode. Field instances of type X3DTextureNode are mapped according to the
appropriate sampler data type. The texture types are mapped as defined in Table I.2.

 Table I.2 — Mapping of X3D texture node types to GLSL sampler types

X3D texture type GLSL variable type

X3DTexture2DNode sampler2D.

X3DTexture3DNode sampler3D.

X3DEnvironmentTextureNode samplerCube.

X3D does not define mappings to the GLSL types sampler1D, sampler1DShadow and
sampler2DShadow.

I.4.2 X3D Field types to GLSL data types

Table I.3 indicates how the X3D field types shall be mapped to data types used in GLSL.

 Table I.3 — Mapping of X3D field type to GLSL data type

X3D field type GLSL variable type

SFBool bool

MFBool bool[]

MFInt32 int[]

SFInt32 int

SFFloat float

MFFloat float[]

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex I OpenGL shading language (GLSL) binding

shaders_glsl.html[8/1/2020 9:59:55 AM]

SFDouble float

MFDouble float[]

SFTime float

MFTime float[]

SFNode See 4.1 Node fields

MFNode See 4.1 Node fields

SFVec2f vec2

MFVec2f vec2[]

SFVec3f vec3

MFVec3f vec3[]

SFVec4f vec4

MFVec4f vec4[]

SFVec3d float3

MFVec3d float3[]

SFVec4d float4

MFVec4d float4[]

SFRotation vec4

MFRotation vec4[]

MFColor vec4[]

SFColor vec4

SFImage int[]

MFImage int[]

SFString Not supported

MFString Not supported

SFMatrix3f mat3

MFMatrix3f mat3[]

SFMatrix4f mat4

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex I OpenGL shading language (GLSL) binding

shaders_glsl.html[8/1/2020 9:59:55 AM]

MFMatrix4f mat4[]

OpenGL defines maximum supported lengths of each array data type, which may
conflict with the minimum support requirements for X3D. OpenGL will automatically
convert double-precision data types to single precision types.

 I.5 Event model

I.5.1 Changing URL fields

When the url receives an event changing the value, the browser shall immediately
attempt to download the new source. Upon successful download, the browser shall
attempt to compile the new source and issue the appropriate LoadSensor events. It
shall not automatically relink the shader program, nor disable the currently running
shader. This follows the semantics of the OpenGL API requirements for separate
register-compile-link steps.

Values defined at load time of the file do not require an explicit request to relink. It
shall be assumed to automatically link once all the objects have successfully
downloaded. If some of the shader source files are not downloaded or compiled (e.g.,
due to errors), no linking will occur for the shader program.

I.5.2 Changing the object field

If at any time after the initial load, the user changes the values of the object field, the
user shall need to request an explicit relink of the containing shader program. The
containing ComposedShader shall not automatically relink, nor should it automatically
disable the current shader.

I.5.3 Changing the attrib field

Per-vertex attributes may be defined as one of the fields of
X3DComposedGeometryNode. These may be changed at runtime by adding or removing
node instances. Adding new node instances to the field shall require that the user
request an explicit relink in order to make them visible to the shader.

I.5.4 Relinking Programs

The user may, at any time, request that OpenGL re-link the composing shader objects
by sending a TRUE value to the activate inputOnly field of the ComposedShader node.
Users may need to force a relink of the ComposedShader under various circumstances,
such as changing the url field of one or more ShaderPart nodes, or adding or removing
ShaderPart nodes. Relinking the shader shall replace the existing shader with the new
executable.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 10 Grouping component

grouping.html[8/1/2020 9:59:57 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

10 Grouping component

 10.1 Introduction

10.1.1 Name

The name of this component is "Grouping". This name shall be used when referring to
this component in the COMPONENT statement (see 7.2.5.4 Component statement).

10.1.2 Overview

This clause describes the Grouping component of this part of ISO/IEC 19775. This
includes how nodes are organized into groups to establish a transformation hierarchy
for the X3D scene graph. Table 10.1 provides links to the major topics in this clause.

 Table 10.1 — Topics

10.1 Introduction
10.1.1 Name
10.1.2 Overview

10.2 Concepts
10.2.1 Grouping and children node types
10.2.2 Bounding boxes

10.3 Abstract types
10.3.1 X3DBoundedObject
10.3.2 X3DGroupingNode

10.4 Node reference
10.4.1 Group
10.4.2 StaticGroup
10.4.3 Switch
10.4.4 Transform

10.5 Support levels

Table 10.1 — Topics
Table 10.2 — Grouping component support levels

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 10 Grouping component

grouping.html[8/1/2020 9:59:57 AM]

 10.2 Concepts

10.2.1 Grouping and children node types

Grouping nodes have a field that contains a list of children nodes. Each grouping node
defines a coordinate space for its children. This coordinate space is relative to the
coordinate space of the node of which the group node is a child. Such a node is called a
parent node. This means that transformations accumulate down the scene graph
hierarchy.

This part of ISO/IEC 19775 defines several grouping nodes, including the following:

Anchor
Billboard
Collision
Group
LOD
Switch
Transform

Components may add the following:

new grouping node types,
new node types that may be used as children, and
node types that may not be used as children.

All grouping nodes have addChildren and removeChildren inputOnly fields. The
addChildren event appends nodes to the children field of a grouping node. Any nodes
passed to the addChildren inputOnly field that are already in the children list of the
grouping node are ignored. For example, if the children field contains the nodes Q, L
and S (in order) and the group receives an addChildren event containing (in order)
nodes A, L, and Z, the result is a children field containing (in order) nodes Q, L, S, A,
and Z.

The removeChildren event removes nodes from the children field of the grouping node .
Any nodes in the removeChildren event that are not in the children list of the grouping
node are ignored. For example, if the children field contains the nodes Q, L, S, A and Z
and it receives a removeChildren event containing nodes A, L, and Z, the result is Q, S.

Note that a variety of node types reference other node types through fields. Some of
these are parent-child relationships, while others are not (there are node-specific
semantics).

All grouping nodes shall have a children field of type MFNode. Adding a node to this
field will add that node to the grouping node's set of children. A children field is not
allowed to directly contain multiple instances of the same node. A children field is not
allowed to contain nodes that are ancestors of the grouping node.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 10 Grouping component

grouping.html[8/1/2020 9:59:57 AM]

A variety of node types reference other node types through fields. Some of these are
parent-child relationships (e.g., the children field of the Transform node) while others
are not (e.g., the appearance field of the Shape node). The field type specifies which
type of node may be placed in them. For instance, the node type of the children field of
the Transform node is MFNode where all nodes shall be derived from X3DChildNode.
Therefore, only node types derived from X3DChildNode may be placed there. Shape is
legal in the children field because it is derived from X3DChildNode, while Appearance is
not. See Figure 4.2 for a complete derivation hierarchy.

New nodes types may be defined using the extension mechanisms. These new node
types can be placed in a node field as long as the node field's type is in the new type's
derivation hierarchy.

10.2.2 Bounding boxes

Several node types include a bounding box specification comprised of two fields,
bboxSize and bboxCenter. A bounding box is a rectangular parallelepiped of dimension
bboxSize centred on the location bboxCenter in the local coordinate system. This is
typically used by grouping nodes to provide a hint to the browser on the group's
approximate size for culling optimizations. The default size for bounding boxes
(−1, −1, −1) indicates that the user did not specify the bounding box and the effect
shall be as if the bounding box were infinitely large. A bboxSize value of (0, 0, 0) is
valid and represents a point in space (i.e., an infinitely small box). Specified bboxSize
field values shall be ≥ 0.0 or equal to (−1, −1, −1). The bboxCenter fields specify a
position offset from the local coordinate system.

The bboxCenter and bboxSize fields may be used to specify a maximum possible
bounding box for the objects inside a grouping node (EXAMPLE Transform). These are
used as hints to optimize certain operations such as determining whether or not the
group needs to be drawn. The bounding box shall be large enough at all times to
enclose the union of the group's children's bounding boxes; it shall not include any
transformations performed by the group itself (i.e., the bounding box is defined in the
local coordinate system of the children). Results are undefined if the specified bounding
box is smaller than the true bounding box of the group.

 10.3 Abstract types

10.3.1 X3DBoundedObject
X3DBoundedObject {
 SFBool [in out] bboxDisplay FALSE
 SFBool [in out] visible TRUE
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or −1 −1 −1
}

This abstract node typeinterface is the basis for all node types that have bounds
specified as part of the definition.

The bboxCenter and bboxSize fields specify a bounding box that encloses the grouping
node's children. This is a hint that may be used for optimization purposes. The results
are undefined if the specified bounding box is smaller than the actual bounding box of
the children at any time. A default bboxSize value, (-1, -1, -1), implies that the

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 10 Grouping component

grouping.html[8/1/2020 9:59:57 AM]

bounding box is not specified and, if needed, is calculated by the browser. A description
of the bboxCenter and bboxSize fields is contained in 10.2.2 Bounding boxes.

When bboxDisplay is true, the bounding box is displayed for the associated geometry so
that both are aligned with world coordinates. The bounding box is displayed regardless
of whether contained content is visible.

The visible field specifies whether or not the content within a node is visually displayed.
The value of this field has no effect on animation behaviors, collision behaviors, event
passing, or other non-visual characteristics.

 10.3.2 X3DGroupingNode
X3DGroupingNode : X3DChildNode, X3DBoundedObject {
 MFNode [in] addChildren [X3DChildNode]
 MFNode [in] removeChildren [X3DChildNode]
 MFNode [in,out] children [] [X3DChildNode]
 SFBool [in out] bboxDisplay FALSE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [in out] visible TRUE
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or −1 −1 −1
}

This abstract node type indicates that concrete node types derived from it contain
children nodes and is the basis for all aggregation.

More details on the children, addChildren, and removeChildren fields can be found i
10.2.1 Grouping and children node types.

 10.4 Node reference

 10.4.1 Group
Group : X3DGroupingNode {
 MFNode [in] addChildren [X3DChildNode]
 MFNode [in] removeChildren [X3DChildNode]
 MFNode [in,out] children [] [X3DChildNode]
 SFBool [in out] bboxDisplay FALSE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [in out] visible TRUE
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or −1 −1 −1
}

A Group node contains children nodes without introducing a new transformation. It is
equivalent to a Transform node containing an identity transform.

More details on the children, addChildren, and removeChildren fields can be found in
10.2.1 Grouping and children node types.

The bboxCenter and bboxSize fields specify a bounding box that encloses the Group
node's children. This is a hint that may be used for optimization purposes. The results
are undefined if the specified bounding box is smaller than the actual bounding box of
the children at any time. A default bboxSize value, (-1, -1, -1), implies that the
bounding box is not specified and, if needed, is calculated by the browser. A description
of the bboxCenter and bboxSize fields is contained in 10.2.2 Bounding boxes.

 10.4.2 StaticGroup
StaticGroup : X3DChildNode, X3DBoundedObject {

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 10 Grouping component

grouping.html[8/1/2020 9:59:57 AM]

 SFBool [in out] bboxDisplay FALSE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [in out] visible TRUE
 MFNode [] children [] [X3DChildNode]
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or −1 −1 −1
}

The StaticGroup node contains children nodes which cannot be modified. StaticGroup
children are guaranteed to not change, send events, receive events or contain any USE
references outside the StaticGroup. This allows the browser to optimize this content for
faster rendering and less memory usage.

A browser shall prevent all illegal attempts to modify the StaticGroup and its children.
Children of the StaticGroup are guaranteed not to generate events.

Implementations are free to rearrange or remove nodes inside a StaticGroup as long as
the final rendering is the same. These optimizations might include flattening a series of
transformations into one transform, performing appearance bundling or heavy analysis
of the scene graph for maximal rendering speed. A StaticGroup does not need to
maintain its children's X3D representations (such as field data), as they cannot be
accessed after creation time.

The visible field specifies whether or not the content within a node is visually displayed.
The value of this field has no effect on animation behaviors, collision behaviors, event
passing, or other non-visual characteristics.

 10.4.3 Switch
Switch : X3DGroupingNode {
 MFNode [in] addChildren [X3DChildNode]
 MFNode [in] removeChildren [X3DChildNode]
 MFNode [in,out] children [] [X3DChildNode]
 SFBool [in out] bboxDisplay FALSE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [in out] visible TRUE
 SFInt32 [in,out] whichChoice -1 [-1,∞)
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or −1 −1 −1
}

The Switch grouping node traverses zero or one of the nodes specified in the children
field.

10.2.1 Grouping and children node types, describes details on the types of nodes that
are legal values for children.

The whichChoice field specifies the index of the child to traverse, with the first child
having index 0. If whichChoice is less than zero or greater than the number of nodes in
the children field, nothing is chosen.

All nodes under a Switch continue to receive and send events regardless of the value of
whichChoice. For example, if an active TimeSensor is contained within an inactive
choice of an Switch, the TimeSensor sends events regardless of the Switch's state.

The bboxCenter and bboxSize fields specify a bounding box that encloses the Switch
node's children. This is a hint that may be used for optimization purposes. The results
are undefined if the specified bounding box is smaller than the actual bounding box of
the child with the largest bounding box at any time. A default bboxSize value, (-1, -1,
-1), implies that the bounding box is not specified and, if needed, is calculated by the

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 10 Grouping component

grouping.html[8/1/2020 9:59:57 AM]

browser. A description of the bboxCenter and bboxSize fields is contained in 10.2.2
Bounding boxes.

 10.4.4 Transform
Transform : X3DGroupingNode {
 MFNode [in] addChildren [X3DChildNode]
 MFNode [in] removeChildren [X3DChildNode]
 SFVec3f [in,out] center 0 0 0 (-∞,∞)
 MFNode [in,out] children [] [X3DChildNode]
 SFBool [in out] bboxDisplay FALSE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFRotation [in,out] rotation 0 0 1 0 [-1,1] or (-∞,∞)
 SFVec3f [in,out] scale 1 1 1 (-∞, ∞)
 SFRotation [in,out] scaleOrientation 0 0 1 0 [-1,1] or (-∞,∞)
 SFVec3f [in,out] translation 0 0 0 (-∞,∞)
 SFBool [in out] visible TRUE
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or −1 −1 −1
}

The Transform node is a grouping node that defines a coordinate system for its children
that is relative to the coordinate systems of its ancestors. See 4.3.5 Transformation
hierarchy and 4.3.6 Standard units and coordinate system for a description of
coordinate systems and transformations.

10.2.1 Grouping and children node types, provides a description of the children,
addChildren, and removeChildren fields.

The bboxCenter and bboxSize fields specify a bounding box that encloses the children
of the Transform node. This is a hint that may be used for optimization purposes. The
results are undefined if the specified bounding box is smaller than the actual bounding
box of the children at any time. A default bboxSize value, (-1, -1, -1), implies that the
bounding box is not specified and, if needed, shall be calculated by the browser. The
bounding box shall be large enough at all times to enclose the union of the group's
children's bounding boxes; it shall not include any transformations performed by the
group itself (i.e., the bounding box is defined in the local coordinate system of the
children). The results are undefined if the specified bounding box is smaller than the
true bounding box of the group. A description of the bboxCenter and bboxSize fields is
provided in 10.2.2 Bounding boxes.

The translation, rotation, scale, scaleOrientation and center fields define a geometric 3D
transformation consisting of (in order):

a. a (possibly) non-uniform scale about an arbitrary point;
b. a rotation about an arbitrary point and axis;
c. a translation.

The center field specifies a translation offset from the origin of the local coordinate
system (0,0,0). The rotation field specifies a rotation of the coordinate system. The
scale field specifies a non-uniform scale of the coordinate system. Scale values may
have any value: positive, negative (indicating a reflection), or zero. A value of zero
indicates that any child geometry shall not be displayed. The scaleOrientation specifies
a rotation of the coordinate system before the scale (to specify scales in arbitrary
orientations). The scaleOrientation applies only to the scale operation. The translation
field specifies a translation to the coordinate system.

Given a 3-dimensional point P and Transform node, P is transformed into point P' in its

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 10 Grouping component

grouping.html[8/1/2020 9:59:57 AM]

parent's coordinate system by a series of intermediate transformations. In matrix
transformation notation, where C (center), SR (scaleOrientation), T (translation), R
(rotation), and S (scale) are the equivalent transformation matrices,

 P' = T * C * R * SR * S * -SR * -C * P

The following Transform node:

Transform {
 center C
 rotation R
 scale S
 scaleOrientation SR
 translation T
 children [
 # Point P (or children holding other geometry)
]
}

is equivalent to the nested sequence of:

Transform {
 translation T
 children Transform {
 translation C
 children Transform {
 rotation R
 children Transform {
 rotation SR
 children Transform {
 scale S
 children Transform {
 rotation -SR
 children Transform {
 translation -C
 children [
 # Point P (or children holding other geometry)
]
}}}}}}}

 10.5 Support levels
The Grouping component provides four levels of support as specified in Table 10.2.

 Table 10.2 — Grouping component support levels

Level Prerequisites Nodes/Features Support

1 Core 1

X3DBoundedObject
(abstract) n/a

X3DGroupingNode
(abstract) n/a

Group

addChildren optionally
supported. removeChildren
optionally supported.
Otherwise as for all groups.

Transform

addChildren optionally
supported. removeChildren
optionally supported.
Otherwise as for all groups.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 10 Grouping component

grouping.html[8/1/2020 9:59:57 AM]

2 Core 1

All Level 1 Grouping
nodes All fields fully supported.

Switch All fields fully supported.

3 Core 1

All Level 2 Grouping
nodes All fields fully supported.

StaticGroup All fields fully supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 31 Programmable shaders component

shaders.html[8/1/2020 9:59:58 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

31 Programmable shaders component

 31.1 Introduction

31.1.1 Name

The name of this component is "Shaders". This name shall be used when referring to
this component in the COMPONENT statement (see 7.2.5.4 Component statement).

31.1.2 Overview

This clause describes the Programmable Shaders component of this part of ISO/IEC
19775. This includes how programmable shaders are specified and how they affect the
visual appearance of geometry. Table 31.1 provides links to the major topics in this
clause.

 Table 31.1 — Topics

31.1 Introduction
31.1.1 Name
31.1.2 Overview

31.2 Concepts
31.2.1 Overview
31.2.2 Shading languages

31.2.2.1 Shader language options
31.2.2.2 Node representation
31.2.2.3 Selecting an appropriate shader
31.2.2.4 Per-vertex attributes
31.2.2.5 Per-object attributes
31.2.2.6 Handling errors

31.2.3 Interaction with other nodes and components
31.2.3.1 Overview
31.2.3.2 Lighting
31.2.3.3 Geometry
31.2.3.4 LoadSensor

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 31 Programmable shaders component

shaders.html[8/1/2020 9:59:58 AM]

31.2.4 Conformance
31.2.4.1 Component support
31.2.4.2 Node support
31.2.4.3 Language support
31.2.4.4 Scene graph interaction

31.3 Abstract types
31.3.1 X3DProgrammableShaderObject
31.3.2 X3DShaderNode
31.3.3 X3DVertexAttributeNode

31.4 Node reference
31.4.1 ComposedShader
31.4.2 FloatVertexAttribute
31.4.3 Matrix3VertexAttribute
31.4.4 Matrix4VertexAttribute
31.4.5 PackagedShader
31.4.6 ProgramShader
31.4.7 ShaderPart
31.4.8 ShaderProgram

31.5 Support levels

Table 31.1 — Topics
Table 31.2 — Shader language node specifications
Table 31.3 — Shader component support levels

 31.2 Concepts

31.2.1 Overview

Programmable shading provides a method for authors to directly specify how an object
is rendered by providing a method of programmatically modifying sections of the
rendering pipeline. This allows replacement of the traditional fixed function pipeline of
the graphics API to support a variety of visual effects that typically cannot be
implemented using other node components in this standard.

Shaders are typically defined by two separate program pieces. One piece is used to
modify the vertex values. This piece may also generate values that can be interpolated
between vertex values. Such program pieces are termed vertex shaders. The other
piece is used to modify individual pixels as they are drawn to screen. These program
pieces are termed fragment shaders or pixel shaders. Although not currently defined,
future extensions may include other types of shaders that fit into other places in the
graphics pipeline.

31.2.2 Shader languages

31.2.2.1 Shader language options

Shader programs can be written in several shading languages. Each language is specific

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 31 Programmable shaders component

shaders.html[8/1/2020 9:59:58 AM]

to the underlying rendering API. Typically a language for one API (e.g., Microsoft
DirectX) is not usable in another rendering API (e.g., OpenGL) and therefore there is no
mandatory requirement for an X3D browser to implement any specific language. A
browser implementing this component shall be required to support at least one shading
language. The following annexes defines the interface to three popular shader
languages:

Annex I OpenGL shading language (GLSL) binding
Annex J Microsoft High Level shading language (HLSL) binding
Annex K nVidia Cg shading language binding

Shader programs are either defined in a file that can be externally loaded or defined
internally within the X3D world. Typically, a separate file is used to specify each type of
shader (fragment or vertex) although this is not required.

Some formats are being developed that allow all shaders to be collected together into a
single file and used directly by the rendering API. For these file types, a separate
PackagedShader node is used. This node is independent of the underlying rendering
API, though the specific file format used within a PackagedShader node may be specific
to a particular rendering API.

31.2.2.2 Node representation

Each shading language option has a node that implements its functionality. Since each
language is quite different, it is not possible to define a single set of nodes that can
represent the entire capabilities offered. Each language has its own set of nodes that
pertain only to that shading language.

For each set of nodes for a given shading language, there are language-specific
behaviours. Mappings for each of the languages are defined in their own annex to this
specification as described in 31.2.2.1 Shader language options. Table 2 lists the nodes
and which annex shall be used to define language-specific behaviours:

 Table 31.2 — Shader language node specifications

Shading Language Nodes Annex

OpenGL GLSLang GLSLShader
GLSLShaderObject Annex I

Direct3D HLSL HLSLShader Annex J

nVidia Cg CgShader Annex K

31.2.2.3 Selecting an appropriate shader

Browsers are not expected to be able to handle all the different forms of shading
languages. In fact, most are incompatible with any rendering API apart from the one for
which they are defined.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 31 Programmable shaders component

shaders.html[8/1/2020 9:59:58 AM]

To allow the author to specify a collection of shader options for the browser to select
and for the browser to choose the shader version it can run, a fallback mechanism is
defined for the shader field of the Appearance node.

The shader field is an MFNode field that defines the collection of pertinent shader nodes
of various languages in the order of preference. The first node declared is the highest
preference. If the browser does not support the language defined for the current
preference level, the browser shall set the node’s isSelected field output to FALSE, and
move to the next preference. A browser implementation shall support all nodes if the
Programmable Shader component is supported, but is not required to execute the
contained script in every shader node. Ignored nodes shall remain a functional part of
the scene graph, continuing to interact with the event model as required by the field
access types.

When a shader is found that can be executed by the browser, it shall set the isSelected
field output to TRUE.

A browser may select an appropriate shader on grounds other than just the shading
language used.

EXAMPLE The local hardware not supporting some of the features requested or the shader running in software
rather than hardware are considered valid reasons for not selecting a shader to run.

31.2.2.4 Per-vertex attributes

Advanced vertex shaders often need to provide extra information on a per vertex basis
(e.g., temperature information in an analysis system or weighting values for a skin and
bones system). Per-vertex attributes may be supplied for any geometry that extends
X3DComposedGeometryNode as described in 11.3.2 X3DComposedGeometryNode.
Both matrix and vector values may be supplied on a per-vertex basis through nodes
that are extended from X3DVertexAttributeNode.

Each shading language uses a different method of mapping per-vertex attributes to the
user-provided shading language code. The definition of how to interpret the name field
value to the individual shading language file is defined in the language-specific annex
(see Table 31.2).

Per vertex attributes are mapped 1:1 to each vertex value. When used in a node
derived from X3DComposedGeometryNode, the number of values defined in the node
containing the attribute values shall be identical to the number of coordinate values
specified for the geometry node. If the number of values does not match, the visual
result is implementation specific.

31.2.2.5 Per-object attributes

Shaders often need to provide specific per-object values (e.g., the colour of the light).
The most common name for one of these values is uniform variable. Uniform variables
are defined using custom field definitions that allow objects to be set as required. The
placement of these fields depends on the shading language itself, as the amount of
customizability is dependent on the shading language.

Field names shall be mapped to the shading API as the uniform variable name of the

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 31 Programmable shaders component

shaders.html[8/1/2020 9:59:58 AM]

identical name in the shader file.

NOTE Some shading languages cannot handle the full UTF-8 character set required by this International
Standard.

For fields of type SFNode or MFNode, the mapping to the shading language is
dependent on the individual shading language. The applicable language binding annex
specifies the required behaviour (see Table 31.2).

31.2.2.6 Handling errors

If a shader program does not have valid syntax or the environment does not contain
enough information for the shader to render, implementations shall track errors during
all stages of the shader process and display them to the browser's console.

A shader that fails during run-time or during the compilation or validation stages shall
not run. A browser shall use the rendering API's default behaviour for this situation. If a
user requires some fallback behaviour, such as the browser not supporting the shader
capabilities requested, other nodes such as LoadSensor, Script, and/or Switch can be
used to specify the required visual output.

31.2.3 Interaction with other nodes and components

31.2.3.1 Overview

Programmable shaders typically replace large amounts of functionality that would be
traditionally implemented by the browser. The effect of each shader language varies
depending on the amount of processing that the user will be required to perform. Some
languages may completely disable anything that would be automatically generated
(e.g., texture coordinates or normals) while others may not. A reasonable assumption is
that everything is disabled for any geometry that has a shader associated with it. Each
language shading definition annex specifies exactly the semantics that can be expected
of the underlying rendering API, and by implication, the browser.

31.2.3.2 Lighting

If the user provides a fragment shader, the shader shall be responsible for all lighting
associated with the affected geometry. The lighting definitions in 17 Lighting component
shall be ignored. Where possible, all of the lighting information such as the currently set
lights, material colours and textures shall be made available to the shader. Some
rendering APIs may not be able to make available all of this information. In this case, it
is acceptable to provide alternative mapping hints as part of the node definition. The
individual shading language annexes contain more information (see Table 31.2).

31.2.3.3 Geometry

Since a vertex shader may move the vertex from its original location in the local
coordinate system, it can produce many large-scale side effects. A major problem is
that the browser implementation may have no idea where the final geometry has been
placed. Any action that relies on knowing the exact position of vertices may fail to act
properly. In particular, terrain following, collision detection and sensors can be

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 31 Programmable shaders component

shaders.html[8/1/2020 9:59:58 AM]

adversely effected.

Because a vertex may be shifted in world space, it is recommended that if a user
requires this ability, a means of giving a rough approximation of the geometry to the
browser should be provided, either through setting an explicit bounding box on the
containing Shape node or by providing the source geometry as close to the final output
shape as possible.

EXAMPLE A fuzzy rabbit shape would start with the source vertices in the shape of the base rabbit geometry.

31.2.3.4 LoadSensor

A shader is considered loaded when the source for the shader program has been
downloaded successfully. A shader is considered valid when the downloaded file has
been compiled and registered with the rendering API, which then considers it a valid
object.

31.2.4 Conformance

31.2.4.1 Component support

An implementation shall indicate support for this component if and only if the user's
particular hardware is capable of supporting this component, either through direct
hardware support or software emulation. If the user's machine is not capable of
supporting this component, the browser shall indicate a failure by stopping at the
appropriate PROFILE or COMPONENT statement of the file, in accordance with 7.2.5.3
PROFILE statement or 7.2.5.4 COMPONENT statement.

31.2.4.2 Node support

A conformant browser for this component shall support all the nodes at a given level.
However, a conformant browser is not required to support the corresponding shading
language for that node. If a browser is not supporting the language, the nodes that
provide access to that language shall be read and ignored. These ignored nodes shall
still exist as part of the X3D scene graph, and shall still honour the X3D event model.

EXAMPLE Any inputOutput fields shall still be required to implement output events if a value is written to the input.

31.2.4.3 Language support

A browser conformant to this component shall support at least one shading language as
listed in Table 31.2.

31.2.4.4 Scene graph interaction

A shader containing a vertex shader shall be required to be conformant only to either
the explicit bounding boxes or the original source geometry definition. It is not required
to obtain the output vertex information for use within the scene graph.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 31 Programmable shaders component

shaders.html[8/1/2020 9:59:58 AM]

 31.3 Abstract types

31.3.1 X3DProgrammableShaderObject
X3DProgrammableShaderObject {
}

This abstract node type is the base typeinterface is the marker for all shader-related
node types that specify arbitrary fields for interfacing with per-object attribute values.

A concrete X3DProgrammableShaderObject node instance is used to program behaviour
for a shader in a scene. The shader is able to receive and process events that are sent
to it. Each event that can be received shall be declared in the shader node using the
same field syntax as is used in a prototype definition:

inputOnly type name

The type can be any of the standard X3D fields (as defined in 5 Field type reference).
The name shall be an identifier that is unique for this shader node and is used to map
the value to the shader program's uniform variable of the same name. If a shader
program does not have a matching uniform variable, the field value is ignored.

OutputOnly fields are not required to generate output events from a shader. Current
hardware shader technology does not support this capability, though future versions
may.

It is recommended that user-defined field or event names defined in shader nodes
follow the naming conventions described in Part 2 of ISO/IEC 19775.

31.3.2 X3DShaderNode
X3DShaderNode : X3DAppearanceChildNode {
 SFBool [in] activate
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [out] isSelected
 SFBool [out] isValid
 SFString [] language "" ["Cg"|"GLSL"|"HLSL"|...]
}

This abstract node type is the base type for all node types that specify a programmable
shader.

The activate field forces the shader to activate the contained objects. The conditions
under which an activate event may be required are described in OpenGL I.5 Event
model, Microsoft High Level Shading Language (HLSL) J.5 Event model, and nVidia Cg
K.6 Event model.

The isSelected output field is used to indicate that this shader instance is the one
selected for use by the browser. A TRUE value indicates that this instance is in use. A
FALSE value indicates that this instance is not in use. The rules for when a browser
decides to select a particular node instance are described in 31.2.2.3 Selecting an
appropriate shader.

The isValid field is used to indicate whether the current shader objects can be run as a
shader program.

EXAMPLE There are no syntax errors and the hardware can support all the required features.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 31 Programmable shaders component

shaders.html[8/1/2020 9:59:58 AM]

The definition of this field may also add additional semantics on a per-language basis.

The language field is used to indicate to the browser which shading language is used for
the source file(s). This field may be used as a hint for the browser if the shading
language is not immediately determinable from the source (e.g., a generic MIME type of
text/plain is returned). A browser may use this field for determining which node instance
will be selected and to ignore languages that it is not capable of supporting. Three basic
language types are defined for this specification and others may be optionally supported
by a browser.

31.3.3 X3DVertexAttributeNode
X3DVertexAttributeNode : X3DGeometricPropertyNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFString [] name ""
}

This abstract node type is the base type for all node types that specify per-vertex
attribute information to the shader.

The name field describes a name that is mapped to the shading language-specific name
for describing per-vertex data. The appropriate shader language annex (see Table 31.2)
annex contains language-specific binding information.

 31.4 Node reference

31.4.1 ComposedShader
ComposedShader : X3DShaderNode, X3DProgrammableShaderObject {
 SFBool [in] activate
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFNode [in,out] parts [] [ShaderPart]
 SFBool [out] isSelected
 SFBool [out] isValid
 SFString [] language "" ["Cg"|"GLSL"|"HLSL"|...]

 # And any number of:
 fieldType [] fieldName
 fieldType [in] fieldName
 fieldType [out] fieldName
 fieldType [in,out] fieldName
}

The ComposedShader node defines a shader where the individual source files are not
individually programmable. All access to the shading capabilities is defined through a
single interface that applies to all parts.

EXAMPLE OpenGL Shading Language (GLSL)

The isValid field adds an additional semantic indicating whether the current shader parts
can be linked together to form a complete valid shader program.

The activate field forces the shader to activate the contained objects. The conditions
under which a activate may be required are described in I.5 Event model.

31.4.2 FloatVertexAttribute
FloatVertexAttribute : X3DVertexAttributeNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]

∞ ∞

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 31 Programmable shaders component

shaders.html[8/1/2020 9:59:58 AM]

 MFFloat [in,out] value [] (- ,)
 SFString [] name ""
 SFInt32 [] numComponents 4 [1..4]
}

The FloatVertexAttribute node defines a set of per-vertex single-precision floating point
attributes.

The numComponents field specifies how many consecutive floating point values should
be grouped together per vertex. The length of the value field shall be a multiple of
numComponents.

The value field specifies an arbitrary collection of floating point values that will be
passed to the shader as per-vertex information. The specific type mapping to the
individual shading language data types is in the appropriate language-specific annex
(see Table 31.2).

31.4.3 Matrix3VertexAttribute
Matrix3VertexAttribute : X3DVertexAttributeNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFMatrix3f [in,out] value [] (-∞,∞)
 SFString [] name ""
}

The Matrix3VertexAttribute node defines a set of per-vertex 3×3 matrix attributes.

The value field specifies an arbitrary collection of matrix values that will be passed to
the shader as per-vertex information. The specific type mapping to the individual
shading language data types shall be found in the appropriate language-specific annex
(see Table 31.2).

31.4.4 Matrix4VertexAttribute
Matrix4VertexAttribute : X3DVertexAttributeNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFMatrix4f [in,out] value [] (-∞,∞)
 SFString [] name ""
}

The Matrix4VertexAttribute node defines a set of per-vertex 4×4 matrix attributes.

The value field specifies an arbitrary collection of matrix values that will be passed to
the shader as per-vertex information. The specific type mapping to the individual
shading language data types shall be found in the appropriate language-specific annex
(see Table 31.2).

31.4.5 PackagedShader
PackagedShader : X3DShaderNode, X3DUrlObject, X3DProgrammableShaderObject {
 SFBool [in] activate
 SFString [in,out] description ""
 SFBool [in,out] load TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFTime [in,out] refresh 0.0 [0,∞)
 MFString [in,out] url [] [URI]
 SFBool [out] isSelected
 SFBool [out] isValid
 SFString [] language "" ["Cg"|"GLSL"|"HLSL"|...]

 # And any number of:
 fieldType [in] fieldName
 fieldType [in,out] fieldName initialValue
 fieldType [out] fieldName
 fieldType [] fieldName initialValue
}

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 31 Programmable shaders component

shaders.html[8/1/2020 9:59:58 AM]

A PackagedShader node describes a single file that may contain a number of shaders
and combined effects.

EXAMPLE The Microsoft .fx file format represents this type of shader (see [FX]).

The shader source is read from the URL specified by the url field. When the url field
contains no values ([]), this object instance is ignored. The url field is defined in 9.2.1
URLs. No file formats are required to be supported for this node.

The language field may be used to optionally determine the language type if no MIME-
type information is available.

If the refresh field results in a new script getting loaded or the prior script getting
reloaded, then all fields are re-initialized to their initially defined values, and the
initialize() method is invoked, if provided, as defined in 29.2.3 initialize() and
shutdown().

WARNING Automatically reloading content can have security considerations and needs
to be considered carefully.

31.4.6 ProgramShader
ProgramShader : X3DShaderNode {
 SFBool [in] activate
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFNode [in,out] programs [] [ShaderProgram]
 SFBool [out] isSelected
 SFBool [out] isValid
 SFString [] language "" ["Cg"|"GLSL"|"HLSL"|...]
}

The ProgramShader node defines a shader that can consist of one or more individually
programmable, self contained pieces. Each piece, represented by a ShaderProgram
node, shall be a self-contained source that does not rely on any other source file and
can manage one part of the programmable pipeline (e.g., vertex or fragment
processing).

The programs field consists of zero or more ShaderProgram node instances. In general,
only two ShaderProgram instances are needed: one each for vertex and fragment
processing. Each shader language annex shall define the required behaviour for
processing this field.

The isValid field may add an additional semantic to indicate whether all parts are
available.

EXAMPLE Microsoft's HLSL requires that both vertex and fragment programs be provided. It specifies that it is an
error to provide one and not the other.

31.4.7 ShaderPart
ShaderPart : X3DNode, X3DUrlObject {
 SFString [in,out] description ""
 SFBool [in,out] load TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFTime [in,out] refresh 0.0 [0,∞)
 MFString [in,out] url [] [URI]
 SFString [] type "VERTEX" ["VERTEX"|"FRAGMENT"]
}

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 31 Programmable shaders component

shaders.html[8/1/2020 9:59:58 AM]

The ShaderPart node defines the source for a single object to be used by a
ComposedShader node. The source is not required to be a complete shader for all of the
vertex/fragment processing.

The type field indicates whether this object shall be compiled as a vertex shader,
fragment shader, or other future-defined shader type.

The shader source is read from the URL specified by the url field. When the url field
contains no values ([]), this object instance is ignored. The url field is defined in 9.2.1
URLs. Shader source files shall be plain text encoded as specified for MIME type
text/plain and interpreted according to the type field.

If the refresh field results in a new script getting loaded or the prior script getting
reloaded, the initialize() method is invoked, if provided, as defined in 29.2.3 initialize()
and shutdown().

WARNING Automatically reloading content can have security considerations and needs
to be considered carefully.

31.4.8 ShaderProgram
ShaderProgram : X3DNode, X3DUrlObject, X3DProgrammableShaderObject {
 SFString [in,out] description ""
 SFBool [in,out] load TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFTime [in,out] refresh 0.0 [0,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFString [in,out] url [] [URI]
 SFString [] type "VERTEX" ["VERTEX"|"FRAGMENT"]

 # And any number of:
 fieldType [in] fieldName
 fieldType [in,out] fieldName initialValue
 fieldType [out] fieldName
 fieldType [] fieldName initialValue
}

The ShaderProgram node provides the source and interface to a self contained program
that occupies one part of the rendering process: either a vertex or fragment shader.

The shader source is read from the URL specified by the url field. When the url field
contains no values ([]), this object instance is ignored. The url field is defined in 9.2.1
URLs. Shader source files shall be plain text encoded as specified for MIME type
text/plain and interpreted according to the containing node's language definition.

If the refresh field results in a new script getting loaded or the prior script getting
reloaded, then all fields are re-initialized to their initially defined values, and the
initialize() method is invoked, if provided, as defined in 29.2.3 initialize() and
shutdown().

WARNING Automatically reloading content can have security considerations and needs
to be considered carefully.

 31.5 Support levels
The Programmable Shaders component defines a single level of support as specified in
Table 31.3.

 Table 31.3 — Programmable shaders component support levels

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 31 Programmable shaders component

shaders.html[8/1/2020 9:59:58 AM]

Level Prerequisites Nodes/Features Support

1

Core 1
Grouping 1
Shape 1
Rendering 1

X3DProgrammableShaderObject n/a

X3DShaderNode n/a

X3DVertexAttributeNode n/a

FloatVertexAttribute All fields fully
supported.

ComposedShader All fields fully
supported.

ShaderPart All fields fully
supported.

ProgramShader All fields fully
supported.

ShaderProgram All fields fully
supported.

Matrix3VertexAttribute All fields fully
supported.

Matrix4VertexAttribute All fields fully
supported.

PackagedShader All fields fully
supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex J Microsoft high level shading language (HLSL) binding

shaders_hlsl.html[8/1/2020 10:00:01 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

Annex J

(normative)

Microsoft High Level Shading Language (HLSL)
binding

 J.1 General
This annex defines the mapping of concepts of the programmable shaders component
to the Microsoft High Level Shading Language (HLSL) (see [HLSL]). It applies to the
ProgramShader, ShaderProgram and PackagedShader nodes with the language field set
to "HLSL".

 J.2 Topics
Table 1 provides links to the major topics in this annex.

 Table J.1 — Topics

J.1 General
J.2 Topics
J.3 Interaction with other nodes and components

J.3.1 Vertex shader
J.3.2 Fragment shader
J.3.3 LoadSensor
J.3.4 Vertex attributes

J.4 Data type and parameter mappings
J.4.1 Node fields
J.4.2 X3D field types to HLSL data types
J.4.3 X3D world state to HLSL parameter names

J.5 Event Model
J.5.1 Changing URL fields

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex J Microsoft high level shading language (HLSL) binding

shaders_hlsl.html[8/1/2020 10:00:01 AM]

J.5.2 Changing the attrib field
J.5.3 Activating programs

Table J.1 — Topics
Table J.2 — Supported Direct3D vertex declaration usage types
Table J.3 — Mapping of X3D texture node types to HLSLsampler types
Table J.4 — Mapping of X3D material and light node types to HLSL structure
declarations
Table J.5 — Mapping of X3D field types to HLSL data types
Table J.6 — Mapping of X3D world State to HLSL parameter names

 J.3 Interaction with other nodes and components

J.3.1 Vertex shader

The vertex shader replaces the vertex processing done by the Microsoft Direct3D
graphics pipeline. While using a vertex shader, state information regarding
transformation and lighting operations is ignored by the fixed-function pipeline. The
HLSL specification states that the following functionality is disabled if a vertex shader is
supplied:

a. The model view matrix is not applied to vertex coordinates.
b. The projection matrix is not applied to vertex coordinates.
c. The texture matrices are not applied to texture coordinates.
d. The normals are not transformed to eye coordinates.
e. The normals are not rescaled or normalized.
f. Texture coordinates are not generated automatically.
g. Per vertex lighting is not performed.
h. Color material lighting is not performed.
i. Point size distance attenuation is not performed.

The fixed-function pipeline Direct3D graphics state is not available for use within an
HLSL shader program. Shaders that wish to make use of this data, such as material,
lighting, texture and transformation matrix state, shall declare parameters of the
appropriate type and pass values into them via declared fields of the containing
ShaderProgram node in the X3D scene graph. The parameter types and mappings to
those types from built-in X3D values are defined in J.4 Data type and parameter
mappings.

J.3.2 Fragment Shader

The fragment shader, also know as a pixel shader in HLSL, replaces the fixed
functionality of the Direct3D fragment processor. The HLSL specification states that
“textures are not applied” if a fragment shader is supplied.

The fixed function pipeline Direct3D graphics state is not available for use within an
HLSL pixel shader program. Shaders that wish to make use of this data, such as
material, lighting, texture and transformation matrix state, shall declare parameters of

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex J Microsoft high level shading language (HLSL) binding

shaders_hlsl.html[8/1/2020 10:00:01 AM]

the appropriate type and pass values into them via declared fields of the containing
ShaderProgram node in the X3D scene graph. The parameter types and mappings to
those types from built-in X3D values are defined in J.4 Data type and parameter
mappings.

J.3.3 LoadSensor

The LoadSensor node (See 9.4.3 LoadSensor) has two output fields isActive and
isLoaded. The isLoaded field behaviour is unchanged.

The isActive field is defined to issue a TRUE event when all the following conditions have
been satisfied:

a. The content identified by the url field has been successfully loaded.
b. The shader program has been successfully compiled without error.

J.3.4 Vertex attributes

Each vertex attribute node directly maps the name field to a Direct3D usage type for
use within a Direct3D vertex declaration (with the prefix "D3DDECLUSAGE_" prepended to the
name), as well as an HLSL binding semantic of the same name defined on the varying
inputs to a shader program. This language binding allows the use of the predefined
Direct3D vertex declaration usage types and HLSL binding semantics listed in Table J.2.

 Table J.2 — Supported Direct3D vertex declaration usage types

Direct3D usage type

POSITION

NORMAL

TEXCOORD

TANGENT

BINORMAL

COLOR

FOG

The browser implementation shall automatically assign appropriate internal index
values for each attribute in the case where multiple nodes have the same value in the
name field.

 J.4 Data Type and Parameter Mappings

J.4.1 Node fields

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex J Microsoft high level shading language (HLSL) binding

shaders_hlsl.html[8/1/2020 10:00:01 AM]

Fields that are of type SFNode/MFNode are ignored unless the value is of type
X3DTextureNode, X3DMaterialNode, or X3DLightNode. Field instances of type
X3DTextureNode are mapped according to the appropriate Direct3D sampler data type.
The mapping from texture nodes to built-in sampler types is defined in Table J.3.

 Table J.3 — Mapping of X3D texture node types to HLSL sampler types

X3D Texture type HLSL variable type

X3DTexture2DNode sampler2D

X3DTexture3DNode sampler3D

X3DEnvironmentTextureNode samplerCube

X3D does not define mappings to the HLSL types sampler1D, sampler1DShadow and
sampler2DShadow.

Field instances of type X3DMaterialNode and X3DLightNode are mapped to structures
that shall be declared in the shader program as defined in Table J.4.

 Table J.4 — Mapping of X3D material and light node types to HLSL structure
declarations

X3D node
type

HLSL
structure

declaration
Additional information

X3DMaterialNode

struct X3DMaterial {
 float4
diffuseColor;
 float4
ambientColor;
 float4
specularColor;
 float4
emissiveColor;
 float power;
};

All color values are 4-component with
alpha value = 1.0.

X3DLightNode

struct X3DLight {
 int type;
 float4
diffuseColor;
 float4
specularColor;
 float4
ambientColor;
 point3 position;
 point3 direction;
 float range;
 float falloff;
 float
attenuation0;
 float
attenuation1;
 float
attenuation2;
 float theta;
 float phi;
 bool on;
};

Valid type member values are 1 for Point
light, 2 for Spot light and 3 for Direction
light.
All color values are 4-component with
alpha value = 1.0.
All position, direction and scalar values are
assumed to be in world space.
The on member specifies whether the light
is enabled.

J.4.2 X3D field types to HLSL data types

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex J Microsoft high level shading language (HLSL) binding

shaders_hlsl.html[8/1/2020 10:00:01 AM]

Table J.5 specifies the mapping of X3D field types to data types used in the HLSL
Language.

 Table J.5 — Mapping of X3D Field Types to HLSL Data Types

X3D Field type HLSL Data Type

SFBool bool

MFBool bool[]

MFInt32 int[]

SFInt32 int

SFFloat float

MFFloat float[]

SFDouble double

MFDouble double[]

SFTime double

MFTime double[]

SFNode See J.4.1 Node fields

MFNode See J.4.1 Node fields

SFVec2f float2

MFVec2f float2[]

SFVec3f float3

MFVec3f float3[]

SFVec4f float4

MFVec4f float4[]

SFVec3d float3

MFVec3d float3[]

SFVec4d float4

MFVec4d float4[]

SFRotation float4

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex J Microsoft high level shading language (HLSL) binding

shaders_hlsl.html[8/1/2020 10:00:01 AM]

MFRotation float4[]

MFColor float4[]

SFColor float4

SFImage int[]

MFImage int[]

SFString Not supported

MFString Not supported

SFMatrix3f float3x3

MFMatrix3f float3x3[]

SFMatrix4f float4x4

MFMatrix4f float4x4[]

HLSL defines maximum supported lengths of each array data type, which may conflict
with the minimum support requirements for X3D.

J4.3 X3D world state to HLSL parameter names

Certain internal states of the X3D world, such as transformation matrices, or the
viewer's position in world space, are neither readily available via the HLSL shader
program nor directly accessible from the X3D scene graph. Thus, if used, these state
values shall be explicitly passed in to the shader program as named parameters. This
binding defines an automatic mapping of these states to predefined shader program
parameter names. Table J.6 defines the mapping of internal states of the X3D world to
parameter names used in HLSL programs.

 Table J.6 — Mapping of X3D world state to HLSL parameter names

Parameter name Description

model

This name refers to the matrix transforming from local
to global coordinates. The model matrix transforms
vertices from their model position to their position in
world space (i.e., after the effects of all Transform
nodes have been applied).

view This name refers to the viewing matrix transforming
from world to view relative coordinates.

projection
This name refers to the projection matrix transforming
from viewing relative coordinates to clip space,
including the projective part.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex J Microsoft high level shading language (HLSL) binding

shaders_hlsl.html[8/1/2020 10:00:01 AM]

modelView

This name refers to the matrix that represents the
concatenation of model and view matrices. This matrix
transforms vertices from their model position to their
position in view space (i.e., after the effects of all
Transform nodes and the current viewpoint have been
applied).

modelViewProjection

This name refers to the matrix that represents the
concatenation of model, view and projection matrices.
This matrix transforms vertices from their model
position to their final position in clip space.

viewPosition This name refers to the current viewer position in world
space coordinates.

The following suffixes can be applied to the matrix built-in values. A suffix of I signifies
the inverse of the matrix. T signifies the transpose of the matrix. IT signifies the inverse
transpose of the matrix.

 J.5 Event model

J.5.1 Changing URL fields

When the url receives an event changing the value, the browser shall immediately
attempt to download the new source. Upon successful download, the browser shall
attempt to compile the new source and issue the appropriate LoadSensor events. It
shall not automatically activate the shader program, nor disable the currently running
shader.

Values defined at load time of the file do not require an explicit request to activate the
shader program. The browser shall be assumed to automatically activate the program
once all the objects have successfully downloaded. If some of the shader source files
are not downloaded or compiled (e.g., due to errors) no activation will occur for the
shader program.

J.5.2 Changing the attrib field

Per-vertex attributes may be defined as one of the fields of
X3DComposedGeometryNode. These may be changed at runtime by adding or removing
node instances. Adding new node instances to the field shall require that the user
request an explicit activate in order to make them visible to the shader.

J.5.3 Activating programs

The user may, at any time, request that the browser activate the composing shader
objects by sending a TRUE value to the activate inputOnly field of the ProgramShader or
PackagedShader node. Users may need to force a re-activation of the node under
various circumstances, such as changing the url field of one or more ShaderProgram or
PackagedShader nodes, or adding or removing ShaderProgram nodes from the
programs field of the ProgramShader node. Reactivating the shader shall replace the

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex J Microsoft high level shading language (HLSL) binding

shaders_hlsl.html[8/1/2020 10:00:01 AM]

existing shader with the new compiled shader for subsequent rendering.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 11 Rendering component

rendering.html[8/1/2020 10:00:03 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

11 Rendering component

 11.1 Introduction

11.1.1 Name

The name of this component is "Rendering". This name shall be used when referring to
this component in the COMPONENT statement (see 7.2.5.4 Component statement).

11.1.2 Overview

This clause describes the Rendering component of this part of ISO/IEC 19775. This
includes fundamental rendering primitives such as TriangleSet and PointSet nodes, and
geometric properties nodes that define how coordinate indices, colors, normals and
texture coordinates are specified. Table 11.1 provides links to the major topics in this
clause.

 Table 11.1 — Topics

11.1 Introduction
11.1.1 Name
11.1.2 Overview

11.2 Concepts
11.2.1 Rendering primitives
11.2.2 Geometric properties

11.2.2.1 Overview
11.2.2.2 Color
11.2.2.3 Coordinates
11.2.2.4 Normals

11.2.3 Common geometry fields
11.2.4 Clip planes

11.2.4.1 Overview
11.2.4.2 Clip plane semantics
11.2.4.3 Transformation hierarchy
11.2.4.4 Scoping of clip planes

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 11 Rendering component

rendering.html[8/1/2020 10:00:03 AM]

11.2.4.5 Clip plane limitations
11.3 Abstract types

11.3.1 X3DColorNode
11.3.2 X3DComposedGeometryNode
11.3.3 X3DCoordinateNode
11.3.4 X3DGeometricPropertyNode
11.3.5 X3DGeometryNode
11.3.6 X3DNormalNode

11.4 Node reference
11.4.1 ClipPlane
11.4.2 Color
11.4.3 ColorRGBA
11.4.4 Coordinate
11.4.5 IndexedLineSet
11.4.6 IndexedTriangleFanSet
11.4.7 IndexedTriangleSet
11.4.8 IndexedTriangleStripSet
11.4.9 LineSet
11.4.10 Normal
11.4.11 PointSet
11.4.12 TriangleFanSet
11.4.13 TriangleSet
11.4.14 TriangleStripSet

11.5 Support levels

Figure 11.1 — Effects of clip planes on geometry
Figure 11.2 — TriangleFanSet node
Figure 11.3 — TriangleSet node
Figure 11.4 — TriangleStripSet node

Table 11.1 — Topics
Table 11.2 — Rendering component support levels

 11.2 Concepts

 11.2.1 Rendering primitives

The following nodes represent the fundamental visual objects common to polygonal
rendering systems:

a. IndexedLineSet,
b. IndexedTriangleFanSet,
c. IndexedTriangleSet,
d. IndexedTriangleStripSet,
e. PointSet,
f. TriangleFanSet,

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 11 Rendering component

rendering.html[8/1/2020 10:00:03 AM]

g. TriangleSet, and
h. TriangleStripSet.

Most complex geometries, such as those found in the 13 Geometry3D component and
14 Geometry2D component, can be implemented as a combination of these nodes. The
Rendering component provides these nodes as basic services for building arbitrary
geometry types.

All of the rendering primitive nodes are descendants of the X3DGeometryNode type.

 11.2.2 Geometric properties

11.2.2.1 Overview

Several geometry nodes contain Coordinate, Color or ColorRGBA, Normal, and
TextureCoordinate as geometric property node types. The geometric property node
types are defined as individual node types so that instancing and sharing is possible
between different geometry nodes. The TextureCoordinate node type is defined in 18
Texturing component.

11.2.2.2 Color

Color in X3D is specified using the RGB color model in which the three components of
color specifications are red, green, and blue ranging in value from 0 to 1. This color
model results in a color specification of (0,0,0) representing black and (1,1,1)
representing white. Color may also be specified using the RGBA color model in which a
fourth alpha component specifies a value ranging from 0 (fully transparent) to 1 (fully
opaque). See [FOLEY] for more information on the RGB color model.

 11.2.2.3 Coordinates

Coordinates in X3D are specified as an (x, y, z) triplet in a right-handed, rectangular
coordinate system.

 11.2.2.4 Normals

Normals define perpendicular directions from a piece of geometry and are used to
perform lighting calculations. They may either be specified as part of the content or
computed directly from the geometry by the browser. When specified as part of the
content, each normal vector shall have unit length.

 11.2.3 Common geometry fields

Certain geometry nodes have several fields that provide information about the
rendering of the geometry. These fields specify the vertex ordering, if the shape is
solid, if the shape contains convex faces, and at what angle a crease appears between
faces, and are named ccw, solid, convex and creaseAngle, respectively.

The ccw field defines the ordering of the vertex coordinates of the geometry with
respect to user-given or automatically generated normal vectors used in the lighting

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 11 Rendering component

rendering.html[8/1/2020 10:00:03 AM]

model equations. If ccw is TRUE, the normals shall follow the right hand rule; the
orientation of each normal with respect to the vertices (taken in order) shall be such
that the vertices appear to be oriented in a counterclockwise order when the vertices
are viewed (in the local coordinate system of the Shape) from the opposite direction as
the normal. If ccw is FALSE, the normals shall be oriented in the opposite direction. If
normals are not generated but are supplied using a Normal node, and the orientation of
the normals does not match the setting of the ccw field, results are undefined.

The solid field determines whether one or both sides of each polygon shall be displayed.
If solid is FALSE, each polygon shall be visible regardless of the viewing direction (i.e., no
backface culling shall be done, and two sided lighting shall be performed to illuminate
both sides of lit surfaces). If solid is TRUE, the visibility of each polygon shall be
determined as follows: Let V be the position of the viewer in the local coordinate
system of the geometry. Let N be the geometric normal vector of the polygon, and let P
be any point (besides the local origin) in the plane defined by the polygon's vertices.
Then if (V dot N) - (N dot P) is greater than zero, the polygon shall be visible; if it is
less than or equal to zero, the polygon shall be invisible (back face culled).

The convex field indicates whether all polygons in the shape are convex (TRUE). A
polygon is convex if it is planar, does not intersect itself, and all of the interior angles at
its vertices are less than 180 degrees. Non planar and self intersecting polygons may
produce undefined results even if the convex field is FALSE.

The creaseAngle field affects how default normals are generated. If the angle between
the geometric normals of two adjacent faces is less than the crease angle, normals shall
be calculated so that the faces are shaded smoothly across the edge; otherwise,
normals shall be calculated so that a lighting discontinuity across the edge is produced.
Crease angles shall be greater than or equal to 0.0 angle base units.

EXAMPLE A crease angle of 0.5 angle base units means that an edge between two adjacent polygonal faces will
be smooth shaded if the geometric normals of the two faces form an angle that is less than 0.5 angle base units.
Otherwise, the faces will appear faceted.

11.2.4 Clip planes

11.2.4.1 Overview

The 3D graphics rendering pipeline uses an implicit step of trimming objects that are
partially in the view frustum called clipping. In addition to these implied bounds, it is
also possible to provide an additional clipping of the geometry through the provision of
additional clip plane definitions.

11.2.4.2 Clip plane semantics

A clip plane is defined as a plane that generates two half-spaces. The effected geometry
in the half-space that is defined as being outside the plane is removed from the
rendered image as a result of a clipping operation.

11.2.4.3 Transformation hierarchy

Clip planes may be defined at any level of the transformation hierarchy. The clip plane

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 11 Rendering component

rendering.html[8/1/2020 10:00:03 AM]

definitions are accumulated from the root of the scene graph down to the individual leaf
nodes that are rendered. Clipping occurs against the intersection of the half-spaces
resulting from the current list of transformed clip plane definitions. Since the clip planes
are collected during the traversal of the scene graph, specifying both local and globally
scoped planes is possible.

Figure 11.1 illustrates four objects effected by a horizontal clip plane and a vertical clip
plane.

Figure 11.1 — Effects of clip planes on geometry

11.2.4.4 Scoping of clip planes

A ClipPlane node affects only objects that are in the same transformation hierarchy as
the node. Each plane is transformed according to the parent transformation hierarchy
but is not further transformed by the children it affects.

Clip planes shall affect nodes derived from X3DBackgroundNode.

11.2.4.5 Clip plane limitations

Many renderers only support a limited number of clip plane definitions (typically, six).
If, while traversing from the root of the scene to a particular leaf, more than the
number of supported clip planes are specified, the clip plane definitions closest to the
leaf are discarded first (i. e., the clip planes that are closer to the root of the scene
graph are considered most important).

 11.3 Abstract types

 11.3.1 X3DColorNode
X3DColorNode : X3DGeometricPropertyNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

This is the base node type for color specifications in X3D.

 11.3.2 X3DComposedGeometryNode
X3DComposedGeometryNode : X3DGeometryNode {
 MFNode [in,out] attrib [] [X3DVertexAttributeNode]

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 11 Rendering component

rendering.html[8/1/2020 10:00:03 AM]

 SFNode [in,out] color NULL [X3DColorNode]
 SFNode [in,out] coord NULL [X3DCoordinateNode]
 SFNode [in,out] fogCoord NULL [FogCoordinate]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFNode [in,out] normal NULL [X3DNormalNode]
 SFNode [in,out] texCoord NULL [X3DTextureCoordinateNode]
 SFBool [] ccw TRUE
 SFBool [] colorPerVertex TRUE
 SFBool [] normalPerVertex TRUE
 SFBool [] solid TRUE
}

This is the base node type for all composed 3D geometry in X3D.

A composed geometry node type defines an abstract type that composes geometry
from a set of nodes that define individual components. Composed geometry may have
color, coordinates, normal and texture coordinates supplied. The rendered output of the
combination of these is dependent on the concrete node definition. However, in general,
the following rules shall be applied for all nodes:

If the color field is not NULL, it shall contain an X3DColorNode node whose colours
are applied to the vertices or faces of the X3DComposedGeometryNode as follows:
If colorPerVertex is FALSE, colours are applied to each face. If colorPerVertex is true,
colours are applied to each vertex.
If the color field is NULL, the geometry shall be rendered normally using the
material and texture defined in the Appearance node (see 12.2.2 Appearance node
for details).
If normalPerVertex is FALSE, colours are applied to each face. If normalPerVertex is
true, normals are applied to each vertex.
If the normal field is not NULL, it shall contain a Normal node whose normals are
applied to the vertices or faces of the X3DComposedGeometryNode in a manner
exactly equivalent to that described above for applying colours to vertices/faces
(where normalPerVertex corresponds to colorPerVertex and normalIndex
corresponds to colorIndex).
If the normal field is NULL, the browser shall automatically generate normals in
accordance with the node's definition. If the node does not define a behaviour, the
default is to generate an averaged normal for all faces that share that vertex.
If the texCoord field is not NULL, it shall contain a TextureCoordinate node.

If the attrib field is not empty it shall contain a list of per-vertex attribute information
for programmable shaders as specified in 32.2.2.4 Per-vertex attributes.

If the fogCoord field is not empty, it shall contain a list of per-vertex depth values for
calculating fog depth as specified in 24.2.2.5 Fog colour calculation.

 11.3.3 X3DCoordinateNode
X3DCoordinateNode : X3DGeometricPropertyNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

This is the base node type for all coordinate node types in X3D. All coordinates are
specified in nodes derived from this abstract node type.

 11.3.4 X3DGeometricPropertyNode
X3DGeometricPropertyNode : X3DNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 11 Rendering component

rendering.html[8/1/2020 10:00:03 AM]

}

This is the base node type for all geometric property node types defined in X3D

 11.3.5 X3DGeometryNode
X3DGeometryNode : X3DNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

This is the base node type for all geometry in X3D.

 11.3.6 X3DNormalNode
X3DNormalNode : X3DGeometricPropertyNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

This is the base node type for all normal node types in X3D. All normals are specified in
nodes derived from this abstract node type.

 11.4 Node reference

11.4.1 ClipPlane
ClipPlane : X3DChildNode {
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFVec4f [in,out] plane 0 1 0 0 [0,1]
}

The ClipPlane node specifies a single plane equation that will be used to clip the
geometry. The plane field specifies a four-component plane equation that describes the
inside and outside half space. The first three components are a normalized vector
describing the direction of the plane's normal direction.

11.4.2 Color
Color : X3DColorNode {
 MFColor [in,out] color [NULL] [0,1]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

This node defines a set of RGB colours to be used in the fields of another node.

Color nodes are only used to specify multiple colours for a single geometric shape, such
as colours for the faces or vertices of an IndexedFaceSet. A material node is used to
specify the overall material parameters of lit geometry. If both a material node and a
Color node are specified for a geometric shape, the colours shall replace the main color
component of the material.

The main color is defined as:

Material.diffuseColor, if Phong Material is used.
PhysicalMaterial.baseColor, if PhysicalMaterial is used.
UnlitMaterial.emissiveColor, if UnlitMaterial is used.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 11 Rendering component

rendering.html[8/1/2020 10:00:03 AM]

This definition of main color here is consistent with the definition of main texture used
in case of Gouraud shading. See 17.2.2.8 Gouraud shading.

RGB or RGBA textures take precedence over colours; specifying both an RGB or RGBA
texture and a Color node for geometric shape will result in the Color node being
ignored. RGB or RGBA textures are mixed with colors. Details on lighting equations can
be found in 17.2.2 Lighting model.

 11.4.3 ColorRGBA
ColorRGBA : X3DColorNode {
 MFColorRGBA [in,out] color [NULL] [0,1]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

This node defines a set of RGBA colours to be used in the fields of another node.

RGBA color nodes are only used to specify multiple colours with alpha for a single
geometric shape, such as colours for the faces or vertices of an IndexedFaceSet. A
material node is used to specify the overall material parameters of lit geometry. If both
a material node and a ColorRGBA node are specified for a geometric shape, the colours
shall replace the main color and transparency components of the material.

The main color is defined as:

Material.diffuseColor, if Phong Material is used.
PhysicalMaterial.baseColor, if PhysicalMaterial is used.
UnlitMaterial.emissiveColor, if UnlitMaterial is used.

This definition of main color here is consistent with the definition of main texture used
in case of Gouraud shading is used. See 17.2.2.8 Gouraud shading.

RGB or RGBA textures take precedence over colours; specifying both an RGB or RGBA
texture and a ColorRGBA node for geometric shape will result in the ColorRGBA node
being ignored. RGB or RGBA textures are mixed with colors. Details on lighting
equations can be found in 17.2.2 Lighting model.

 11.4.4 Coordinate
Coordinate : X3DCoordinateNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFVec3f [in,out] point [] (-∞,∞)
}

This node defines a set of 3D coordinates to be used in the coord field of vertex-based
geometry nodes including:

a. IndexedFaceSet,
b. IndexedLineSet,
c. IndexedTriangleFanSet,
d. IndexedTriangleSet,
e. IndexedTriangleStripSet,
f. PointSet,
g. TriangleFanSet,

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 11 Rendering component

rendering.html[8/1/2020 10:00:03 AM]

h. TriangleSet, and
i. TriangleStripSet.

 11.4.5 IndexedLineSet
IndexedLineSet : X3DGeometryNode {
 MFInt32 [in] set_colorIndex
 MFInt32 [in] set_coordIndex
 MFNode [in,out] attrib [] [X3DVertexAttributeNode]
 SFNode [in,out] color NULL [X3DColorNode]
 SFNode [in,out] coord NULL [X3DCoordinateNode]
 SFNode [in,out] fogCoord NULL [FogCoordinate]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFNode [in,out] normal NULL [X3DNormalNode]
 MFInt32 [] colorIndex [] [0,∞) or -1
 SFBool [] colorPerVertex TRUE
 MFInt32 [] coordIndex [] [0,∞) or -1
}

The IndexedLineSet node represents a 3D geometry formed by constructing polylines
from 3D vertices specified in the coord field. IndexedLineSet uses the indices in its
coordIndex field to specify the polylines by connecting vertices from the coord field. An
index of "-1" indicates that the current polyline has ended and the next one begins. The
last polyline may be (but does not have to be) followed by a "-1". IndexedLineSet is
specified in the local coordinate system and is affected by the transformations of its
ancestors.

The coord field specifies the 3D vertices of the line set and contains a Coordinate node.

Lines are not lit, are not texture-mapped, and do not participate in collision detection.
The width and style of lines are determined by the line properties specified in an
associated Appearance node. If no line properties are specified, the default values for
fields of the LineProperties node shall be used (see 12.4.3 LineProperties).

If the color field is not NULL, it shall contain a node derived from X3DColorNode. The
colours are applied to the line(s) as follows:

a. If colorPerVertex is FALSE:
1. If the colorIndex field is not empty, one colour is used for each polyline of the

IndexedLineSet. There shall be at least as many indices in the colorIndex field
as there are polylines in the IndexedLineSet. If the greatest index in the
colorIndex field is N, there shall be N+1 colours in the Color node. The
colorIndex field shall not contain any negative entries.

2. If the colorIndex field is empty, the colours from the Color node are applied to
each polyline of the IndexedLineSet in order. There shall be at least as many
colours in the X3DColorNode node as there are polylines.

b. If colorPerVertex is TRUE:
1. If the colorIndex field is not empty, colours are applied to each vertex of the

IndexedLineSet in exactly the same manner that the coordIndex field is used
to supply coordinates for each vertex from the Coordinate node. The
colorIndex field shall contain at least as many indices as the coordIndex field
and shall contain end-of-polyline markers (−1) in exactly the same places as
the coordIndex field. If the greatest index in the colorIndex field is N, there
shall be N+1 colours in the Color node.

2. If the colorIndex field is empty, the coordIndex field is used to choose colours
from the Color node. If the greatest index in the coordIndex field is N, there

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 11 Rendering component

rendering.html[8/1/2020 10:00:03 AM]

shall be N+1 colours in the Color node.

If the color field is NULL and there is a material defined for the Appearance affecting this
IndexedLineSet, the emissiveColor of the material shall be used to draw the lines.
Details on lighting equations as they affect IndexedLineSet nodes are described in 17
Lighting component.

No effect on rendering behavior is defined for data specified by the normal field.
Rendering techniques that utilize normal information to refine presentation of geometry
are allowed but not required.

11.4.6 IndexedTriangleFanSet
IndexedTriangleFanSet : X3DComposedGeometryNode {
 MFInt32 [in] set_index [] [0,∞) or -1
 MFNode [in,out] attrib [] [X3DVertexAttributeNode]
 SFNode [in,out] color NULL [X3DColorNode]
 SFNode [in,out] coord NULL [X3DCoordinateNode]
 SFNode [in,out] fogCoord NULL [FogCoordinate]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFNode [in,out] normal NULL [X3DNormalNode]
 SFNode [in,out] texCoord NULL [X3DTextureCoordinateNode]
 SFBool [] ccw TRUE
 SFBool [] colorPerVertex TRUE
 SFBool [] normalPerVertex TRUE
 SFBool [] solid TRUE
 MFInt32 [] index [] [0,∞) or -1
}

An IndexedTriangleFanSet represents a 3D shape composed of triangles that form a fan
shape around the first vertex declared in each fan as depicted in Figure 11.1.
IndexedTriangleFanSet uses the indices in its index field to specify the triangle fans by
connecting vertices from the coord field. An index of "-1" indicates that the current fan
has ended and the next one begins. The last fan may be (but does not have to be)
followed by a "-1".Each fan shall have at least three non-coincident vertices.

The IndexedTriangleFanSet node is specified in the local coordinate system and is
affected by the transformations of its ancestors. Descriptions of the color, coord,
normal, and texCoord fields are provided in the Color, ColorRGBA, Coordinate, Normal,
and TextureCoordinate nodes, respectively. If values are provided for the color, normal
and texCoord fields, the values are applied in the same manner as the values from the
coord field and there shall be at least as many values as are present in the coord field.
The value of the colorPerVertex field is ignored and always treated as TRUE. If the normal
field is not provided, normals shall be generated as follows:

If normalPerVertex is TRUE, the normal for each vertex shall be the average of the
normals for all triangles sharing that vertex.
If normalPerVertex is FALSE, the normal shall be generated for the current triangle
based on the ccw field.

The solid field determines whether the IndexedTriangleFanSet is visible when viewed
from the inside. 11.2.3 Common geometry fields provides a complete description of the
solid field.

11.4.7 IndexedTriangleSet
IndexedTriangleSet : X3DComposedGeometryNode {
 MFInt32 [in] set_index [] [0,∞)
 MFNode [in,out] attrib [] [X3DVertexAttributeNode]
 SFNode [in,out] color NULL [X3DColorNode]
 SFNode [in,out] coord NULL [X3DCoordinateNode]

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 11 Rendering component

rendering.html[8/1/2020 10:00:03 AM]

 SFNode [in,out] fogCoord NULL [FogCoordinate]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFNode [in,out] normal NULL [X3DNormalNode]
 SFNode [in,out] texCoord NULL [X3DTextureCoordinateNode]
 SFBool [] ccw TRUE
 SFBool [] colorPerVertex TRUE
 SFBool [] normalPerVertex TRUE
 SFBool [] solid TRUE
 MFInt32 [] index [] [0,∞)
}

The IndexedTriangleSet node represents a 3D shape composed of a collection of
individual triangles as depicted in Figure 11.2. IndexedTriangleSet uses the indices in
its index field to specify the vertices of each triangle from the coord field. Each triangle
is formed from a set of three vertices of the Coordinate node identified by three
consecutive indices from the index field. If the index field does not contain a multiple of
three coordinate values, the remaining vertices shall be ignored.

The IndexedTriangleSet node is specified in the local coordinate system and is affected
by the transformations of its ancestors. Descriptions of the color, coord, normal, and
texCoord fields are provided in the Color, ColorRGBA, Coordinate, Normal, and
TextureCoordinate nodes, respectively. If values are provided for the color, normal and
texCoord fields, the values are applied in the same manner as the values from the
coord field and there shall be at least as many values as are present in the coord field.
The value of the colorPerVertex field is ignored and always treated as TRUE. If the normal
field is not supplied, normals shall be generated as follows:

If normalPerVertex is TRUE, the normal at each vertex shall be the average of the
normals for all triangles that share that vertex.
If normalPerVertex is FALSE, the normal at each vertex shall be perpendicular to the
face for that triangle.

The solid field determines whether the IndexedTriangleSet is visible when viewed from
the backside. 11.2.3 Common geometry fields provides a complete description of the
solid field.

11.4.8 IndexedTriangleStripSet
IndexedTriangleStripSet : X3DComposedGeometryNode {
 MFInt32 [in] set_index [] [0,∞) or −1
 MFNode [in,out] attrib [] [X3DVertexAttributeNode]
 SFNode [in,out] color NULL [X3DColorNode]
 SFNode [in,out] coord NULL [X3DCoordinateNode]
 SFNode [in,out] fogCoord NULL [FogCoordinate]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFNode [in,out] normal NULL [X3DNormalNode]
 SFNode [in,out] texCoord NULL [X3DTextureCoordinateNode]
 SFBool [] ccw TRUE
 SFBool [] colorPerVertex TRUE
 SFBool [] normalPerVertex TRUE
 SFBool [] solid TRUE
 MFInt32 [] index [] [0,∞) or −1
}

An IndexedTriangleStripSet represents a 3D shape composed of strips of triangles as
depicted in Figure 11.3. IndexedTriangleStripSet uses the indices in its index field to
specify the triangle strips by connecting vertices from the coord field. An index of "−1"
indicates that the current strip has ended and the next one begins. The last strip may
be (but does not have to be) followed by a "−1". Each strip shall have at least three
non-coincident vertices.

The IndexedTriangleStripSet node is specified in the local coordinate system and is
affected by the transformations of its ancestors. Descriptions of the color, coord,

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 11 Rendering component

rendering.html[8/1/2020 10:00:03 AM]

normal, and texCoord fields are provided in the Color, ColorRGBA, Coordinate, Normal,
and TextureCoordinate nodes, respectively. If values are provided for the color, normal
and texCoord fields, the values are applied in the same manner as the values from the
coord field and there shall be at least as many values as are present in the coord field.
The value of the colorPerVertex field is ignored and always treated as TRUE. If the normal
field is not supplied, normals shall be generated as follows:

If normalPerVertex is TRUE, the normal shall be the average of all triangles sharing
that vertex.
If normalPerVertex is FALSE, the normal shall be generated for the triangle based on
the ccw field.

The solid field determines whether the IndexedTriangleStripSet is visible when viewed
from the inside. 11.2.3 Common geometry fields provides a complete description of the
solid field.

11.4.9 LineSet
LineSet : X3DGeometryNode {
 MFNode [in,out] attrib [] [X3DVertexAttributeNode]
 SFNode [in,out] color NULL [X3DColorNode]
 SFNode [in,out] coord NULL [X3DCoordinateNode]
 SFNode [in,out] fogCoord NULL [FogCoordinate]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFNode [in,out] normal NULL [X3DNormalNode]
 MFInt32 [in,out] vertexCount [] [2,∞)
}

The LineSet node represents a 3D geometry formed by constructing polylines from 3D
vertices specified in the coord field.

The color field specifies the colour of the line set at each vertex and contains a node
derived from X3DColorNode. A description of the color field is provided in the color
node. If the color field is NULL and there is a material defined for the Appearance
affecting this LineSet, the emissiveColor of the material shall be used to draw the lines.
Details on lighting equations as they affect LineSet nodes are described in 17 Lighting
component

The coord field specifies the 3D vertices of the line set and contains a Coordinate node.

The vertexCount field describes how many vertices are to be used in each polyline from
the coordinate field. Coordinates are assigned to each line by taking vertexCount[n]
vertices from the coordinate field. Each value of the vertexCount array shall be greater
than or equal to two. It shall be an error to have a value less than two.

Lines are not lit, are not texture-mapped, and do not participate in collision detection.
The width and style of lines are determined by the line properties specified in an
associated Appearance node. If no line properties are specified, the default values for
the fields of the LineProperties node shall be used (see 12.4.3 LineProperties).

No effect on rendering behavior is defined for data specified by the normal field.
Rendering techniques that utilize normal information to refine presentation of geometry
are allowed but not required.

 11.4.10 Normal

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 11 Rendering component

rendering.html[8/1/2020 10:00:03 AM]

Normal : X3DNormalNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFVec3f [in,out] vector [] [-1,1]
}

This node defines a set of 3D surface normal 3D direction vectors to be used for the
normal field of some geometry nodes (EXAMPLE IndexedFaceSet, IndexedLineSet,
LineSet, PointSet, and ElevationGrid). The term 'normal' is common usage to indicate
direction vectors, even though the direction vectors might not necessarily indicate
perpendicularity. This node contains one multiple-valued field that contains the normal
vectors. Normals shall be of unit length.

 11.4.11 PointSet
PointSet : X3DGeometryNode {
 MFNode [in,out] attrib [] [X3DVertexAttributeNode]
 SFNode [in,out] color NULL [X3DColorNode]
 SFNode [in,out] coord NULL [X3DCoordinateNode]
 SFNode [in,out] fogCoord NULL [FogCoordinate]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFNode [in,out] normal NULL [X3DNormalNode]
}

The PointSet node specifies a set of 3D points, in the local coordinate system, with
associated colours at each point. The coord field specifies a Coordinate node (or
instance of a Coordinate node). The results are undefined if the coord field specifies any
other type of node. PointSet uses the coordinates in order. If the coord field is NULL, the
point set is considered empty.

PointSet nodes are not lit, not texture-mapped, nor do they participate in collision
detection. The size of each point is implementation-dependent.

If the color field is not NULL, it shall specify a node derived from X3DColorNode that
contains at least the number of points contained in the coord node. The results are
undefined if the color field specifies any other type of node. Colours shall be applied to
each point in order. The results are undefined if the number of values in the
X3DColorNode node is less than the number of values specified in the Coordinate node.

If the color field is NULL and there is a material node defined for the Appearance node
affecting this PointSet node, the emissiveColor of the material node shall be used to
draw the points. More details on lighting equations can be found 17 Lighting
component.

No effect on rendering behavior is defined for data specified by the normal field.
Rendering techniques that utilize normal information to refine presentation of geometry
are allowed but not required.

 11.4.12 TriangleFanSet
TriangleFanSet : X3DComposedGeometryNode {
 MFNode [in,out] attrib [] [X3DVertexAttributeNode]
 SFNode [in,out] color NULL [X3DColorNode]
 SFNode [in,out] coord NULL [X3DCoordinateNode]
 MFInt32 [in,out] fanCount [] [3,∞)
 SFNode [in,out] fogCoord NULL [FogCoordinate]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFNode [in,out] normal NULL [X3DNormalNode]
 SFNode [in,out] texCoord NULL [X3DTextureCoordinateNode]
 SFBool [] ccw TRUE
 SFBool [] colorPerVertex TRUE
 SFBool [] normalPerVertex TRUE
 SFBool [] solid TRUE
}

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 11 Rendering component

rendering.html[8/1/2020 10:00:03 AM]

A TriangleFanSet represents a 3D shape composed of triangles that form a fan shape
around the first vertex declared in each fan.

The fanCount field describes how many vertices are to be used in each fan from the
coordinate field. Coordinates are assigned to each strip by taking fanCount[n] vertices
from the coordinate field. Each value of the fanCount array shall be greater than or
equal to three. It shall be an error to have a value less than three.

Figure 11.2 displays a TriangleFanSet containing a single fan showing the ordering of
the vertices for that fan.

Figure 11.2 — TriangleFanSet node

The TriangleFanSet node is specified in the local coordinate system and is affected by
the transformations of its ancestors. Descriptions of the color, coord, normal, and
texCoord fields are provided in the Color/ColorRGBA, Coordinate, Normal, and
TextureCoordinate nodes, respectively. If values are provided for the color, normal, and
texCoord fields, there shall be at least as many values as are present in the coord field.
The value of the colorPerVertex field is ignored and always treated as TRUE. If the normal
field is not provided, for each fan, the normal shall be generated as follows: if
normalPerVertex is TRUE, the normal shall be the average of all triangles within that fan
sharing that vertex. For the vertex of the fan, the normal shall be the average of the
contributions of all of the individual face normals. If normalPerVertex is FALSE, the
normal shall be generated for the current triangle based on the ccw field.

The solid field determines whether the TriangleFanSet is visible when viewed from the
inside. 11.2.3 Common geometry fields provides a complete description of the solid
field.

 11.4.13 TriangleSet
TriangleSet : X3DComposedGeometryNode {
 MFNode [in,out] attrib [] [X3DVertexAttributeNode]
 SFNode [in,out] color NULL [X3DColorNode]
 SFNode [in,out] coord NULL [X3DCoordinateNode]
 SFNode [in,out] fogCoord NULL [FogCoordinate]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFNode [in,out] normal NULL [X3DNormalNode]
 SFNode [in,out] texCoord NULL [X3DTextureCoordinateNode]
 SFBool [] ccw TRUE
 SFBool [] colorPerVertex TRUE
 SFBool [] normalPerVertex TRUE
 SFBool [] solid TRUE
}

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 11 Rendering component

rendering.html[8/1/2020 10:00:03 AM]

The TriangleSet node represents a 3D shape that represents a collection of individual
triangles.

The coord field contains a Coordinate node that defines the 3D vertices that define the
triangle. Each triangle is formed from a consecutive set of three vertices of the
Coordinate node. If the Coordinate node does not contain a multiple of three coordinate
values, the remaining vertices shall be ignored.

Figure 11.3 depicts a TriangleSet node with several triangles. The ordering of the
vertices is also shown.

Figure 11.3 — TriangleSet node

The TriangleSet node is specified in the local coordinate system and is affected by the
transformations of its ancestors. Descriptions of the color, coord, normal, and texCoord
fields are provided in the Color/ColorRGBA, Coordinate, Normal, and TextureCoordinate
nodes, respectively. If values are provided for the color, normal, and texCoord fields,
there shall be at least as many values as are present in the coord field. The value of the
colorPerVertex field is ignored and always treated as TRUE. If the normal field is not
supplied, the normal shall be generated as perpendicular to the face for either version
of normalPerVertex.

The solid field determines whether the TriangleSet is visible when viewed from the
backside. 11.2.3 Common geometry fields provides a complete description of the solid
field.

 11.4.14 TriangleStripSet
TriangleStripSet : X3DComposedGeometryNode {
 MFNode [in,out] attrib [] [X3DVertexAttributeNode]
 SFNode [in,out] color NULL [X3DColorNode]
 SFNode [in,out] coord NULL [X3DCoordinateNode]
 SFNode [in,out] fogCoord NULL [FogCoordinate]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFNode [in,out] normal NULL [X3DNormalNode]

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 11 Rendering component

rendering.html[8/1/2020 10:00:03 AM]

 MFInt32 [in,out] stripCount [] [3,∞)
 SFNode [in,out] texCoord NULL [X3DTextureCoordinateNode]
 SFBool [] ccw TRUE
 SFBool [] colorPerVertex TRUE
 SFBool [] normalPerVertex TRUE
 SFBool [] solid TRUE
}

A TriangleStripSet represents a 3D shape composed of strips of triangles.

The stripCount field describes how many vertices are to be used in each strip from the
coordinate field. Coordinates are assigned to each strip by taking stripCount[i] vertices
from the coordinate field, where i is a sequential index of stripCount. Each value of the
stripCount array shall be greater than or equal to three. It shall be an error to have a
value less than three. Figure 11.4 depicts a TriangleStripSet with a single triangle strip.

Figure 11.4 — TriangleStripSet node

The TriangleStripSet node is specified in the local coordinate system and is affected by
the transformations of its ancestors. Descriptions of the color, coord, normal, and
texCoord fields are provided in the Color/ColorRGBA, Coordinate, Normal, and
TextureCoordinate nodes, respectively. If values are provided for the color, normal, and
texCoord fields, there shall be at least as many values as are present in the coord field.
The value of the colorPerVertex field is ignored and always treated as TRUE. If the normal
field is not provided, for each strip, the normal shall be generated as follows: if
normalPerVertex is TRUE, the normal shall be the average of all triangles within that strip
sharing that vertex. If normalPerVertex is FALSE, the normal shall be generated for the
triangle based on the ccw field.

The solid field determines whether the TriangleStripSet is visible when viewed from the
inside. 11.2.3 Common geometry fields provides a complete description of the solid
field.

 11.5 Support levels
The Rendering component provides three levels of support as specified in Table 11.2.

 Table 11.2 — Rendering component support levels

Level Prerequisites Nodes/Features Support

1 Core 1
Grouping 1

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 11 Rendering component

rendering.html[8/1/2020 10:00:03 AM]

X3DComposedGeometryNode
(abstract) n/a

X3DGeometricPropertyNode
(abstract) n/a

X3DGeometryNode
(abstract) n/a

X3DColorNode (abstract) n/a

X3DCoordinateNode
(abstract) n/a

Color All fields fully
supported.

ColorRGBA Alpha value
optionally supported.

Coordinate All fields fully
supported.

IndexedLineSet

set_colorIndex
optionally supported.
set_coordIndex
optionally supported.
normal optionally
supported.

 LineSet normal optionally
supported.

PointSet normal optionally
supported.

2 Core 1
Grouping 1

All Level 1 Rendering nodes All fields as
supported in Level 1.

X3DNormalNode (abstract) n/a

Normal All fields fully
supported.

3 Core 1
Grouping 1

All Level 2 Rendering nodes

All fields fully
supported except for
ColorRGBA
supported as in

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 11 Rendering component

rendering.html[8/1/2020 10:00:03 AM]

Level 2.

IndexedTriangleFanSet All fields fully
supported.

IndexedTriangleSet All fields fully
supported.

IndexedTriangleStripSet All fields fully
supported.

TriangleFanSet All fields fully
supported.

TriangleSet All fields fully
supported.

TriangleStripSet All fields fully
supported.

4 Core 1
Grouping 1

 All Level 3 Rendering nodes All fields as
supported in Level 3.

 ColorRGBA Alpha value fully
supported.

5 Core 1
Grouping 1

 All Level 4 Rendering nodes All fields as
supported in Level 4.

 ClipPlane All fields fully
supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 32 CADGeometry component

CADGeometry.html[8/1/2020 10:00:07 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

32 CAD geometry component

 32.1 Introduction

32.1.1 Name

The name of this component is "CADGeometry". The CADGeometry component provides
X3D support for Computer-Aided Design (CAD) model geometry. This name shall be
used when referring to this component in the COMPONENT statement (see 7.2.5.4
Component statement).

32.1.2 Overview

This clause describes the CADGeometry component of this part of ISO/IEC 19775. This
includes how 3D geometry is specified and what shapes are available. Table 32.1
provides links to the major topics in this clause.

Table 32.1 — Topics

32.1 Introduction
32.1.1 Name
32.1.2 Overview

32.2 Concepts
32.2.1 Overview of CAD geometry
32.2.2 Product Structure Nodes
32.2.3 CAD layer relationships
32.2.4 Quad nodes
32.2.5 Common geometry fields

32.3 Abstract Types
32.3.1 X3DProductStructureChildNode

32.4 Node reference
32.4.1 CADAssembly
32.4.2 CADFace
32.4.3 CADLayer
32.4.4 CADPart

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 32 CADGeometry component

CADGeometry.html[8/1/2020 10:00:07 AM]

32.4.5 IndexedQuadSet
32.4.6 QuadSet

32.5 Support levels

Figure 32.1 — QuadSet

Table 32.1 — Topics
Table 32.2 — CADGeometry component support levels

 32.2 Concepts

32.2.1 Overview of geometry

The CADGeometry component consists of two types of nodes: product structure nodes
and quad geometry nodes. Together, these node types are used to describe CAD
specific data representations for X3D worlds.

 32.2.2 Product structure nodes

Three nodes maintain CAD structural relationships. These nodes define the shape of a
tangible object. Additional content may be grouped with these nodes using the
CADLayer node. These nodes are, in hierarchy order:

a. CADAssembly represents a product assembly composed of subassemblies and
parts.

b. CADPart is a physical object with a defined shape. It is composed of CADFace
nodes which represent the spatial boundary of the object.

c. CADFace contains a single Shape node defining one face of CADPart.

This hierarchy structures the file in a way that facilitates reuse of the CAD data in
different domains.

32.2.3 CAD layer relationships

The CADLayer node maintains CAD layer relationships. CAD layers are used to visually
and/or functionally organize geometric content.

The CADLayer node allows CADAssembly and CADPart nodes to be grouped together to
model relationship beyond assembly structure. It also allows additional content beyond
physical shape to be grouped with CADAssembly and CADPart nodes. This additional
content may include:

Text nodes containing annotations and dimension information.
Shape nodes representing abstract geometric relations such as tolerance datums
and features.

Add definition of datums as a spatial feature

32.2.4 Quad nodes

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 32 CADGeometry component

CADGeometry.html[8/1/2020 10:00:07 AM]

Quad nodes represent collections of planar quadrilateral polygons. The IndexedQuadSet
node specifies the vertices using indices while the QuadSet node specifies the vertices
directly.

32.2.5 Common geometry fields

Several 3D CADGeometry nodes share common fields to describe attributes. These
fields that specify the vertex ordering and whether the shape is solid are named ccw
and solid respectively. Common 3D geometry fields are described in 11.2.3 Common
geometry fields.

 32.3 Abstract types

 32.3.1 X3DProductStructureChildNode
X3DProductStructureChildNode : X3DChildNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFString [in,out] name ""
}

The X3DProductStructureChildNode abstract node type marks nodes that are valid
product structure children.

 32.4 Node reference

32.4.1 CADAssembly
CADAssembly : X3DGroupingNode, X3DProductStructureChildNode {
 MFNode [in] addChildren
 MFNode [in] removeChildren
 MFNode [in,out] children [] [X3DProductStructureChildNode, X3DGroupingNodeX3DChildNode]
 SFBool [in out] bboxDisplay FALSE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFString [in,out] name ""
 SFBool [in out] visible TRUE
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or −1 −1 −1
}

The CADAssembly node holds a set of assemblies or parts grouped together.

The children field can contain X3DProductStructureChildNode types. Each child will be
either a sub-assembly or a part.

The children field can contain X3DChildNode types.

The name field specifies the name of the CADAssembly.

32.4.2 CADFace
CADFace : X3DProductStructureChildNode, X3DBoundedObject {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [in out] bboxDisplay FALSE
 SFString [in,out] name ""
 SFNode [in,out] shape NULL [X3DShapeNode, LODShape|LOD|Transform]
 SFBool [in out] visible TRUE
 SFVec3f [] bboxCenter 0 0 0 (-∞, ∞)
 SFVec3f [] bboxSize -1 -1 -1 [0, ∞) or -1 -1 -1
}

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 32 CADGeometry component

CADGeometry.html[8/1/2020 10:00:07 AM]

The CADFace node holds the geometry representing a face of a part.

The name field specifies the name of the CADFace.

The shape field contains the Shape node providing the geometry and appearance for
the face or an LOD node containing different detail levels of the shape. If an LOD node
is provided, each child of the LOD node shall be a single Shape of varying complexity.

The shape field contains the Shape node providing the geometry and appearance for
the face, or a Transform node relocating its children, or an LOD node containing
different detail levels of the shape. If an LOD node is provided, each child of the LOD
node shall be a single Shape of varying complexity or another Transform node. If a
Transform node is provided, each child of the Transform node shall be a single Shape or
another Transform or LOD node. In any case, only zero or one Shape under the
CADFace node shall be active at any time.

32.4.3 CADLayer
CADLayer : X3DGroupingNode {
 MFNode [in] addChildren
 MFNode [in] removeChildren
 MFNode [in,out] children [] [X3DChildNode]
 SFBool [in out] bboxDisplay FALSE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFString [in,out] name ""
 MFBool [in,out] visible []
 SFBool [in out] visible TRUE
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or −1 −1 −1
}

The CADLayer node defines a hierarchy of nodes used for showing layer structure for
the CAD model.

The name field describes the content of the layer.

The children field contains all nodes defined for this layer.

The visible field specifies whether a particular child and its sub-children are visible. If
the number of values is less than the number of children, the remaining children shall
be visible.

32.4.4 CADPart
CADPart : X3DGroupingNode, X3DProductStructureChildNode {
 MFNode [in] addChildren
 MFNode [in] removeChildren
 SFVec3f [in,out] center 0 0 0 (-∞,∞)
 MFNode [in,out] children [] [CADFace]
 SFBool [in out] bboxDisplay FALSE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFString [in,out] name ""
 SFRotation [in,out] rotation 0 0 1 0 [-1,1] or (-∞,∞)
 SFVec3f [in,out] scale 1 1 1 (0,∞)
 SFRotation [in,out] scaleOrientation 0 0 1 0 [-1,1] or (-∞,∞)
 SFVec3f [in,out] translation 0 0 0 (-∞,∞)
 SFBool [in out] visible TRUE
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or −1 −1 −1
}

The CADPart node is a grouping node that defines a coordinate system for its children
that is relative to the coordinate systems of its ancestors. See 4.3.5 Transformation
hierarchy and 4.3.6 Standard units and coordinate system for a description of
coordinate systems and transformations.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 32 CADGeometry component

CADGeometry.html[8/1/2020 10:00:07 AM]

The CADPart node represents the location and faces that constitute a part in the CAD
model.

10.2.1 Grouping and children node types provides a description of the children,
addChildren, and removeChildren fields.

The bboxCenter and bboxSize fields specify a bounding box that encloses the children
of the Part node. This is a hint that may be used for optimization purposes. The results
are undefined if the specified bounding box is smaller than the actual bounding box of
the children at any time. A default bboxSize value, (-1, -1, -1), implies that the
bounding box is not specified and, if needed, shall be calculated by the browser. The
bounding box shall be large enough at all times to enclose the union of the group's
children's bounding boxes; it shall not include any transformations performed by the
group itself (i.e., the bounding box is defined in the local coordinate system of the
children).

The translation, rotation, scale, scaleOrientation and center fields define a geometric 3D
transformation consisting of (in order):

a. a (possibly) non-uniform scale about an arbitrary point;
b. a rotation about an arbitrary point and axis;
c. a translation.

The center field specifies a translation offset from the origin of the local coordinate
system (0,0,0). The rotation field specifies a rotation of the coordinate system. The
scale field specifies a non-uniform scale of the coordinate system. The scale field may
have values that are positive, negative (indicating a reflection), or zero. A value of zero
indicates that any child geometry shall not be displayed. The scaleOrientation specifies
a rotation of the coordinate system before the scale (to specify scales in arbitrary
orientations). The scaleOrientation applies only to the scale operation. The translation
field specifies a translation to the coordinate system.

Given a 3-dimensional point P and Part node, P is transformed into point P' in its
parent's coordinate system by a series of intermediate transformations. In matrix
transformation notation, where C (center), SR (scaleOrientation), T (translation), R
(rotation), and S (scale) are the equivalent transformation matrices,

 P' = T * C * R * SR * S * -SR * -C * P

The following Part node:

CADPart {
 center C
 rotation R
 scale S
 scaleOrientation SR
 translation T
 children [...]
}

is equivalent to the nested sequence of:

CADPart {
 translation T
 children CADPart {
 translation C
 children CADPart {
 rotation R
 children CADPart {
 rotation SR

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 32 CADGeometry component

CADGeometry.html[8/1/2020 10:00:07 AM]

 children CADPart {
 scale S
 children CADPart {
 rotation -SR
 children CADPart {
 translation -C
 children [...]
}}}}}}}

The name field documents the name of this part.

 32.4.5 IndexedQuadSet
IndexedQuadSet : X3DComposedGeometryNode {
 MFInt32 [in] set_index [] [0,∞)
 MFNode [in,out] attrib [] [X3DVertexAttributeNode]
 SFNode [in,out] color NULL [X3DColorNode]
 SFNode [in,out] coord NULL [X3DCoordinateNode]
 SFNode [in,out] fogCoord NULL [FogCoordinate]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFNode [in,out] normal NULL [X3DNormalNode]
 SFNode [in,out] texCoord NULL [X3DTextureCoordinateNode]
 SFBool [] ccw TRUE
 SFBool [] colorPerVertex TRUE
 SFBool [] normalPerVertex TRUE
 SFBool [] solid TRUE
 MFInt32 [] index [] [0,∞)
}

The IndexedQuadSet node represents a 3D shape composed of a collection of individual
quadrilaterals (quads) as depicted in Figure 32.1. IndexedQuadSet uses the indices in
its index field to specify the vertices of each quad from the coord field. Each quad is
formed from a set of four vertices of the X3DCoordinateNode node identified by four
consecutive indices from the index field If the index field does not contain a multiple of
four coordinate values, the remaining vertices shall be ignored.

The IndexedQuadSet node is specified in the local coordinate system and is affected by
the transformations of its ancestors. Descriptions of the color, coord, normal, and
texCoord fields are provided in the X3DColorNode, X3DCoordinateNode,
X3DNormalNode, and X3DTextureCoordinateNode nodes, respectively. If values are
provided for the color, normal and texCoord fields, the values are applied in the same
manner as the values from the coord field and there shall be at least as many values as
are present in the coord field. The value of the colorPerVertex field is ignored and
always treated as TRUE. If the normal field is not supplied, normals shall be generated as
follows:

If normalPerVertex is TRUE, the normal at each vertex shall be the average of the
normals for all quads that share that vertex.
If normalPerVertex is FALSE, the normal at each vertex shall be perpendicular to the
face for that quad.

The solid field determines whether the IndexedQuadSet is visible when viewed from the
inside. 11.2.3 Common geometry fields provides a complete description of the solid
field.

 32.4.6 QuadSet
QuadSet : X3DComposedGeometryNode {
 MFNode [in,out] attrib [] [X3DVertexAttributeNode]
 SFNode [in,out] color NULL [X3DColorNode]
 SFNode [in,out] coord NULL [X3DCoordinateNode]
 SFNode [in,out] fogCoord NULL [FogCoordinate]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFNode [in,out] normal NULL [X3DNormalNode]
 SFNode [in,out] texCoord NULL [X3DTextureCoordinateNode]
 SFBool [] ccw TRUE
 SFBool [] colorPerVertex TRUE

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 32 CADGeometry component

CADGeometry.html[8/1/2020 10:00:07 AM]

 SFBool [] normalPerVertex TRUE
 SFBool [] solid TRUE
}

The QuadSet node represents a 3D shape that represents a collection of individual
planar quadrilaterals.

The coord field contains an X3DCoordinateNode node that defines the 3D vertices that
define the quad. Each quad is formed from a consecutive set of four vertices of the
coordinate node. If the coordinate node does not contain a multiple of four coordinate
values, the remaining vertices shall be ignored.

Figure 32.1 depicts a QuadSet node with two quads. The ordering of the vertices is also
shown.

Figure 32.1 — QuadSet node

The QuadSet node is specified in the local coordinate system and is affected by the
transformations of its ancestors. Descriptions of the color, coord, normal, and texCoord
fields are provided in the X3DColorNode, X3DCoordinateNode, X3DNormalNode, and
X3DTextureCoordinateNode nodes, respectively. If values are provided for the color,
normal, and texCoord fields, there shall be at least as many values as are present in
the coord field. The value of the colorPerVertex field is ignored and always treated as
TRUE. If the normal field is not supplied, the normal shall be generated as perpendicular
to the face for either version of normalPerVertex.

The solid field determines whether the QuadSet is visible when viewed from the inside.
11.2.3 Common geometry fields provides a complete description of the solid field.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 32 CADGeometry component

CADGeometry.html[8/1/2020 10:00:07 AM]

 32.5 Support levels
The CADGeometry component provides two levels of support as specified in Table 32.2.
Level 1 provides quad support. Level 2 adds support to describe product structure and
layers.

 Table 32.2 — CADGeometry component support levels

Level Prerequisites Nodes/Features Support

1

Core 1
Grouping 1
Rendering 1
Shape 1

IndexedQuadSet All fields fully supported.

QuadSet All fields fully supported.

2

Core 1
Grouping 1
Rendering 1
Shape 1

CADAssembly All fields fully supported.

CADFace All fields fully supported.

CADLayer All fields fully supported.

CADPart All fields fully supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex K nVidia Cg shading language binding

shaders_cg.html[8/1/2020 10:00:09 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

Annex K

(normative)

nVidia Cg shading language binding

 K.1 General
This annex defines the mapping of concepts of the Programmable shaders component
to the nVidia Cg shading language (see [Cg]). It applies to the ProgramShader,
ShaderProgram and PackagedShader nodes with the language field set to "Cg".

 K.2 Topics
Table K.1 provides links to the major topics in this annex.

 Table K.1 — Topics

K.1 General
K.2 Topics
K.3 Concepts

K.3.1 Rendering API support differences
K.3.2 Language strings

K.4 Interaction with other nodes and components
K.4.1 Vertex shader

K.4.1.1 OpenGL profiles
K.4.1.2 Direct3D profiles

K.4.2 Fragment shader
K.4.2.1 OpenGL profiles
K.4.2.2 Direct3D profiles

K.4.3 LoadSensor
K.4.4 Vertex attributes

K.4.4.1 OpenGL profiles

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex K nVidia Cg shading language binding

shaders_cg.html[8/1/2020 10:00:09 AM]

K.4.4.2 Direct3D profiles
K.5 Data type and parameter mappings

K.5.1 Node fields
K.5.2 X3D field types to Cg data types
K.5.3 X3D world state to Cg parameter names

K.6 Event model
K.6.1 Changing URL fields
K.6.2 Changing the attrib field
K.6.3 Activating programs

Table K.1 — Topics
Table K.2 — Language string to Cg profile mapping
Table K.3 — Supported Direct3D vertex declaration usage types
Table K.4 — Mapping of X3D texture node types to Cg sampler types
Table K.5 — Mapping of X3D material and light node types to Cg structure
declarations
Table K.6 — Mapping of X3D field types to Cg data types
Table K.7 — Mapping of X3D world state to Cg parameter names

 K.3 Concepts

K.3.1 Rendering API support differences

The Cg language is a diverse set of shading capabilities that aim to support
programmable shaders for a variety of APIs. This part of ISO/IEC 19775 supports the
OpenGL and Microsoft Direct3D APIs. Programming APIs may express the same
concepts in very distinctly different ways and the two cited APIs do so. Thus, a Cg
shader program written to work on OpenGL will not work on Direct3D. Conversely, a Cg
shader program written to work on Direct3D will not work on OpenGL.

Cg handles the incompatible code problem by defining Cg profiles. A Cg profile is a set
of available shading language functionality. At the time the browser downloads the file,
it can use the profile information to guide how to compile the code to the appropriate
target. This annex defines its behaviour based on the Cg profile specified by the user.

K.3.2 Language strings

Cg profile information is encoded as part of the language string of the ProgramShader
node. All strings starting with "CG-" define behaviour defined in this annex. The part
after the prefix defines the programming API and profile for which the Cg code shall be
compiled. A browser thus may quickly distinguish which nodes to ignore and which to
investigate further. The source files are referenced in the ShaderProgram nodes. This
specification requires that the same profile is used for both the vertex and fragment
programs.

Table K.2 defines the mappings between the language string and the appropriate Cg
profile. As Cg evolves, newer profiles may be defined and shall follow a similar naming
convention.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex K nVidia Cg shading language binding

shaders_cg.html[8/1/2020 10:00:09 AM]

 Table K.2 — Language string to Cg profile mapping

Language string Cg vertex shader
profile

Cg fragment shader
profile

CG_OPENGL_ARB CG_PROFILE_ARBVP1 CG_PROFILE_ARBFP1

CG_OPENGL_NV30 CG_PROFILE_VP30 CG_PROFILE_VP30

CG_OPENGL_NV20 CG_PROFILE_VP20 CG_PROFILE_VP20

CG_D3D_SHADER_2.0 CG_PROFILE_VS_2_0 CG_PROFILE_PS_2_0

CG_D3D_SHADER_3.0 CG_PROFILE_VS_3_0 CG_PROFILE_PS_3_0

CG_D3D_SHADER_1.3 CG_PROFILE_VS_1_3 CG_PROFILE_PS_1_3

 K.4 Interaction with other nodes and components

K.4.1 Vertex shader

K.4.1.1 OpenGL profiles

The vertex shader replaces the fixed functionality of the vertex processor. The OpenGL
specification states that the following functionality is disabled if a vertex shader is
supplied:

a. The model view matrix is not applied to vertex coordinates.
b. The projection matrix is not applied to vertex coordinates.
c. The texture matrices are not applied to texture coordinates.
d. The normals are not transformed to eye coordinates.
e. The normals are not rescaled or normalized.
f. Texture coordinates are not generated automatically.
g. Per-vertex lighting is not performed.
h. Color material lighting is not performed.
i. Point size distance attenuation is not performed.

K.4.1.2 Direct3D profiles

In Cg language Direct3D profiles, the vertex shader replaces the vertex processing done
by the Microsoft Direct3D graphics pipeline. While using a vertex shader, state
information regarding transformation and lighting operations is ignored by the fixed-
function pipeline. The Direct3D specification states that the following functionality is
disabled if a vertex shader is supplied:

a. The model view matrix is not applied to vertex coordinates.
b. The projection matrix is not applied to vertex coordinates.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex K nVidia Cg shading language binding

shaders_cg.html[8/1/2020 10:00:09 AM]

c. The texture matrices are not applied to texture coordinates.
d. The normals are not transformed to eye coordinates.
e. The normals are not rescaled or normalized.
f. Texture coordinates are not generated automatically.
g. Per-vertex lighting is not performed.
h. Color material lighting is not performed.
i. Point size distance attenuation is not performed.

The fixed-function pipeline Direct3D graphics state is not available for use within a Cg
shader program. Shaders that wish to make use of this data, such as material, lighting,
texture and transformation matrix state, shall declare parameters of the appropriate
type and pass values into them via declared fields of the containing ShaderProgram
node in the X3D scene graph. The parameter types and mappings to those types from
built-in X3D values are defined in K.4 Data type and parameter mappings.

K.4.2 Fragment shader

K.4.2.1 OpenGL profiles

The fragment shader replaces the fixed functionality of the fragment processor. The
OpenGL specification states that the following functionality is disabled if a fragment
shader is supplied:

a. Textures are not applied.
b. Fog is not applied.

K.4.2.2 Direct3D profiles

In Cg language Direct3D profiles, the fragment shader, also known as a pixel shader in
Cg, replaces the fixed functionality of the Direct3D fragment processor. The Direct3D
specification states that “textures are not applied” if a fragment shader is supplied.

The fixed function pipeline Direct3D graphics state is not available for use within a Cg
pixel shader program. Shaders that wish to make use of this data, such as material,
lighting, texture and transformation matrix state, shall declare parameters of the
appropriate type and pass values into them via declared fields of the containing
ShaderProgram node in the X3D scene graph. The parameter types and mappings to
those types from built-in X3D values are defined in K.4 Data Type and Parameter
Mappings.

K.4.3 LoadSensor

The LoadSensor node (See 9.4.3 LoadSensor) has two output fields isActive and
isLoaded. The isLoaded field behaviour is unchanged.

The isActive field is defined to issue a TRUE event when all the following conditions have
been satisfied:

a. The content identified by the url field has been successfully loaded.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex K nVidia Cg shading language binding

shaders_cg.html[8/1/2020 10:00:09 AM]

b. The shader program has been successfully compiled without error.

K.4.4 Vertex attributes

K.4.4.1 OpenGL profiles

Each vertex attribute node directly maps the name field to the uniform variable of the
same name. If the name is not available as a uniform variable in the provided shader
source, the values of the node shall be ignored.

The browser implementation shall automatically assign appropriate internal index
values for each attribute

K.4.4.2 Direct3D profiles

In Cg language Direct3D profiles, each vertex attribute node directly maps the name
field to a Direct3D usage type for use within a Direct3D vertex declaration (with the
prefix "D3DDECLUSAGE_" prepended to the name), as well as a Cg binding semantic of the
same name defined on the varying inputs to a shader program. This language binding
allows the use of the predefined Direct3D vertex declaration usage types and Cg
binding semantics listed in Table K.3. If the name cannot be interpreted as a valid
Direct3D usage type or Cg binding semantic, the values of the node shall be ignored.

 Table K.3 — Supported Direct3D vertex declaration usage types

Direct3D usage type

POSITION

NORMAL

TEXCOORD

TANGENT

BINORMAL

COLOR

FOG

The browser implementation shall automatically assign appropriate internal index
values for each attribute in the case where multiple nodes are defined having the same
value in the name field.

 K.5 Data Type and Parameter Mappings

K.5.1 Node fields

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex K nVidia Cg shading language binding

shaders_cg.html[8/1/2020 10:00:09 AM]

Fields that are of type SFNode/MFNode are ignored unless the value is of type
X3DTextureNode, or in Direct3D profiles, X3DMaterialNode, or X3DLightNode. Field
instances of type X3DTextureNode are mapped according to the appropriate Direct3D or
OpenGL sampler data type. The mappings from texture nodes to built-in sampler types
are defined in Table K.4.

 Table K.4 — Mapping of X3D texture node types to OpenGL or Direct3D
sampler types

X3D texture type OpenGL variable
type

Direct3D variable
type

X3DTexture2DNode sampler2D sampler2D

X3DTexture3DNode sampler3D sampler3D

X3DEnvironmentTextureNode samplerCube samplerCube

X3D does not define mappings to the OpenGL types sampler1D, sampler1DShadow and
sampler2DShadow or the Direct3D types sampler1D, sampler1DShadow and
sampler2DShadow.

In Cg language OpenGL profiles, the current geometry and pipeline state is exposed
through the built-in variable glstate.

In Cg language Direct3D profiles, field instances of type X3DMaterialNode and
X3DLightNode are mapped to structures that shall be declared in the shader program as
defined in Table K.5.

 Table K.5 — Mapping of X3D material and light node types to Cg structure
declarations (Direct3D profiles only)

X3D node
type

Cg
structure

declaration
Additional information

X3DMaterialNode

struct X3DMaterial
{
 float4
diffuseColor;
 float4
ambientColor;
 float4
specularColor;
 float4
emissiveColor;
 float power;
};

All color values are 4-component with alpha
value = 1.0.

X3DLightNode

struct X3DLight {
 int type;
 float4
diffuseColor;
 float4
specularColor;
 float4
ambientColor;
 point3
position;
 point3
direction;
 float range;

Valid type member values are 1 for Point
light, 2 for Spot light and 3 for Direction
light.

All color values are 4-component with alpha
value = 1.0.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex K nVidia Cg shading language binding

shaders_cg.html[8/1/2020 10:00:09 AM]

 float falloff;
 float
attenuation0;
 float
attenuation1;
 float
attenuation2;
 float theta;
 float phi;
 bool on;
};

All position, direction and scalar values are
assumed to be in world space.

The on member specifies whether the light is
enabled.

K.5.2 X3D field types to Cg data types

Table K.6 indicates how the X3D field types shall be mapped to data types used in the
Cg Language.

 Table K.6 — Mapping of X3D field types to Cg data types

X3D Field type Cg Data Type

SFBool bool

MFBool bool[]

MFInt32 float[]

SFInt32 float

SFFloat float

MFFloat float[]

SFDouble double

MFDouble double[]

SFTime double

MFTime double[]

SFNode See K.4.1 Node fields

MFNode See K.4.1 Node fields

SFVec2f float2

MFVec2f float2[]

SFVec3f float3

MFVec3f float3[]

SFVec4f float4

MFVec4f float4[]

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex K nVidia Cg shading language binding

shaders_cg.html[8/1/2020 10:00:09 AM]

SFVec3d float3

MFVec3d float3[]

SFVec4d float4

MFVec4d float4[]

SFRotation float4

MFRotation float4[]

MFColor float4[]

SFColor float4

SFImage int[]

MFImage int[]

SFString Not supported

MFString Not supported

SFMatrix3f float3x3

MFMatrix3f float3x3[]

SFMatrix4f float4x4

MFMatrix4f float4x4[]

Cg defines maximum supported lengths of each array data type, which may conflict
with the minimum support requirements for X3D.

K.5.3 X3D world state to Cg parameter names

In Cg language Direct3D profiles, certain internal states of the X3D world, such as
transformation matrices, or the viewer's position in world space, are neither readily
available via the Cg shader program or directly accessible from the X3D scene graph.
Thus if used, these world state values shall be explicitly passed in to the shader
program as named parameters. This binding defines an automatic mapping of these
states to predefined shader program parameter names. Table K.7 specifies the mapping
of internal states of the X3D world to parameter names used in the Cg programs.

 Table K.7 — Mapping of X3D world state to Cg parameter names (Direct3D
profiles only)

Parameter name Description

This name refers to the matrix transforming from local
to global coordinates. The model matrix transforms

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex K nVidia Cg shading language binding

shaders_cg.html[8/1/2020 10:00:09 AM]

model vertices from their model position to their position in
world space (i.e., after the effects of all Transform
nodes have been applied).

view This name refers to the viewing matrix transforming
from world to view relative coordinates.

projection
This name refers to the projection matrix transforming
from viewing relative coordinates to clip space,
including the projective part.

modelView

This name refers to the matrix that represents the
concatenation of model and view matrices. This matrix
transforms vertices from their model position to their
position in view space (i.e., after the effects of all
Transform nodes and the current viewpoint have been
applied).

modelViewProjection

This name refers to the matrix that represents the
concatenation of model, view and projection matrices.
This matrix transforms vertices from their model
position to their final position in clip space.

viewPosition This name refers to the current viewer position in world
space coordinates.

The following suffixes can be applied to the matrix built-in values. A suffix of I signifies
the inverse of the matrix. T signifies the transpose of the matrix. IT signifies the inverse
transpose of the matrix.

 K.6 Event model

K.6.1 Changing URL fields

When the url receives an event changing the value, the browser shall immediately
attempt to download the new source. Upon successful download, the browser shall
attempt to compile the new source and issue the appropriate LoadSensor events. It
shall not automatically activate the shader program, nor disable the currently running
shader.

Values defined at load time of the file do not require an explicit request to activate the
shader program. It shall be assumed to automatically activate the program once all the
objects have successfully downloaded. If some of the shader source files are not
downloaded or compiled (e.g., due to errors), no activation shall occur for the shader
program.

K.6.2 Changing the attrib field

Per-vertex attributes may be defined as one of the fields of
X3DComposedGeometryNode. These may be changed at runtime by adding or removing
node instances. Adding new node instances to the field shall require that the user
request an explicit activate in order to make them visible to the shader.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex K nVidia Cg shading language binding

shaders_cg.html[8/1/2020 10:00:09 AM]

K.6.3 Activating programs

The user may, at any time, request that the browser activate the composing shader
objects by sending a TRUE value to the activate inputOnly field of the ProgramShader or
PackagedShader node. Users may need to force a re-activation of the node under
various circumstances, such as changing the url field of one or more ShaderProgram or
PackagedShader nodes, or adding or removing ShaderProgram nodes from the
programsfield of the ProgramShader node. Reactivating the shader shall replace the
existing shader with the new compiled shader for subsequent rendering.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 12 Shape component

shape.html[8/1/2020 10:00:11 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

12 Shape component

 12.1 Introduction

12.1.1 Name

The name of this component is "Shape". This name shall be used when referring to this
component in the COMPONENT statement (see 7.2.5.4 Component statement).

12.1.2 Overview

This clause describes the Shape component of this part of ISO/IEC 19775. The Shape
component defines nodes for associating geometry with their visible properties and the
scene environment. Table 12.1 provides links to the major topics in this clause.

 Table 12.1 — Topics

12.1 Introduction
12.1.1 Name
12.1.2 Overview

12.2 Concepts
12.2.1 Shape characteristics
12.2.2 Appearance characteristics
12.2.3 Two-sided materials
12.2.4 Texture mapping specified in material nodes

12.2.4.1 Texture coordinates
12.2.4.2 Texture coordinates transformation

12.2.5 Coexistence of textures specified in material nodes with the
"Appearance.texture" field

12.3 Abstract types
12.3.1 X3DAppearanceChildNode
12.3.2 X3DAppearanceNode
12.3.3 X3DMaterialNode
12.3.4 X3DOneSidedMaterialNode
12.3.5 X3DShapeNode

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 12 Shape component

shape.html[8/1/2020 10:00:11 AM]

12.4 Node reference
12.4.1 AcousticProperties
12.4.2 Appearance
12.4.3 FillProperties
12.4.4 LineProperties
12.4.5 Material
12.4.6 PhysicalMaterial
12.4.7 PointProperties
12.4.8 Shape
12.4.9 TwoSidedMaterial
12.4.10 UnlitMaterial

12.5 Support levels

Figure 12.1 — Effects of two-sided materials on geometry

Table 12.1 — Topics
Table 12.2 — International register of items hatchstyles
Table 12.3 — International register of items linetypes
Table 12.4 — Shape component support levels

 12.2 Concepts

12.2.1 Shape characteristics

The Shape node associates a geometry node with nodes that define that geometry's
appearance. Shape nodes shall be part of the transformation hierarchy to have any
visible result, and the transformation hierarchy shall contain Shape nodes for any
geometry to be visible (the only nodes that render visible results are Shape nodes and
the background nodes described in 24 Environmental effects). A Shape node contains
exactly one geometry node in its geometry field, which is of type X3DGeometryNode.
The Shape node descends from the abstract base type X3DShapeNode.

12.2.2 Appearance characteristics

Shape nodes may specify an Appearance node that describes the appearance properties
(material, texture and texture transformation) to be applied to the Shape's geometry.
All valid children of the Appearance node descend from the abstract base type
X3DAppearanceChildNode.

Nodes of the following types may be specified in the material field of the Appearance
node:

Material
PhysicalMaterial
TwoSidedMaterial (deprecated)
UnlitMaterial

This set of nodes may be extended by creating new nodes derived from the

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 12 Shape component

shape.html[8/1/2020 10:00:11 AM]

X3DMaterialNode abstract base type.

Nodes of the following types may be specified in the backMaterial field of the
Appearance node:

Material
PhysicalMaterial
UnlitMaterial

This set may be extended by creating new nodes derived from the
X3DOneSidedMaterialNode abstract base type.

The Appearance node specifies texture mapping in its texture field. Valid values of the
texture field are descendants of X3DTextureNode, including:

ImageTexture
PixelTexture
MovieTexture
MultiTexture

This set may be extended by creating new nodes derived from the abstract
X3DTextureNode base class as defined in 18.3.2 X3DTextureNode.

Nodes of the type X3DTextureTransformNode may be specified in the textureTransform
field of the Appearance node (see 18.3.4 X3DTextureTransformNode), including:

TextureTransform

Interaction between the appearance properties and properties specific to geometry
nodes are described in 13 Geometry3D component and 14 Geometry2D component.

An Appearance node may specify additional information about the appearance of the
corresponding geometry. The acousticProperties field can be provided by an
AcousticProperties node. Special properties may be defined for lines and filled areas.
These properties are defined in the lineProperties, fillProperties and pointProperties
fields by the following nodes, respectively:

LineProperties
FillProperties
PointProperties

12.2.3 Two-sided materials

A polygon defines a front face based on the direction of the normal. That normal is
either explicitly provided by the end user or implicitly calculated by the browser based
on the winding rules for the node (see the ccw field on many of the polygonal geometry
nodes such as IndexedFaceSet).

The TwoSidedMaterial node provides a way to render the front and back sides of the
polygon with different material properties. Figure 12.1 depicts the effects of the
TwoSidedMaterial node.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 12 Shape component

shape.html[8/1/2020 10:00:11 AM]

The solid field, described in the 11.2.3 Common geometry fields, controls whether the
geometry is visible from the back side.

When solid is TRUE, the back faces are not visible at all.
When solid is FALSE, the back faces of the geometry are lit, using an inverted
normal vector than the corresponding front faces.

Using the Appearance field backMaterial allows rendering the front and back sides of the
polygon with different material properties. It is meaningful only when solid is FALSE,
since otherwise the back faces are never rendered. When the solid is TRUE, the value of
backMaterial has no effect on rendering.

TwoSidedMaterial (deprecated) provides a similar functionality (through its
separateBackColor field) but limited only to the Phong lighting model.

Figure 12.1 depicts the effects of the Appearance field backMaterial node.

Figure 12.1 — Effects of different material properties on front and back sides
of the geometry

Several constraints pertain to the backMaterial field value, to make the definition
reasonable and easy to implement by the browsers.

The backMaterial field can have a value different than NULL only when the material
field also has a value different than NULL.
It is not allowed to provide a backMaterial when the material specifies a
TwoSidedMaterial (deprecated).
When both the material and backMaterial are provided (not NULL), it is required
that they:

1. Specify the same node class. In other words, both of them should be Material,
or both should be PhysicalMaterial, or both should be UnlitMaterial.

file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/components/Appearance
file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/components/Appearance
file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/components/Material
file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/components/PhysicalMaterial
file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/components/UnlitMaterial

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 12 Shape component

shape.html[8/1/2020 10:00:11 AM]

2. Use the same textures with the same mapping. In other words, the values of
the fields xxxTexture and xxxTextureMapping documented in 12.2.4 Texture
mapping specified in material nodes shall be equal for both front and back
materials. The author should use the DEF / USE mechanism to have the same
references to texture nodes.

In effect, the front and back material parameters may differ only in their scalar or
vector values. For example, front side may have a different diffuseColor than the back
side.

To summarize, the following combinations are allowed:

Both material and backMaterial are NULL. In this case we have an unlit (pure white)
material, when viewed from both the front and back side.

This case is exactly equivalent to using an UnlitMaterial with default emissiveColor
white for both material and backMaterial.

material is a TwoSidedMaterial node, backMaterial is NULL.

This case is only provided for compatibility. The TwoSidedMaterial is deprecated
since X3D 4.0. Whether the rendering parameters are the same, or different, for
front and back sides is determined by the separateBackColor field of the relevant
TwoSidedMaterial node.

material contains a Material, PhysicalMaterial or UnlitMaterial node, and
backMaterial is NULL.

In this case, both front and back sides will be rendered with the same parameters.
This case is exactly equivalent to reusing the same material node (through DEF /
USE mechanism) for both material and backMaterial fields.

material contains a Material, PhysicalMaterial or UnlitMaterial node, and
backMaterial also contains a node of the same type.

In this case, some front and back material parameters may differ.

 12.2.4 Texture mapping specified in material nodes

The X3DOneSidedMaterialNode and descendants (Material, PhysicalMaterial,
UnlitMaterial) introduce a number of fields to modify material parameters using
textures. They are consistently defined by a pair of fields like this:

 SFNode [in,out] xxxTexture NULL
 SFString [in,out] xxxTextureMapping ""

The field xxxTexture indicates a texture node.

The xxxTextureMapping determines the texture coordinates and texture coordinates
transformation for given texture xxxTexture.

The corresponding texture coordinate and texture coordinate transformation nodes
have a field mapping that will match the value of the xxxTextureMapping field. See the
X3DSingleTextureCoordinateNode and X3DSingleTextureTransformNode definitions.

file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/components/UnlitMaterial
file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/components/Material
file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/components/PhysicalMaterial
file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/components/UnlitMaterial
file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/components/Material
file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/components/PhysicalMaterial
file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/components/UnlitMaterial

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 12 Shape component

shape.html[8/1/2020 10:00:11 AM]

Multiple textures may use the same texture coordinates and their transformations. For
example, it is common that both normalTextureMapping and diffuseTextureMapping are
equal, if the graphic artist prepared both normalTexture and diffuseTexture
simultaneously, assuming the same mapping.

 12.2.4.1 Texture coordinates

Let's define a list of texture coordinates for each geometry node like this:

If the geometry field doesn't have a texCoord field then this list is empty.

Most geometric objects with a predefined geometry (e.g. Sphere) don't have
texCoord field. Most geometric objects with geometry defined by the author (e.g.
all the nodes derived from X3DComposedGeometryNode) have texCoord field.

Otherwise, if the value of the texCoord field is NULL, then this list is again empty.
Otherwise, if the value of the texCoord field is a single node derived from
X3DSingleTextureCoordinateNode, then place this one node on the list.

X3DSingleTextureCoordinateNode includes all texture coordinate nodes (like
TextureCoordinate or TextureCoordinateGenerator) except MultiTextureCoordinate.

Otherwise, the value of this field must be MultiTextureCoordinate node. Then use
the MultiTextureCoordinate.texCoord contents list as our list of texture
coordinates.

Note: The above definition means that using a MultiTextureCoordinate with exactly one
child is equivalent to using this child directly. This is a general rule in X3D 4.0, see also
the MultiTextureCoordinate specification for details and an example.

All the X3DSingleTextureCoordinateNode nodes on the list of texture coordinates
defined above must have a different mapping value. An exception is the empty mapping
value, which may occur many times.

If the xxxTextureMapping field is not empty, it must refer to a corresponding
X3DSingleTextureCoordinateNode node on a list of texture coordinates.

If the xxxTextureMapping field is empty, then the first item on a list of texture
coordinates is used (regardless of it's mapping value). Only if no such texture
coordinate exists (the list is empty), then then default texture coordinates for the
specific geometry node are used.

The algorithm to perform the default texture coordinate calculation is described at each
geometry node. For example IndexedFaceSet determines the coordinates based on the
local bounding box sizes, Box has the texture applied 6 times on 6 faces etc.

Hint for implementations: This section makes an important guarantee.
Generating default texture coordinates only needs to be done when the
texCoord field of the geometry is empty, or contains an empty
MultiTextureCoordinate node. In all other cases, you know that default
texture coordinates are not necessary, because all textures will use one of the
coordinates in the texCoord list.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 12 Shape component

shape.html[8/1/2020 10:00:11 AM]

This is an important property, because browsers may want to avoid
generating default texture coordinates as it is a time-consuming process (e.g.
requires to iterate over vertexes at least twice in case of IndexedFaceSet) and
often not necessary (models exported by 3D authoring software typically have
all texture coordinates provided in the file).

So we wanted to enable this optimization, and make it easy to detect looking
only at texCoord contents. In effect, it doesn't matter what Appearance or
material will be used with this geometry node — you can easily avoid most
cases when default texture coordinates would be unused just by inspecting
the geometry texCoord value.

 12.2.4.2 Texture coordinates transformation

Let's define a list of texture transformations for each geometry node like this:

If the shape uses no Appearance node then this list is empty.
Otherwise, if the value of Appearance.textureTransform is NULL, then this list is
again empty.
Otherwise, if the value of Appearance.textureTransform is a single node
X3DSingleTextureTransformNode, then place this one node in the list.

Most texture transformation nodes are derived from
X3DSingleTextureTransformNode, like TextureTransform and TextureTransform3D.
But not MultiTextureTransform.

Otherwise, the value of Appearance.textureTransform must be
MultiTextureTransform. Then use the MultiTextureTransform.textureTransform
contents as our list of texture transformations.

Note that we treat a MultiTextureTransform with a single child always the same as
using this child directly. This is a general rule in X3D 4.0, see also the
MultiTextureTransform specification for details and an example.

If the xxxTextureMapping field is not empty, it must refer to a corresponding
X3DSingleTextureTransformNode node within the list of texture transformations. The
X3DSingleTextureTransformNode node must have equal mapping value.

If the xxxTextureMapping is an empty string, then the first item on a list of texture
transformations is used (regardless of it's mapping value). If the list is empty, no
texture transformation is used.

Note: Throughout this section, we treat empty string as a special case for
xxxTextureMapping and mapping fields. Such mapping names are allowed (they are
even the default) but they do not constitute a "match". It would be error-prone if two
empty mapping values would match, as it's easy to use them accidentally, since they
are the default field values. Instead, empty xxxTextureMapping just indicates "use the
first coordinates / transformations" — this is simplest and most natural.

 12.2.5 Coexistence of textures specified in material nodes

file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/components/Appearance
file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/components/Appearance

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 12 Shape component

shape.html[8/1/2020 10:00:11 AM]

with the "Appearance.texture" field

In X3D 4.0, models can specify textures using the xxxTexture fields inside the various
X3DOneSidedMaterialNode descendants. This allows to control every material
parameter by a different texture.

Alternatively, models can also use the mechanism known from X3D 3.x, and provide a
texture inside the Appearance.texture field. This is also the only way to use the
MultiTexture node (which cannot be placed in xxxTexture fields, as it would make
implementation complicated).

The exact behavior of MultiTexture node and Appearance.texture is this:

1. If the Appearance.material is Material, and the Material.diffuseTexture is NULL, then
Appearance.texture affects the diffuseParameter for the lighting equation.

In a way, Appearance.texture performs then the role of Material.diffuseTexture. It
can even use MultiTexture to calculate the diffuse parameter by a composition
(e.g. addition or multiplication) of other textures.

The Material.diffuseTextureMapping value doesn't matter in this case.

2. If the Appearance.material is PhysicalMaterial, and the
PhysicalMaterial.baseTexture is NULL, then Appearance.texture affects the
baseParameter for the lighting equation.

The PhysicalMaterial.baseTextureMapping value doesn't matter in this case.

3. If the Appearance.material is UnlitMaterial, and the UnlitMaterial.emissiveTexture
is NULL, then Appearance.texture affects the emissiveParameter for the lighting
equation.

The UnlitMaterial.emissiveTextureMapping value doesn't matter in this case.

4. Otherwise, if the Appearance.material is NULL, then we behave as if the
UnlitMaterial with all fields at default was used. So the Appearance.texture affects
the emissiveParameter for the lighting equation, and is used with the unlit lighting
model.

Note that when the Appearance.texture is used to calculate one of the parameters
described above, the texture coordinates/transformations are determined following the
MultiTexture specification. This means that MultiTextureCoordinate and
MultiTextureTransform nodes can be used, with the order corresponding to the order of
textures inside MultiTexture.texture list. If the Appearance.texture is not MultiTexture
then the first set of texture coordinates/transformations are used. See the
MultiTextureCoordinate and MultiTextureTransform specification for details.

The 17 Lighting component describes the exact equations to calculate the lighting
parameters, consistent with the above description.

 12.3 Abstract types

file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/components/Material
file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/components/PhysicalMaterial
file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/components/UnlitMaterial
file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/components/UnlitMaterial

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 12 Shape component

shape.html[8/1/2020 10:00:11 AM]

 12.3.1 X3DAppearanceChildNode
X3DAppearanceChildNode : X3DNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

This is the base node type for the child nodes of the X3DAppearanceNode type.

 12.3.2 X3DAppearanceNode
X3DAppearanceNode : X3DNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

This is the base node type for all Appearance nodes.

 12.3.3 X3DMaterialNode
X3DMaterialNode : X3DAppearanceChildNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

This is the base node type for all material nodes.

There are two direct descendants of this node type:

1. Abstract X3DOneSidedMaterialNode.

In turn, the X3DOneSidedMaterialNode is a descendant for all non-abstract and
non-deprecated material nodes that you shall use in X3D models:

Material (Phong lighting model)
PhysicalMaterial (physically-based lighting model)
UnlitMaterial (trivial lighting model that ignores light sources, for non-realistic
rendering and special effects)

2. TwoSidedMaterial (deprecated)

 12.3.4 X3DOneSidedMaterialNode
X3DOneSidedMaterialNode : X3DMaterialNode {
 SFColor [in,out] emissiveColor 0 0 0 [0, 1]
 SFNode [in,out] emissiveTexture NULL [X3DSingleTextureNode]
 SFString [in,out] emissiveTextureMapping ""

 SFNode [in,out] metadata NULL [X3DMetadataObject]

 SFNode [in,out] normalTexture NULL [X3DTexture2DNode]
 SFString [in,out] normalTextureMapping ""
 SFFloat [in,out] normalScale 1 [0, ∞]
}

Editorial note: We consider merging this abstract node with X3DMaterialNode. One one
hand, it would simplify the hierarchy. On the other hand, (deprecated)
TwoSidedMaterial would be left in a weird state, with fields it doesn't use (like
emissiveTexture, normalTexture...). Implementations that still support
TwoSidedMaterial would need to "invent" a class similar to "X3DOneSidedMaterialNode"
on their own. See here for details.

This is the base node type for material nodes that describe how the shape looks like
from one side.

https://github.com/michaliskambi/x3d-tests/wiki/How-to-add-PBR-to-X3D%3F#why-do-we-need-new-x3donesidedmaterialnode-cannot-we-add-fields-like-emissivexxx-to-x3dmaterialnode

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 12 Shape component

shape.html[8/1/2020 10:00:11 AM]

This node defines common properties for a lighting calculation, but independent of the
lighting model (Phong, physically-based, unlit).

This node can be used within Appearance.material or Appearance.backMaterial.

The normalTexture field affects normal vectors information (surface curvature) in the
following way:

Each normal encoded in a texture is a 3D vector (normalized direction).

3D direction of each normal shall be calculated from texture RGB color, using this
equation:

normal.xyz = normalize((textureSample(normalTexture).rgb * vec3(2,2,2) -
vec3(1,1,1)) * vec3(normalScale, normalScale, 1))

That is, assuming normalScale equal 1 (default), the red color component is
linearly mapped from [0..1] to [-1..1] range and represents the X axis of the
normal vector. Analogously the green component is mapped to Y, and the blue
component is mapped to Z.

The normals are provided in the tangent space.

In tangent space:

The (0,0,1) vector is pointing perfectly outward from a polygon.

More precisely, the "outward" direction (mapped to (0,0,1) in tangent space)
is the direction of the "normal vector" derived from other X3D mechanisms:
from the per-vertex or per-face normal vectors (if provided in the Normal
node), or calculating the normals automatically (e.g. using
IndexedFaceSet.creaseAngle).

The vectors (1,0,0) and (0,1,0) in the tangent space indicate the direction
where the texture coordinate U and V grows. Naturally, they are adjusted to
be always orthogonal to (0,0,1) and each other.

In the future we may add to the X3D standard a way to provide explicit
tangent vectors. In X3D 4.0, the implementation should always calculate
tangent and bitangent vectors using a standard algorithm, like the
MikkTSpace algorithm.

Observe that a correct normalmap texture is typically blueish, since most of the
normals on a more-or-less smooth surface revolve around (0,0,1), thus the
texture colors revolve around (0.5,0.5,1).
Alpha channel of the normalTexture is ignored by the calculations. X3D browsers
can use the alpha channel of the normalTexture to specify heights (from which the
normal vectors have been derived). In the current X3D standard version, these
heights are not used for anything, although browsers may already use them for
browser-specific rendering effects (for example to perform parallax bump mapping
or displacement, activated by browser-specific extensions).

The emissiveColor, together with emissiveTexture, allow to model "glowing" objects.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 12 Shape component

shape.html[8/1/2020 10:00:11 AM]

This can be useful for displaying unlit (pre-lit) models (where the light energy of the
room is computed explicitly), or for displaying scientific data. To display an "unlit"
object (whose visible color should not be modified by any light in the scene), author can
use UnlitMaterial node.

The emissiveTexture RGB channel is multiplied with the emissiveColor to yield the
emissiveParameter in the lighting equations.

The meaning of the alpha channel of the emissiveTexture depends on the
X3DOneSidedMaterialNode descendant. It is ignored by Material and PhysicalMaterial. It
is used, as the transparency factor, by the UnlitMaterial. Across the specification, the
treatment of Material.diffuseTexture, PhysicalMaterial.baseTexture and
UnlitMaterial.emissiveTexture is consistent: these "main" textures provide the
transparency information for given material. For details, refer to the documentation of
each X3DOneSidedMaterialNode descendant.

See the section 12.2.4 Texture mapping specified in material nodes for a description
how the texture coordinates and texture coordinate transformations are determined
based on the xxxTextureMapping fields of this node.

12.3.5 X3DShapeNode
X3DShapeNode : X3DChildNode, X3DBoundedObject {
 SFNode [in,out] appearance NULL [X3DAppearanceNode]
 SFBool [in out] bboxDisplay FALSE
 SFNode [in,out] geometry NULL [X3DGeometryNode]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [in out] visible TRUE
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or −1 −1 −1
}

This is the base node type for all Shape nodes.

 12.4 Node reference

12.4.1 AcousticProperties
AcousticProperties : X3DAppearanceChildNode {
 SFFloat [in,out] absorption 0 [0,1]
 SFFloat [in,out] diffuse 0 [0,1]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFFloat [in,out] refraction 0 [0,1]
 SFFloat [in,out] specular 0 [0,1]
}

The AcousticProperties node specifies the interaction of sound waves with the
characteristics of objects in the scene. Properties influencing sound propagation include
surface-related physical phenomena such as the specular reflection, diffuse reflection,
absorption, and refraction coefficients of materials. These coefficient values are
expected to fully account for physical and structural characteristics of the associated
geometry such as width, height, thickness, shape, softness and/or hardness, and
density variations.

The absorption field specifies the sound absorption coefficient of a surface which is the
ratio of the sound intensity absorbed or otherwise not reflected by a specific surface
that of the initial sound intensity. This characteristic depends on the nature and
thickness of the material. Sound energy is partially absorbed when it encounters fibrous

file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/components/Material
file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/components/PhysicalMaterial
file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/components/UnlitMaterial

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 12 Shape component

shape.html[8/1/2020 10:00:11 AM]

or porous materials, panels that have some flexibility, volumes of air that resonate, and
openings in room boundaries (e.g. doorways). Moreover, the absorption of sound by a
particular shape depends on the angle of incidence and frequency of the sound wave.

The diffuse field describes the diffuse coefficient of sound reflection. This is one of the
physical phenomena of sound that occurs when a sound wave strikes a plane surface,
and part of the sound energy is reflected back into space in multiple directions.

The refraction field describes the sound refraction coefficient of a medium, which
determines the change in propagation direction of a sound wave when it obliquely
crosses the boundary between two mediums where its speed is different. These
relationships are described by Snell's Law.

The specular field describes the specular coefficient of sound reflection, which is one of
the physical phenomena of sound that occurs when a sound wave strikes a plane
surface. Part of the sound energy is directly reflected back into space, where the angle
of reflection is equal to the angle of incidence.

12.4.2 Appearance
Appearance : X3DAppearanceNode {
 SFNode [in,out] acousticProperties NULL [AcousticProperties]
 SFNode [in,out] backMaterial NULL [X3DOneSidedMaterialNode]
 SFNode [in,out] fillProperties NULL [FillProperties]
 SFNode [in,out] lineProperties NULL [LineProperties]
 SFNode [in,out] pointProperties NULL [PointProperties]
 SFNode [in,out] material NULL [X3DMaterialNode]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFNode [in,out] shaders [] [X3DShaderNode]
 SFNode [in,out] texture NULL [X3DTextureNode]
 SFNode [in,out] textureTransform NULL [X3DTextureTransformNode]
}

The Appearance node specifies the visual properties of geometry. The value for each of
the fields in this node may be NULL. However, if the field is non-NULL, it shall contain one
node of the appropriate type.

The acousticProperties field, if specified, shall contain an AcousticProperties node
describing coefficients related to the physical propagation of sound for various
materials.

The material field, if specified, shall contain a Material, PhysicalMaterial,
TwoSidedMaterial (deprecated) or UnlitMaterial node. If the material field is NULL or
unspecified, lighting is off (all lights are ignored during rendering of the object that
references this Appearance) and the unlit object colour is (1, 1, 1). Details of the X3D
lighting model are in 17 Lighting component.

The backMaterial field, if specified, shall contain a Material, PhysicalMaterial or
UnlitMaterial node. It is only allowed to define a backMaterial if the material is also
defined (not NULL). The node type provided to backMaterial (if any) must match the
node type provided to material. This field allows to render back faces with a different
material parameters than the front faces. The meaning and all constraints of this field
are explained in the section Two-sided materials.

The texture field, if specified, shall contain one of the various types of texture nodes
(see 18 Texturing component). If the texture node is NULL or the texture field is
unspecified, the object that references this Appearance is not textured.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 12 Shape component

shape.html[8/1/2020 10:00:11 AM]

The textureTransform field, if specified, shall contain a TextureTransform node as
defined in 18.4.8 TextureTransform. If the textureTransform is NULL or unspecified, the
textureTransform field has no effect.

The fillProperties field, if specified, shall contain a FillProperties node. If fillProperties is
NULL or unspecified, the fillProperties field has no effect.

The lineProperties field, if specified, shall contain a LineProperties node. If lineProperties
is NULL or unspecified, the lineProperties field has no effect.

The pointProperties field, if specified, shall contain a PointProperties node. If
pointProperties is NULL or unspecified, the pointProperties field has no effect.

The shaders field contains a listing, in order of preference, of nodes that describe
programmable shaders that replace the fixed rendering requirements of this part of
ISO/IEC 19775 with user-provided functionality. If the field is not empty, one shader
node is selected and the fixed rendering requirements defined by this specification are
ignored. The field shall contain one of the various types of shader nodes as specified in
31 Programmable shaders component.

12.4.3 FillProperties
FillProperties : X3DAppearanceChildNode {
 SFBool [in,out] filled TRUE
 SFColor [in,out] hatchColor 1 1 1 [0,1]
 SFBool [in,out] hatched TRUE
 SFInt32 [in,out] hatchStyle 1 [0,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

The FillProperties node specifies additional properties to be applied to all polygonal
areas on top of whatever appearance is specified by the other fields of the respective
Appearance node. Thus, hatches are applied on top of the already rendered appearance
of the node. Thus, if filled is TRUE, the polygonal area is filled according to the other
fields of the Appearance node. If hatched is TRUE, the polygonal area is hatched as
specified by the hatchStyle field. Hatches shall be applied after fills are applied.

The hatchStyle field selects a hatch pattern as defined in the International Register of
Graphical Items (see 2.[REG]). The hatches are rendered using the colour specified by
the hatchColor field. Browsers shall support hatchstyles 1-6 with hatchstyle 1 being the
default. X3D browsers may support any other of the registered hatchstyles. If a
hatchstyle that is not supported is requested, hatchstyle 1 shall be used. Table 12.2
specifies the first nineteen hatch styles as defined in the Hatchstyle Section of the
International Register of Items. Examples of each hatch style are available at the
International Register of Items.

Table 12.2 — International register of items hatchstyles

1 Horizontal equally spaced parallel lines

2 Vertical equally spaced parallel lines

3 Positive slope equally spaced parallel lines

4 Negative slope equally spaced parallel lines

http://isotc.iso.org/livelink/livelink/fetch/-8916524/8916549/8916590/6208440/class_pages/hatchstyle.html
http://isotc.iso.org/livelink/livelink/fetch/-8916524/8916549/8916590/6208440/class_pages/hatchstyle.html

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 12 Shape component

shape.html[8/1/2020 10:00:11 AM]

5 Horizontal/vertical crosshatch

6 Positive slope/negative slope crosshatch

7 (cast iron or malleable iron and general use for all materials)

8 (steel)

9 (bronze, brass, copper, and compositions)

10 (white metal, zinc, lead, babbit, and alloys)

11 (magnesium, aluminum, and aluminum alloys)

12 (rubber, plastic, and electrical insulation)

13 (cork,felt, fabric, leather, and fibre)

14 (thermal insulation)

15 (titanium and refractory material)

16 (marble, slate, porcelain, glass, etc.)

17 (earth)

18 (sand)

19 (repeating dot)

The associated geometry shall be filled and/or hatched only when the respective values
of the filled and/or hatched fields have value TRUE.

 12.4.4 LineProperties
LineProperties : X3DAppearanceChildNode {
 SFBool [in,out] applied TRUE
 SFInt32 [in,out] linetype 1 [1,∞)
 SFFloat [in,out] linewidthScaleFactor 0 (-∞,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

The LineProperties node specifies additional properties to be applied to all line
geometry. The linetype and linewidth linewidthScaleFactor fields shall only be applied
when the applied field has value TRUE. When the value of the applied field is FALSE, a solid
line of nominal width shall be produced. The colour of the line is specified by the
associated Material node or X3DColorNode color values.

The linetype field selects a line pattern as defined in the International Register of
Graphical Items (see 2.[REG]). X3D browsers shall support linetype values 1 through 5,
with 1 being the default value. X3D browsers may support any other of the registered
linetype values. If a linetype that is not supported is requested, value 1 shall be used.
Table 12.2 specifies the first sixteen linetype values as defined in the Linetype Section
of the International Register of Items.

file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/rendering.html#X3DColorNode
http://www.iso.org/jtc1/sc24/register
http://www.iso.org/jtc1/sc24/register

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 12 Shape component

shape.html[8/1/2020 10:00:11 AM]

Table 12.3 — International register of items linetypes

1 Solid

2 Dashed

3 Dotted

4 Dashed-dotted

5 Dash-dot-dot

6 (single arrow)

7 (single dot)

8 (double arrow)

10 (chain line)

11 (center line)

12 (hidden line)

13 (phantom line)

14 (break line 1)

15 (break line 2)

16 User-specified dash pattern

The arrowhead is drawn as short lines forming barbs at any convenient angle between
15 and 90 degrees. The arrowhead is closed and filled in. For linetype "single arrow",
the arrowhead is rendered so that the arrow tip occurs at the last point of the each
individual list of points passed to a polyline and is in the direction of the last vector. For
linetype "double arrow", the first arrowhead is rendered so that the arrow tip occurs at
the first point of the list of points passed to a polyline and is in the reverse direction of
the first vector. The second arrowhead is rendered as for "single arrow" at the opposite
end of the polyline.

The linewidthScaleFactor field is a multiplicative value that scales a browser-dependent
nominal line width by the given value. This resulting value shall then be mapped to the
nearest available line width. A value less than or equal to zero refers to the minimum
available line width.

 12.4.5 Material
Material : X3DOneSidedMaterialNode {
 SFFloat [in,out] ambientIntensity 0.2 [0,1]
 SFNode [in,out] ambientTexture NULL [X3DSingleTextureNode]
 SFString [in,out] ambientTextureMapping ""

 SFColor [in,out] diffuseColor 0.8 0.8 0.8 [0,1]

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 12 Shape component

shape.html[8/1/2020 10:00:11 AM]

 SFNode [in,out] diffuseTexture NULL [X3DSingleTextureNode]
 SFString [in,out] diffuseTextureMapping ""

 SFColor [in,out] emissiveColor 0 0 0 [0,1]
 SFNode [in,out] emissiveTexture NULL [X3DSingleTextureNode]
 SFString [in,out] emissiveTextureMapping ""

 SFNode [in,out] metadata NULL [X3DMetadataObject]

 SFNode [in,out] normalTexture NULL [X3DTexture2DNode]
 SFString [in,out] normalTextureMapping ""
 SFFloat [in,out] normalScale 1 [0, ∞]

 SFFloat [in,out] occlusionStrength 1 [0,1]
 SFNode [in,out] occlusionTexture NULL [X3DTexture2DNode]
 SFString [in,out] occlusionTextureMapping ""

 SFFloat [in,out] shininess 0.2 [0,1]
 SFNode [in,out] shininessTexture NULL [X3DSingleTextureNode]
 SFString [in,out] shininessTextureMapping ""

 SFColor [in,out] specularColor 0 0 0 [0,1]
 SFNode [in,out] specularTexture NULL [X3DSingleTextureNode]
 SFString [in,out] specularTextureMapping ""

 SFFloat [in,out] transparency 0 [0,1]
}

The Material node specifies surface material properties for associated geometry nodes
and is used by the X3D lighting equations during rendering. 17 Lighting component
contains a detailed description of the X3D lighting model equations.

All of the fields in the Material node range from 0.0 to 1.0.

The fields in the Material node determine how light reflects off an object to create
colour:

a. The ambientIntensity field specifies how much ambient light from light sources this
surface shall reflect. Ambient light is omnidirectional and depends only on the
number of light sources, not their positions with respect to the surface. Ambient
colour is calculated as ambientIntensity × diffuseColor.

b. The diffuseColor field reflects all X3D light sources depending on the angle of the
surface with respect to the light source. The more directly the surface faces the
light, the more diffuse light reflects.

c. The emissiveColor field models "glowing" objects. This can be useful for displaying
pre-lit models (where the light energy of the room is computed explicitly), or for
displaying scientific data.

d. The specularColor and shininess fields determine the specular highlights (e.g., the
shiny spots on an apple). When the angle from the light to the surface is close to
the angle from the surface to the viewer, the specularColor is added to the diffuse
and ambient colour calculations. Lower shininess values produce soft glows, while
higher values result in sharper, smaller highlights.

e. The transparency field specifies how "clear" an object is, with 1.0 being completely
transparent, and 0.0 completely opaque.

The Material node specifies surface material properties for associated geometry nodes.
It indicates that a surface is using Phong lighting model. 17 Lighting component
contains a detailed description of the X3D lighting model equations.

The material parameters are specified as scalars or RGB colors in the X3D file. All of the
SFFloat and SFColor fields in the Material node range from 0.0 to 1.0.

Moreover every material parameter can be adjusted using a texture. This allows to vary
this parameter across the surface. The information sampled from the texture is always

file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/components/Material

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 12 Shape component

shape.html[8/1/2020 10:00:11 AM]

multiplied by the simple scalar/color fields.

Examples of texture usage:

Texture assigned to the diffuseTexture controls the most intuitive "visible color of
the object". This is the most often used texture.
Texture assigned to the specularTexture allows the surface to be partially shiny
(white values in the texture) and partially matte (black values in the texture).

The fields in the Material node determine how light reflects off an object to create color:

a. The ambientIntensity and ambientTexture fields specify how much ambient light
from light sources this surface shall reflect. Ambient light is omnidirectional and
depends only on the number of light sources, not their positions with respect to
the surface.

Ambient parameter is calculated as
ambientIntensity × diffuseColor × textureSample(ambientTexture).rgb.

b. The diffuseColor and diffuseTexture fields reflect all X3D light sources depending
on the angle of the surface with respect to the light source. The more directly the
surface faces the light, the more diffuse light reflects.

c. The emissiveColor and emissiveTexture fields model "glowing" or "unlit" objects.
See X3DOneSidedMaterialNode for the description of these fields.

d. The specularColor, specularTexture, shininess and shininessTexture fields
determine the specular highlights (e.g., the shiny spots on an apple).

When the angle from the light to the surface is close to the angle from the surface
to the viewer, the specularColor × textureSample(specularTexture).rgb is added to
the diffuse and ambient color calculations.

Lower shininess values produce soft glows, while higher values result in sharper,
smaller highlights. Shininess is calculated as
shininess × textureSample(shininessTexture).a.

e. The transparency field (together with alpha channel of the diffuseTexture) specifies
how "clear" an object is, with 1.0 being completely transparent, and 0.0
completely opaque.

The transparency determines the opacity as opacity = 1.0 - transparency. This is
then multiplied by the alpha channel of diffuseTexture to determine the final alpha
of the rendered pixel.

The RGB channels of diffuseTexture, specularTexture and emissiveTexture are
multiplied by the corresponding diffuseColor, specularColor, emissiveColor before being
used in the current lighting calculation. The alpha channel of a diffuseTexture is
multiplied by the material opacity (which equals just 1.0 - transparency). The alpha
channels contents of specularTexture and emissiveTexture are ignored.

The shininessTexture alpha channel contains values multiplied with the shininess factor
of the Material node. The RGB channels contents of the shininessTexture are ignored.

file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/components/Material

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 12 Shape component

shape.html[8/1/2020 10:00:11 AM]

It is expected, and advised, that authors reuse the same texture node for
specularTexture and shininessTexture. The specular data is deliberately contained in
different channels (RGB) than the shininess data (Alpha).

The optional occlusionTexture can be used to indicate areas of indirect lighting, typically
called ambient occlusion. Only the Red channel of the texture is used for the
computation, the other channels are ignored. Higher values indicate areas that should
receive full indirect lighting and lower values indicate no indirect lighting. The
occlusionStrength determines how much does the occlusion texture affect the final
result.

See the section 12.2.4 Texture mapping specified in material nodes for a description
how the texture coordinates and texture coordinate transformations are determined
based on the xxxTextureMapping fields of this node.

 12.4.6 PhysicalMaterial
PhysicalMaterial : X3DOneSidedMaterialNode {
 SFColor [in,out] baseColor 1 1 1 [0,1]
 SFNode [in,out] baseTexture NULL [X3DSingleTextureNode]
 SFString [in,out] baseTextureMapping ""

 SFFloat [in,out] metallic 1 [0,1]
 SFNode [in,out] metallicRoughnessTexture NULL [X3DSingleTextureNode]
 SFString [in,out] metallicRoughnessTextureMapping ""

 SFColor [in,out] emissiveColor 0 0 0 [0,1]
 SFNode [in,out] emissiveTexture NULL [X3DSingleTextureNode]
 SFString [in,out] emissiveTextureMapping ""

 SFNode [in,out] metadata NULL [X3DMetadataObject]

 SFNode [in,out] normalTexture NULL [X3DTexture2DNode]
 SFString [in,out] normalTextureMapping ""
 SFFloat [in,out] normalScale 1 [0, ∞]

 SFFloat [in,out] occlusionStrength 1 [0,1]
 SFNode [in,out] occlusionTexture NULL [X3DSingleTextureNode]
 SFString [in,out] occlusionTextureMapping ""

 SFFloat [in,out] roughness 1 [0,1]

 SFFloat [in,out] transparency 0 [0,1]
}

The PhysicalMaterial node specifies surface material properties for associated geometry
nodes. It indicates that a physical lighting model should be used for the computation.
17 Lighting component contains a detailed description of the X3D lighting model
equations.

The physical lighting equation, as an input, relies on the following parameters:

baseParameter (RGB color) is, in simple cases, a multiplication of baseTexture RGB
channel (if such texture was specified) with the baseColor.

In other words, it is calculated at every pixel as
baseColor × textureSample(baseTexture).rgb.

Note: This interpretation is true in most cases, but in general it is a simplification
of what actually happens. The texture may also come from Appearance.texture,
and it can even be MultiTexture in which case it is not necessarily multiplied. See
the 17.2.2.6 Physical lighting model for the exact specification how the
baseParameter is calculated in every possible case.

metallicParameter is a multiplication of metallic with the Blue texture channel of

file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/components/PhysicalMaterial

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 12 Shape component

shape.html[8/1/2020 10:00:11 AM]

metallicRoughnessTexture (if such texture was specified).

In other words, it is calculated at every pixel as
metallic × textureSample(metallicRoughnessTexture).b.

roughnessParameter is a multiplication of roughness with the Green texture
channel of metallicRoughnessTexture (if such texture was specified).

In other words, it is calculated at every pixel as
roughness × textureSample(metallicRoughnessTexture).g.

When calculating metallicParameter and roughnessParameter terms, the Red and Alpha
channels of the metallicRoughnessTexture are ignored. It is possible to use the same
texture for metallicRoughnessTexture and occlusionTexture, as they deliberately look at
different channels, so all the information can be contained in one RGB texture.

The final alpha, used for blending or alpha-testing, is calculated as baseTexture alpha
channel multiplied with the opacity (1.0 - transparency). This is consistent with the
behavior of diffuseColor, diffuseTexture and transparency on the Phong Material. If the
baseTexture was not specified, it is also possible to use the Application.texture. See the
17.2.2.6 Physical lighting model for the exact specification, and the 12.2.5 Coexistence
of textures specified in material nodes with the "Appearance.texture" field for a
description how Appearance.texture is used.

Moreover the PhysicalMaterial defines the emissiveColor and optional emissiveTexture.
The resulting emissiveParameter term is simply added to the pixel color, this behavior is
consistent for all X3D materials.

The optional occlusionTexture can be used to indicate areas of indirect lighting, typically
called ambient occlusion. Only the Red channel of the texture is used for the
computation, the other channels are ignored. Higher values indicate areas that should
receive full indirect lighting and lower values indicate no indirect lighting. The
occlusionStrength determines how much does the occlusion texture affect the final
result.

Physical interpretation of the material parameters:

Note: The physical material properties of X3D are deliberately consistent with
the glTF 2.0 material definition. Effectively, converting between (in both
directions) between X3D PhysicalMaterial and glTF 2.0 material definitions is
trivial.

The description of the parameter meaning below follows very closely the glTF
specification.

The baseParameter color has two different interpretations depending on the value of
metallicParameter. When the material is a metal, the baseParameter color is the
specific measured reflectance value at normal incidence (F0). For a non-metal the
baseParameter color represents the reflected diffuse color of the material. In this model
it is not possible to specify a F0 value for non-metals, and a linear value of 4% (0.04) is
used.

file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/components/Material
file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/components/PhysicalMaterial

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 12 Shape component

shape.html[8/1/2020 10:00:11 AM]

The following equations show how to calculate bidirectional reflectance distribution
function (BRDF) inputs (cdiff, F0, α) from the metallic-roughness material properties.

const dielectricSpecular = rgb(0.04, 0.04, 0.04)
const black = rgb(0, 0, 0)
cdiff = lerp(baseParameter * (1 - dielectricSpecular.r), black, metallicParameter)
F0 = lerp(dieletricSpecular, baseParameter, metallicParameter)
α = roughnessParameter ^ 2

See the section 12.2.4 Texture mapping specified in material nodes for a description
how the texture coordinates and texture coordinate transformations are determined
based on the xxxTextureMapping fields of this node.

12.4.7 PointProperties
PointProperties : X3DAppearanceChildNode {
 SFFloat [in,out] pointSizeScaleFactor 1 [1,∞)
 SFFloat [in,out] pointSizeMinValue 1 [0,∞)
 SFFloat [in,out] pointSizeMaxValue 1 [0,∞)
 SFVec3f [in,out] attenuation 1 0 0 [0,∞)
 SFString [in,out] colorMode "TEXTURE_AND_POINT_COLOR" ["POINT_COLOR" | "TEXTURE_COLOR" |
"TEXTURE_AND_POINT_COLOR"]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

The PointProperties node specifies additional properties to be applied to all point
geometry. The colour of the line is specified by the associated Material node or
X3DColorNode color values.

pointSizeScaleFactor is a value determining the nominal point size before modification
by the sizing modifications, as determined by the pointSizeMinValue,
pointSizeMaxValue, and attenuation values discussed below. The nominal rendered
point size is a browser-dependent minimum renderable point size.

pointSizeMinValue is minimum allowed scaling factor on nominal browser point scaling.
pointSizeMaxValue is maximum allowed scaling factor on nominal browser point scaling.
The provided value for pointSizeMinValue must be less than or equal to value for
pointSizeMaxValue.

The attenuation field defines a depth perception effect in a point cloud rendering by
making points close to the viewer appear larger. The modification of point size
depending on distance from the view occurs in two steps, starting with the nominal
point size as determined by the pointSizeScaleFactor field. The attenuation field defines
three parameters a, b, and c from the components of a single SFVec3f value:

a = attenuation[0]
b = attenuation[1]
c = attenuation[2]

Together these parameters define an attenuation factor 1/(a + b×r + c×r2) where r is the
distance from the observer position (current viewpoint) to each point. The nominal
point size is multiplied by the attenuation factor and then clipped to a minimum value of
pointSizeMinValue × the minimum renderable point size, then clipped to a maximum
size of pointSizeMaxValue × minimum renderable point size.

When a X3DTextureNode is defined in the same Appearance instance as PointProperties
node, the points of a PointSet shall be displayed as point sprites using the given
texture(s). The colorMode field has a blending effect on the rendering of point sprites. A

file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/rendering.html#X3DColorNode

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 12 Shape component

shape.html[8/1/2020 10:00:11 AM]

value of:

POINT_COLOR shall display the RGB channels of the color instance defined in
X3DMaterialNode or X3DColorNode, and the A channel of the texture if any. If no
color is associated to the point, the default RGB color (0, 0, 0) shall be used.
TEXTURE_COLOR shall display the original texture with its RGBA channels and
regardless to the X3DMaterialNode or X3DColorNode which might be associated to
the point set.
TEXTURE_AND_POINT_COLOR shall display the RGBA channels of a texture added
to the RGB channels of the color defined in X3DMaterialNode or X3DColorNode
node, and the A channel of the texture if any. If no color is associated to the point,
the result shall be exactly the same as TEXTURE_COLOR.

If no X3DTextureNode is defined in the same Appearance instance as PointProperties,
points of the PointSet shall be displayed anti-aliased and using their associated colors.

TODO reference/bibliography International register of items for markertype.

 12.4.8 Shape
Shape : X3DShapeNode {
 SFNode [in,out] appearance NULL [X3DAppearanceNode]
 SFBool [in out] bboxDisplay FALSE
 SFNode [in,out] geometry NULL [X3DGeometryNode]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [in out] visible TRUE
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or −1 −1 −1
}

The Shape node has two fields, appearance and geometry, that are used to create
rendered objects in the world. The appearance field contains an Appearance node that
specifies the visual attributes (e.g., material and texture) to be applied to the
geometry. The geometry field contains a geometry node. The specified geometry node
is rendered with the specified appearance nodes applied. See 12.2 Concepts for more
information.

17 Lighting component contains details of the X3D lighting model and the interaction
between Appearance nodes and geometry nodes.

If the geometry field is NULL, the object is not drawn.

The bboxCenter and bboxSize fields specify a bounding box that encloses the Shape
node's geometry. This is a hint that may be used for optimization purposes. The results
are undefined if the specified bounding box is smaller than the actual bounding box of
the geometry at any time. A default bboxSize value, (-1 -1 -1), implies that the
bounding box is not specified and, if needed, is calculated by the browser. A description
of the bboxCenter and bboxSize fields is contained in 10.2.2 Bounding boxes.

 12.4.9 TwoSidedMaterial (deprecated)
TwoSidedMaterial : X3DMaterialNode {
 SFFloat [in,out] ambientIntensity 0.2 [0,1]
 SFFloat [in,out] backAmbientIntensity 0.2 [0,1]
 SFColor [in,out] backDiffuseColor 0.8 0.8 0.8 [0,1]
 SFColor [in,out] backEmissiveColor 0 0 0 [0,1]
 SFFloat [in,out] backShininess 0.2 [0,1]
 SFColor [in,out] backSpecularColor 0 0 0 [0,1]
 SFFloat [in,out] backTransparency 0 [0,1]
 SFColor [in,out] diffuseColor 0.8 0.8 0.8 [0,1]

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 12 Shape component

shape.html[8/1/2020 10:00:11 AM]

 SFColor [in,out] emissiveColor 0 0 0 [0,1]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFFloat [in,out] shininess 0.2 [0,1]
 SFBool [in,out] separateBackColor FALSE
 SFColor [in,out] specularColor 0 0 0 [0,1]
 SFFloat [in,out] transparency 0 [0,1]
}

This node is deprecated since X3D version 4.0. Future versions of the standard
may remove this node. The upgrade path is as follows:

If you used TwoSidedMaterial with separateBackColor equal FALSE (default), then
simply use the simpler Material node instead. In case of separateBackColor equal
FALSE, the TwoSidedMaterial was actually useless. Only the solid field, described in
the 11.2.3 Common geometry fields, controls whether the geometry is visible from
the back side (this was true in X3D 3.x and remains true in X3D 4.x).
If you used TwoSidedMaterial with separateBackColor equal TRUE, then instead use
Appearance.backMaterial field to specify different rendering parameters for the
back faces. See Two-sided materials.

This node defines material properties that can effect both the front and back side of a
polygon individually. These materials are used for both the front and back side of the
geometry whenever the X3D lighting model is active.

If the separateBackColor field is set to TRUE, the rendering shall render the front and
back faces of the geometry with different values. If the value is FALSE, the front colours
are used for both the front and back side of the polygon, as per the existing X3D
lighting rules.

When calculating the terms in the lighting equations, the front geometry shall use the
fields ambientIntensity, diffuseColor,emissiveColor, shininess, specularColor, and
transparency. The faces that are determined to be the back side are rendered using
backAmbientIntensity, backDiffuseColor, backEmissiveColor, backShininess, and
backTransparency as the appropriate components in the lighting equations.

 12.4.10 UnlitMaterial
UnlitMaterial : X3DOneSidedMaterialNode {
 SFColor [in,out] emissiveColor 1 1 1 [0,1]
 SFNode [in,out] emissiveTexture NULL [X3DSingleTextureNode]
 SFString [in,out] emissiveTextureMapping ""
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFNode [in,out] normalTexture NULL [X3DTexture2DNode]
 SFString [in,out] normalTextureMapping ""
 SFFloat [in,out] normalScale 1 [0, ∞]
 SFFloat [in,out] transparency 0 [0,1]
}

Material that is unaffected by light sources. Suitable to create various non-realistic
effects, when the colors are defined explicitly and are not affected by the placement of
the shape relative to the lights or camera.

The output color and opacity, called emissiveParameter by the lighting equations, are
determined like this:

1. Use the emissiveColor field value as the emissiveParameter.rgb. Use the 1.0 -
transparency as the emissiveParameter.a.

2. If shape is using Color node then the information from Color node overrides the
emissiveParameter.rgb. If shape is using ColorRGBA node then the information

file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/components/Material

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 12 Shape component

shape.html[8/1/2020 10:00:11 AM]

from ColorRGBA overrides both the emissiveParameter.rgb and the
emissiveParameter.a.

Note: This is consistent with how Color or ColorRGBA override diffuseColor and
transparency in case of Material.

3. If the emissiveTexture is not NULL, then it multiplies (component-wise) the
emissiveParameter.rgb (multiplied by the texture RGB channels) and
emissiveParameter.a (multiplied by the texture alpha channel).

If the emissiveTexture is NULL, but Appearance.texture field is not NULL, then the
same logic is applied to the Appearance.texture texture: it multiplies
emissiveParameter.rgb and emissiveParameter.a. See 12.2.5 Coexistence of
textures specified in material nodes with the "Appearance.texture" field for a
description how is the Appearance.texture field used.

Note about default values: This node inherits the emissiveColor field from the
X3DOneSidedMaterialNode ancestor, but the default value of this field changes: only for
UnlitMaterial, the default emissiveColor is 1 1 1 (white), instead of 0 0 0 (black, default
of X3DOneSidedMaterialNode.emissiveColor).

Implementation hint: Normal vectors information is not useful for the calculation of unlit
material. Implementations can ignore the normal vectors provided in the geometry
node (per-face or per-vertex) and in the normalTexture field. Implementations are
encouraged to optimize this case, and not send unneeded normals data to GPU, and not
calculate implicit normal vectors (normally derived from creaseAngle and ccw fields).
However, there is an exception to this optimization: if the shape is using
TextureCoordinateGenerator with some modes (CAMERASPACENORMAL,
CAMERASPACEREFLECTIONVECTOR) then the shader code may need access to normals anyway.

See the section 12.2.4 Texture mapping specified in material nodes for a description
how the texture coordinates and texture coordinate transformations are determined
based on the xxxTextureMapping fields of this node.

 12.5 Support levels
The Shape component provides three levels of support as specified in Table 12.4.

 Table 12.4 — Shape component support levels

Level Prerequisites Nodes/Features Support

1
Core 1
Rendering 1
Texturing 1

X3DAppearanceChildNode(abstract) n/a

X3DAppearanceNode (abstract) n/a

 X3DMaterialNode (abstract) n/a

file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/components/UnlitMaterial

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 12 Shape component

shape.html[8/1/2020 10:00:11 AM]

 X3DOneSidedMaterialNode
(abstract) n/a

X3DShapeNode (abstract) n/a

Appearance

Optional support
for
textureTransform,
lineProperties,
fillProperties,
shaders,
backMaterial.

Material

Optional support
for
ambientIntensity,
shininess,
specularColor and
all xxxTexture...
fields except
diffuseTexture
(that is, optional
support for:
ambientTexture,
emissiveTexture,
normalTexture,
occlusionTexture,
shininessTexture,
specularTexture).

UnlitMaterial All fields fully
supported.

Shape All fields fully
supported.

2
Core 1
Rendering 1
Texturing 1

All Level 1 Appearance nodes
except Appearance

All fields fully
supported.

 Appearance

Optional support
for the same
properties as on
level 1.

 LineProperties All fields fully
supported.

PhysicalMaterial All fields fully
supported.

Core 1

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 12 Shape component

shape.html[8/1/2020 10:00:11 AM]

3 Rendering 1
Texturing 1

All Level 2 Appearance nodes
except Appearance

All fields fully
supported.

 Appearance Optional support
for backMaterial.

 FillProperties All fields fully
supported.

4
Core 1
Grouping 1
Rendering 1

All Level 3 Appearance nodes All fields fully
supported.

 AcousticProperties All fields fully
supported.

 PointProperties All fields fully
supported.

Note: Support for TwoSidedMaterial is not required at any level, as it is a deprecated
node. As such, X3D browser qualifies for Full conformance even without implementing
this node. Instead a new field backMaterial is required to be supported at level 5 of this
component.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 33 Texturing3D component

texture3D.html[8/1/2020 10:00:15 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

33 Texturing3D Component

 33.1 Introduction

33.1.1 Name

The name of this component is "Texturing3D". This name shall be used when referring
to this component in the COMPONENT statement (see 7.2.5.4 Component statement).

33.1.2 Overview

This clause describes the Texturing3D component of this part of ISO/IEC 19775. Table
33.1 provides links to the major topics in this clause.

 Table 33.1 — Topics

33.1 Introduction
33.1.1 Name
33.1.2 Overview

33.2 Concepts
33.2.1 Overview
33.2.2 3D texturing concepts
33.2.3 Texture coordinates
33.2.4 Texture coordinate generation for primitive objects
33.2.5 Texture map image formats

33.3 Abstract types
33.3.1 X3DTexture3DNode

33.4 Node reference
33.4.1 ComposedTexture3D
33.4.2 ImageTexture3D
33.4.3 PixelTexture3D
33.4.4 TextureCoordinate3D
33.4.5 TextureCoordinate4D
33.4.6 TextureTransformMatrix3D

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 33 Texturing3D component

texture3D.html[8/1/2020 10:00:15 AM]

33.4.7 TextureTransform3D
33.5 Support levels

Figure 33.1 — Illustration of how two 2D images can form a 3D volume of texture

Table 33.1 — Topics
Table 33.2 — Texturing component support levels

 33.2 Concepts

33.2.1 Overview

This component provides additional texturing extensions to the basic capabilities
defined in X3D. Many applications need to describe surface properties as data points in
a volume of space, rather than a flat surface. These textures operate with three
dimensions. A texture of this type is termed a volumetric texture.

Volumetric textures are essential for advanced rendering effects related to fog and
lighting, as well as industry-specific needs such as medical and CAD visualization.

33.2.2 3D texturing concepts

3D texturing specifies texel colours based on a volume of space. An object that is being
rendered on that 3D texture effectively cuts a volume out of the texels provided by the
texture.

This part of ISO/IEC 19775 assumes standard commodity hardware that presents 3D
textures as a series of 2D slices of the volume that can then be interpolated and
composited together to form a 3D volume of space. There is no assumption about the
existence of true voxel rendering hardware capability.

A 3D volume of texture is specified as a number of 2D planes (images) of data that are
ordered in a depth-wise manner. Figure 33.1 shows two base images that can be
layered together resulting in the volume of a 3D texture. In this example, the texture
would have a dimension of n × m × 2.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 33 Texturing3D component

texture3D.html[8/1/2020 10:00:15 AM]

Figure 33.1 — Formation of 3D texture from two 2D textures

 33.2.3 Texture coordinates

The coordinate system of the texture is a right-handed coordinate system as defined in
Figure 33.1. The coordinate components are defined to be (s,t,r) as values along the S,
T, and R axes defined by Figure 33.1.

33.2.4 Texture coordinate generation for primitive objects

Some geometry nodes are not capable of having 3D texture coordinates set by the user
(e.g., Box and Cone). For these cases, 3D textures coordinates are automatically
generated based on the following rules:

a. All coordinates are generated in the range [0, 1] for the given axis. 0 is for the
minimum value of the coordinate vertex on that axis, and 1 is assigned to the
maximum value of the coordinate vertex on that axis.

b. Orientation is oriented along the z-axis, looking in the -Z direction with a zero
angle aligned with the axis.

c. S coordinate is generated from left to right based on the maximum extents of the
X-axis vertex values.

d. T coordinate is generated from top to bottom based on the maximum extents of
the Y-axis vertex values.

e. R coordinate is generated from front (+Z) to back (-Z) based on the maximum
extents of the Z-axis vertex values.

The default 3D texture coordinate generation described above is performed only when
the Appearance.texture contains a node derived from X3DTexture3DNode, or when it
contains MultiTexture and the first child of it is X3DTexture3DNode. In particular, it
means that using 3D texture has no effect on the default texture coordinate generation
algorithm when this 3D texture is used:

as a non-first child of MultiTexture, which is then placed in Appearance.texture

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 33 Texturing3D component

texture3D.html[8/1/2020 10:00:15 AM]

as a texture referenced by a material field, like Material.diffuseTexture

In the above two cases, the default coordinate generation still follows the standard
algorithm (described at each particular geometry node, best suited for 2D textures).
The reason for this is that a node may use multiple textures, both 3D and 2D, and in
the above cases it's impossible for the browser to know which texture generation
scheme (best suited for 3D or 2D texture) is a better default.

 33.2.5 Texture map image formats

Node types specifying 3D texture maps may supply data with a number of color
components between one and four. The valid types and interpretations of 3D textures
are identical to that for 2D textures. The definition of texture formats is defined in
18.2.1 Texture map formats.

 33.3 Abstract types

33.3.1 X3DTexture3DNode
X3DTexture3DNode : X3DSingleTextureNode {
X3DTexture3DNode : X3DTextureNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [] repeatS FALSE
 SFBool [] repeatT FALSE
 SFBool [] repeatR FALSE
 SFNode [] textureProperties NULL [TextureProperties]
}

This abstract node type is the base type for all node types that specify 3D sources for
texture images.

NOTE The base node type diverges from the standard X3D textures by making the default repeat modes FALSE,
rather than TRUE. This is because 3D textures are almost never used in a repeated rendering mode, and because
repeat mode TRUE for 3D textures can produce odd rendering artifacts.

 33.4 Node reference

33.4.1 ComposedTexture3D
ComposedTexture3D : X3DTexture3DNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFNode [in,out] texture [] [X3DTexture2DNode]
 SFNode [] textureProperties NULL [TextureProperties]
 SFBool [] repeatS FALSE
 SFBool [] repeatR FALSE
 SFBool [] repeatT FALSE
}

The ComposedTexture3D node defines a 3D image-based texture map as a collection
of 2D texture sources at various depths and parameters controlling tiling repetition of
the texture onto geometry.

The texture values are interpreted with the first image being at depth 0 and each
following image representing an increasing depth value in the R direction. A user shall
provide 2n source textures in this array. The individual source textures will ignore their
repeat field values.

See 33.2 Concepts, for a general description of texture maps.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 33 Texturing3D component

texture3D.html[8/1/2020 10:00:15 AM]

See 18 Texturing component for a general description of the X3DTexture2DNode
abstract type and interpretation of rendering for 2D images. When used as a source for
cubic environment maps, the fields repeatS and repeatT fields shall be ignored.

33.4.2 ImageTexture3D
ImageTexture3D : X3DTexture3DNode, X3DUrlObject {
 SFString [in,out] description ""
 SFBool [in,out] load TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFTime [in,out] refresh 0.0 [0,∞)
 MFString [in,out] url [] [URI]
 SFBool [] repeatS FALSE
 SFBool [] repeatT FALSE
 SFBool [] repeatR FALSE
 SFNode [] textureProperties NULL [TextureProperties]
}

The ImageTexture3D node defines a texture map by specifying a single image file that
contains complete 3D data and general parameters for mapping texels to geometry.

The texture is read from the URL specified by the url field. When the url field contains
no values ([]), texturing is disabled. The url field is defined in 9.2.1 URLs. While there
are no required file formats, it is recommended that one of the following formats be
supported:

a. DDS (see [DDS]),h
b. DICOM (see 2.[DICOM]),
c. NRRD (see [NRRD]), and/or
d. .vol (see [VOL]).

See 33.2 Concepts for a general description of texture maps.

33.4.3 PixelTexture3D
PixelTexture3D : X3DTexture3DNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFInt32 [in,out] image [0 0 0 0]
 SFBool [] repeatS FALSE
 SFBool [] repeatR FALSE
 SFBool [] repeatT FALSE
 SFNode [] textureProperties NULL [TextureProperties]
}

The PixelTexture3D node defines a 3D image-based texture map as an explicit array of
pixel values (image field) and parameters controlling tiling repetition of the texture onto
geometry.

The image field describes the raw data to be used for this 3D texture. The first value of
the array is the number of components to the image and shall be a value between 0
and 4. The following three numbers are the size of the texture: width, height and
depth, respectively. The remaining values of the array are treated as the pixels for the
image. There shall be at least width × height × depth number of pixel values provided.
Each of the width, height and depth values is required to be a power of two.

See 33.2 Concepts for a general description of 3D texture maps.

See 17 Lighting component for a description of how the texture values interact with the
appearance of the geometry. 5.7 SFImage and MFImage describes the specification of

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 33 Texturing3D component

texture3D.html[8/1/2020 10:00:15 AM]

an image.

33.4.4 TextureCoordinate3D
TextureCoordinate3D : X3DSingleTextureCoordinateNode {
TextureCoordinate3D : X3DTextureCoordinateNode {
 SFString [in,out] mapping ""
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFVec3f [in,out] point [] (-∞,∞)
}

The TextureCoordinate3D node is a geometry property node that specifies a set of 3D
texture coordinates used by vertex-based geometry nodes (e.g., IndexedFaceSet and
ElevationGrid) to map 3D textures to vertices.

Providing 3D texture coordinates to objects that only have 2D textures defined shall
result in implementation dependent rendering.

33.4.5 TextureCoordinate4D
TextureCoordinate4D : X3DSingleTextureCoordinateNode {
TextureCoordinate4D : X3DTextureCoordinateNode {
 SFString [in,out] mapping ""
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFVec4f [in,out] point [] (-∞,∞)
}

The TextureCoordinate4D node is a geometry property node that specifies a set of 4D
(homogeneous 3D) texture coordinates used by vertex-based geometry nodes (e.g.,
IndexedFaceSet and ElevationGrid) to map 3D textures to vertices.

Providing 4D texture coordinates to objects that only have 2D textures defined shall
result in implementation dependent rendering.

33.4.6 TextureTransformMatrix3D
TextureTransformMatrix3D : X3DSingleTextureTransformNode {
TextureTransformMatrix3D : X3DTextureTransformNode {
 SFString [in,out] mapping ""
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFMatrix4f [in,out] matrix 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 (-∞,∞)
}

The matrix field specifies a generalized, unfiltered 4×4 transformation matrix that can
be used to modify the texture. Any set of values is permitted.

33.4.7 TextureTransform3D
TextureTransform3D : X3DSingleTextureTransformNode {
TextureTransform3D : X3DTextureTransformNode {
 SFString [in,out] mapping ""
 SFVec3f [in,out] center 0 0 0 (-∞,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFRotation [in,out] rotation 0 0 1 0 (-∞,∞)
 SFVec3f [in,out] scale 1 1 1 (-∞,∞)
 SFVec3f [in,out] translation 0 0 0 (-∞,∞)
}

The TextureTransform3D node specifies a 3D transformation that is applied to texture
coordinates (see 33.4.4 TextureCoordinate3D). This node affects the way texture
coordinates are applied to the geometric surface. The transformation consists of (in
order):

a. a translation;

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 33 Texturing3D component

texture3D.html[8/1/2020 10:00:15 AM]

b. a rotation about the centre point; and
c. a non-uniform scale about the centre point.

These parameters support changes to the size, orientation, and position of textures on
shapes. These operations appear reversed when viewed on the surface of geometry.

EXAMPLE A scale value of (1 2 2) will scale the texture coordinates and have the net effect of shrinking the
texture size by a factor of 2 (texture coordinates are twice as large and thus cause the texture to repeat) in the T
and R dimensions and leave the S dimension unscaled. A translation of (0.5 0.0 0.0) translates the texture
coordinates +0.5 units along the S-axis and has the net effect of translating the texture -0.5 along the S-axis on the
geometry's surface. A rotation of π/2 of the texture coordinates results in a -π/2 rotation of the texture on the
geometry.

The center field specifies a translation offset in texture coordinate space about which
the rotation and scale fields are applied. The scale field specifies a scaling factor in S, T
and R of the texture coordinates about the center point. All scale values shall be in the
range (-∞,∞). The rotation field specifies a rotation of the texture coordinates about
the center point after the scale has been applied. A positive rotation value makes the
texture coordinates rotate counterclockwise about the centre, thereby rotating the
appearance of the texture itself clockwise. The translation field specifies a translation of
the texture coordinates.

A 3D transform may be applied to 2D textures. The results are implementation
dependent.

 33.5 Support levels
The 3D Texturing component defines two levels of support as specified in Table 33.2.

 Table 33.2 — 3D texturing component support levels

Level Prerequisites Nodes/Features Support

1

Core 1
Grouping 1
Shape 1
Rendering 1
Texturing 1

X3DTexture3DNode n/a

TextureMatrixTransformTextureTransformMatrix3D
All fields
fully
supported.

TextureTransform3D
All fields
fully
supported.

TextureCoordinate3D
All fields
fully
supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 33 Texturing3D component

texture3D.html[8/1/2020 10:00:15 AM]

TextureCoordinate4D
All fields
fully
supported.

ComposedTexture3D
All fields
fully
supported.

PixelTexture3D
All fields
fully
supported.

2

Core 1
Grouping 1
Shape 1
Rendering 1
Texturing 1

ImageTexture3D
All fields
fully
supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L MedicalInterchange profile

MedicalInterchange.html[8/1/2020 10:00:16 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

Annex L

(normative)

MedicalInterchange profile

 L.1 General
This annex defines the X3D components that comprise the MedicalInterchange profile.
This annex includes not only the nodes that shall be supported but also which fields in
the supported nodes may be ignored.

This profile is targeted towards:

Exchange of polygonal geometry, volumetric data and accompanying
documentation between medical imaging systems.
Possible implementation in industry-specific applications that use X3D as an
interchange format, but link to proprietary databases and hardware.

 L.2 Topics
Table L.1 provides links to the major topics in this annex.

 Table L.1 — Topics

L.1 General
L.2 Topics in this annex
L.3 Component support
L.4 Conformance criteria
L.5 Node set
L.6 Other limitations

Table L.1 — Topics
Table L.2 — Components and levels
Table L.3 — Nodes for conforming to the MedicalInterchange profile

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L MedicalInterchange profile

MedicalInterchange.html[8/1/2020 10:00:16 AM]

Table L.4 — Other limitations

 L.3 Component support
Table L.2 lists the components and their levels that shall be supported in the
MedicalInterchange profile. Table L.3 and Table L.4 describe limitations on required
support for nodes and fields contained within these components.

Table L.2 — Components and levels

Component Level Reference

Core 1 7.5 Support levels

Time 1 8.5 Support levels

Networking 2 9.5 Support levels

Grouping 3 10.5 Support levels

Rendering 5 11.5 Support levels

Shape 3 12.5 Support levels

Geometry3D 2 13.4 Support levels

Geometry2D 2 14.4 Support levels

Text 1 15.5 Support levels

Lighting 1 17.5 Support levels

Texturing 2 18.5 Support levels

Interpolation 2 19.5 Support levels

Navigation 3 23.4 Support levels

Environmental effects 1 24.5 Support levels

Event utilities 1 30.5 Support levels

Texturing3D 2 33.5 Support levels

Volume rendering 4 41.5 Support levels

 L.4 Conformance criteria
Conformance to this profile shall include conformance criteria defined by the

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L MedicalInterchange profile

MedicalInterchange.html[8/1/2020 10:00:16 AM]

specifications for those components and levels listed in Table L.2.

In Tables L.3 and L.4, the first column defines the item for which conformance is being
defined. In some cases, general limits are defined but are later overridden in specific
cases by more restrictive limits. The second column defines the requirements for an
X3D file conforming to the MedicalInterchange profile. If an X3D file contains any items
that exceed these limits, it may not be possible for an X3D browser conforming to the
MedicalInterchange profile to successfully parse that X3D file. The third column defines
the minimum complexity for an X3D scene that an X3D browser conforming to the
MedicalInterchange profile shall be able to present to the user. Fields flagged as "not
supported" may optionally be supported by browsers which conform to the
MedicalInterchange profile. The word "ignore" in the minimum browser support column
refers only to the display of the item; in particular, set_ events to ignored inputOutput
fields shall still generate corresponding _changed events.

 L.5 Node set
Table L.3 lists the nodes which shall be supported in the MedicalInterchange profile and
specifies any fields in these nodes for which this profile requires less than full support.

Table L.3 — Nodes for conforming to the MedicalInterchange profile

Item X3D File
Limit

Minimum
Browser
Support

Anchor No
restrictions. Full support.

Arc2D No
restrictions. Full support.

ArcClose2D No
restrictions. Full support.

Appearance No
restrictions. Full support.

Background No
restrictions.

groundAngle
and
groundColor
optionally
supported.
backURL,
frontURL,
leftURL,
rightURL,
topURL
optionally
supported.
skyAngle
optionally

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L MedicalInterchange profile

MedicalInterchange.html[8/1/2020 10:00:16 AM]

supported. At
least one
skyColor
supported.

Billboard
Restrictions
as for all
groups.

Full support
except as for
all groups.

BlendedVolumeStyle No
restrictions. Full support.

BooleanFilter No
restrictions. Full support.

BooleanSequencer No
restrictions. Full support.

BooleanToggle No
restrictions. Full support.

BooleanTrigger No
restrictions. Full support.

BoundaryEnhancementVolumeStyle No
restrictions. Full support.

Box No
restrictions. Full support

CartoonVolumeStyle No
restrictions. Full support.

Circle2D No
restrictions. Full support.

ClipPlane No
restrictions. Full support.

Collision
Restrictions
as for all
groups.

Full support
except as for
all groups. Any
navigation
behaviour
acceptable
when collision
occurs.

Color 15,000
colours. 15,000 colours.

ColorInterpolator No
restrictions. Full support.

ColorRGBA 15,000 15,000 colours

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L MedicalInterchange profile

MedicalInterchange.html[8/1/2020 10:00:16 AM]

colours.

ComposedVolumeStyle No
restrictions. Full support.

CompositeTexture3D
Minimum
512
textures.

Full support.

Cone No
restrictions. Full support.

Coordinate 65,535
points. 65,535 points.

CoordinateDouble 65,535
points. 65,535 points.

CoordinateInterpolator No
restrictions. Full support.

Cylinder No
restrictions. Full support.

DirectionalLight No
restrictions.

Not scoped by
parent Group
or Transform.

Disk2D No
restrictions. Full support.

EdgeEnhancementVolumeStyle No
restrictions. Full support.

FillProperties No
restrictions. Full support.

FontStyle No
restrictions.

If the values of
the text
aspects
character set,
family, style
cannot be
simultaneously
supported, the
order of
precedence
shall be: 1)
character set
2) family 3)
style. Browser
shall display all
characters in
Table 2 (Basic
Latin) and

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L MedicalInterchange profile

MedicalInterchange.html[8/1/2020 10:00:16 AM]

Table 3 (Latin-
1 Supplement)
of ISO/IEC
10646 (see
ISO/IEC
10646).

Group
Restrictions
as for all
groups.

addChildren
optionally
supported.
removeChildren
optionally
supported.
Otherwise as
for all groups.

ImageTexture

JPEG (2.
[JPEG]) and
PNG
(ISO/IEC
15948)
format.

JPEG (2.
[JPEG]) and
PNG (ISO/IEC
15948) format.

ImageTexture3D

DICOM,
JPEG (2.
[JPEG]) and
PNG
(ISO/IEC
15948)
format.

Full support.
Minimum
texture size of
256x256x256
pixels

IndexedFaceSet

10 vertices
per face.
5000 faces.
Less than
15,000
indices.

10 vertices per
face. 5000
faces. 15,000
indices in any
index field.

IndexedLineSet

15,000 total
vertices.
15,000
indices in
any index
field.

15,000 total
vertices.
15,000 indices
in any index
field.

IndexedTriangleFanSet

5,000 total
faces.
15,000
indices in
any index
field.

5,000 total
faces. 15,000
indices in any
index field.

IndexedTriangleSet

5,000 total
faces.
15,000
indices in

5,000 total
faces. 15,000
indices in any

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L MedicalInterchange profile

MedicalInterchange.html[8/1/2020 10:00:16 AM]

any index
field.

index field.

IndexedTriangleStripSet

5,000 total
faces.
15,000
indices in
any index
field.

5,000 total
faces. 15,000
indices in any
index field.

Inline No
restrictions

All fields except
load which is
optionally
supported.

IntegerSequencer No
restrictions. Full support.

IntegerTrigger No
restrictions. Full support.

IsoSurfaceVolumeData

Minimum
dimensions:
512 width,
512 height,
512 depth.

Full support.

LineProperties No
restrictions. Full support.

LineSet 15,000 total
vertices.

15,000 total
vertices.

LOD
Restrictions
as for all
groups.

At least first 4
level/range
combinations
interpreted,
and support as
for all groups.

Material No
restrictions. Full support.

MetadataBoolean No
restrictions. Full support.

MetadataDouble No
restrictions. Full support.

MetadataFloat No
restrictions. Full support.

MetadataInteger No
restrictions. Full support.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L MedicalInterchange profile

MedicalInterchange.html[8/1/2020 10:00:16 AM]

MetadataSet No
restrictions. Full support.

MetadataString No
restrictions. Full support.

MultiTexture No
restrictions.

At least one
texture
displayed per
node with any
number
specified.

Full support.

MultiTextureCoordinate 15,000
coordinates.

15,000
coordinates.

MultiTextureTransform
Restrictions
as for all
groups.

Full support.

NavigationInfo No
restrictions.

avatarSize
optionally
supported.
speed
optionally
supported. type
optionally
supported.
visibilityLimit
optionally
supported.

Normal 15,000
normals.

15,000
normals.

NormalInterpolator No
restrictions. Full support.

OctTree No
restrictions. Full support.

OpacityMapVolumeStyle No
restrictions.

Full support.
3D transfer
functions shall
be supported.

OrientationInterpolator No
restrictions. Full support.

OrthoViewpoint No
restrictions. Full support.

512 width. 512

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L MedicalInterchange profile

MedicalInterchange.html[8/1/2020 10:00:16 AM]

PixelTexture 512 width.
512 height.

height. Display
fully
transparent
and fully
opaque pixels.

PixelTexture3D
256 width.
256 height.
256 depth.

256 width. 256
height. 256
depth. Display
fully
transparent
and fully
opaque pixels.

PointSet 5,000
points. 5,000 points.

Polyline2D 5,000
points. 5,000 points.

Polypoint2D 5,000
points. 5,000 points.

PositionInterpolator No
restrictions. Full support.

ProjectionVolumeStyle No
restrictions. Full support.

Rectangle2D No
restrictions. Full support.

ScalarInterpolator No
restrictions. Full support.

SegmentedVolumeData

Minimum
dimensions:
512 width,
512 height,
512 depth.

Full support.

ShadedVolumeStyle No
restrictions.

A fields fully
supported
except
shadows.
Shadows
supported with
at least Phong
shading.
Henyey-
Greenstein
phase function
not required.

Shape No Full support.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L MedicalInterchange profile

MedicalInterchange.html[8/1/2020 10:00:16 AM]

restrictions.

SilhouetteEnhancementVolumeStyle No
restrictions. Full support.

Sphere No
restrictions. Full support.

StaticGroup No
restrictions. Full support.

Switch No
restrictions. Full support.

Text

100
characters
per string.
100 strings.

100 characters
per string. 100
strings.

TextureCoordinate 65,535
coordinates.

65,535
coordinates.

TextureCoordinate3D 65,535
coordinates.

65,535
coordinates.

TextureCoordinate4D 65,535
coordinates.

65,535
coordinates.

TextureCoordinateGenerator No
restrictions. Full support.

TextureMatrixTransformTextureTransformMatrix3D No
restrictions. Full support.

TextureProperties No
restrictions. Full support.

TextureTransform No
restrictions. Full support.

TextureTransform3D No
restrictions. Full support.

TimeSensor No
restrictions.

pause,
isPaused,
resumeTime
optionally
supported.

TimeTrigger No
restrictions. Full support.

ToneMappedVolumeStyle No
restrictions. Full support.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L MedicalInterchange profile

MedicalInterchange.html[8/1/2020 10:00:16 AM]

Transform
Restrictions
as for all
groups.

addChildren
optionally
supported.
removeChildren
optionally
supported.
Otherwise, full
support except
as for all
groups.

TriangleFanSet

5,000
triangles
per fan.
15,000 total
triangles.

5,000 triangles
per fan. 15,000
total triangles.

TriangleSet 15,000
triangles

15,000
triangles

TriangleStripSet

5,000
triangles
per strip.
15,000 total
triangles

5,000 triangles
per strip.
15,000 total
triangles.

Viewpoint No
restrictions. Full support.

ViewpointGroup No
restrictions. Full support.

VolumeData

Minimum
dimensions:
512 width,
512 height,
512 depth.

Full support.

WorldInfo No
restrictions. Full support.

 L.6 Other limitations
Table L.4 specifies other aspects of X3D functionality which are supported by this
profile. Note that general items refer only to those specific nodes listed in Table L.3.

Table L.4 — Other limitations

Item X3D File Limit Minimum Browser Support

All groups 500 children. 500 children. Optionally ignore
bboxCenter and bboxSize.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L MedicalInterchange profile

MedicalInterchange.html[8/1/2020 10:00:16 AM]

All lights 8 simultaneous lights. 8 simultaneous lights.

Names for
DEF/field 50 utf8 octets. 50 utf8 octets.

All url fields 10 URLs. 10 URLs. URN's ignored.

SFBool No restrictions. Full support.

SFColor No restrictions. Full support.

SFColorRGBA No restrictions. Full support.

SFDouble No restrictions. Full support. Range ±1e±12.
Precision 1e-7.

SFFloat No restrictions. Full support.

SFImage 512 width. 512 height. 512 width. 512 height.

SFInt32 No restrictions. Full support.

SFMatrix4d No restrictions. Full support.

SFMatrix4f No restrictions. Full support.

SFNode No restrictions. Full support.

SFRotation No restrictions. Full support.

SFString 30,000 utf8 octets. 30,000 utf8 octets.

SFTime No restrictions. Full support.

SFVec2d No restrictions. Full support.

SFVec2f No restrictions. Full support.

SFVec3d No restrictions. Full support.

SFVec3f No restrictions. Full support.

SFVec4d No restrictions. Full support.

SFVec4f No restrictions. Full support.

MFColor 15,000 values. 15,000 values.

MFColorRGBA 15,000 values. 15,000 values.

MFDouble 1000 values. 1000 values.

MFFloat 1,000 values. 1,000 values.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L MedicalInterchange profile

MedicalInterchange.html[8/1/2020 10:00:16 AM]

MFInt32 20,000 values. 20,000 values.

MFNode 500 values. 500 values.

MFRotation 1,000 values. 1,000 values.

MFString 30,000 utf8 octets per
string, 10 strings.

30,000 utf8 octets per string, 10
strings.

MFTime 1,000 values. 1,000 values.

MFVec2d 15,000 values. 15,000 values.

MFVec2f 15,000 values. 15,000 values.

MFVec3d 15,000 values. 15,000 values.

MFVec3f 15,000 values. 15,000 values.

MFVec4d 15,000 values. 15,000 values.

MFVec4f 15,000 values. 15,000 values.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 13 Geometry3D component

geometry3D.html[8/1/2020 10:00:19 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

13 Geometry3D component

 13.1 Introduction

13.1.1 Name

The name of this component is "Geometry3D". This name shall be used when referring
to this component in the COMPONENT statement (see 7.2.5.4 Component statement).

13.1.2 Overview

This clause describes the Geometry3D component of this part of ISO/IEC 19775. This
includes how 3D geometry is specified and what shapes are available. Table 13.1
provides links to the major topics in this clause.

 Table 13.1 — Topics

13.1 Introduction
13.1.1 Name
13.1.2 Overview

13.2 Concepts
13.2.1 Overview of geometry
13.2.2 Shape and geometry nodes
13.2.3 Geometric property nodes
13.2.4 Appearance nodes
13.2.5 Common geometry fields

13.3 Node reference
13.3.1 Box
13.3.2 Cone
13.3.3 Cylinder
13.3.4 ElevationGrid
13.3.5 Extrusion

13.3.5.1 Syntax
13.3.5.2 Overview

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 13 Geometry3D component

geometry3D.html[8/1/2020 10:00:19 AM]

13.3.5.3 Algorithmic description
13.3.5.4 Special cases

13.3.5.4.1 Overview
13.3.5.4.2 Number of scale or orientation values
13.3.5.4.3 Collinear spine points
13.3.5.4.4 Coincident spine points
13.3.5.4.5 Number of distinct spine points

13.3.5.5 Common cases
13.3.5.6 Other fields

13.3.6 IndexedFaceSet
13.3.7 Sphere

13.4 Support levels

Figure 13.1 — Box node
Figure 13.2 — Cone node
Figure 13.3 — Cylinder node
Figure 13.4 — ElevationGrid node
Figure 13.5 — Spine-aligned cross-section plane at a spine point
Figure 13.6 — IndexedFaceSet texture default mapping
Figure 13.7 — ImageTexture for IndexedFaceSet in Figure 13.6
Figure 13.8 — Sphere node

Table 13.1 — Topics
Table 13.2 — Geometry3D component support levels

 13.2 Concepts

13.2.1 Overview of geometry

The geometry component consists of four types of nodes: shape, geometry, geometry
property, and appearance. Together, these node types are used to describe the visual
elements of a X3D world.

 13.2.2 Shape and geometry nodes

The Shape node associates a geometry node with nodes that define that geometry's
appearance. Shape nodes must be part of the transformation hierarchy to have any
visible result, and the transformation hierarchy must contain Shape nodes for any
geometry to be visible (the only nodes that render visible results are Shape nodes and
the background nodes in 24 Environmental effects). A Shape node contains exactly one
geometry node in its geometry field, which is of type X3DGeometryNode. For more on
the Shape node, see 12 Shape component.

Other components may define additional geometry node types.

 13.2.3 Geometric property nodes

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 13 Geometry3D component

geometry3D.html[8/1/2020 10:00:19 AM]

Several geometry nodes contain geometric property nodes such as Coordinate, Color,
ColorRGBA, and/or Normal. These nodes are specified in 11 Rendering component. The
X3DTextureCoordinate nodes specified in 18 Texturing component are also geometry
property nodes.

 13.2.4 Appearance nodes

Shape nodes may specify an Appearance node that describes the appearance properties
(material and texture) to be applied to the Shape's geometry. Appearance is described
in 12 Shape component.

13.2.5 Common geometry fields

Several 3D geometry nodes share common fields to describe attributes. These fields
specify the vertex ordering, if the shape is solid, if the shape contains convex faces, and
at what angle a crease appears between faces, and are named ccw, solid, convex and
creaseAngle, respectively. Common 3D geometry fields are described in 11 Rendering
component.

 13.3 Node reference

 13.3.1 Box
Box : X3DGeometryNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFVec3f [] size 2 2 2 (0,∞)
 SFBool [] solid TRUE
}

The Box node specifies a rectangular parallelepiped box centred at (0, 0, 0) in the local
coordinate system and aligned with the local coordinate axes. By default, the box
measures 2 units in each dimension, from -1 to +1. The size field specifies the extents
of the box along the X-, Y-, and Z-axes respectively and each component value shall be
greater than zero. Figure 13.1 illustrates the Box node.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 13 Geometry3D component

geometry3D.html[8/1/2020 10:00:19 AM]

Figure 13.1 — Box node

Textures are applied individually to each face of the box. On the front (+Z), back (-Z),
right (+X), and left (-X) faces of the box, when viewed from the outside with the +Y-
axis up, the texture is mapped onto each face with the same orientation as if the image
were displayed normally in 2D. On the top face of the box (+Y), when viewed from
above and looking down the Y-axis toward the origin with the -Z-axis as the view up
direction, the texture is mapped onto the face with the same orientation as if the image
were displayed normally in 2D. On the bottom face of the box (-Y), when viewed from
below looking up the Y-axis toward the origin with the +Z-axis as the view up direction,
the texture is mapped onto the face with the same orientation as if the image were
displayed normally in 2D. TextureTransform affects the texture coordinates of the Box
(see 18.4.8 TextureTransform).

The solid field determines whether the box is visible when viewed from the inside.
11.2.3 Common geometry fields provides a complete description of the solid field.

 13.3.2 Cone
Cone : X3DGeometryNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [in out] bottom TRUE
 SFFloat [] bottomRadius 1 (0,∞)
 SFFloat [] height 2 (0,∞)
 SFBool [in out] side TRUE
 SFBool [] solid TRUE
}

The Cone node specifies a cone which is centred in the local coordinate system and
whose central axis is aligned with the local Y-axis. The bottomRadius field specifies the
radius of the cone's base, and the height field specifies the height of the cone from the
centre of the base to the apex. By default, the cone has a radius of 1.0 at the bottom
and a height of 2.0, with its apex at y = height/2 and its bottom at y = -height/2. Both
bottomRadius and height shall be greater than zero. Figure 13.2 illustrates the Cone
node.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 13 Geometry3D component

geometry3D.html[8/1/2020 10:00:19 AM]

Figure 13.2 — Cone node

The side field specifies whether sides of the cone are created and the bottom field
specifies whether the bottom cap of the cone is created. A value of TRUE specifies that
this part of the cone exists, while a value of FALSE specifies that this part does not exist
(not rendered or eligible for collision or sensor intersection tests).

When a texture is applied to the sides of the cone, the texture wraps counterclockwise
(from above) starting at the back of the cone. The texture has a vertical seam at the
back in the X=0 plane, from the apex (0, height/2, 0) to the point
(0, -height/2, -bottomRadius). For the bottom cap, a circle is cut out of the texture
square centred at (0, -height/2, 0) with dimensions (2 × bottomRadius) by
(2 × bottomRadius). The bottom cap texture appears right side up when the top of the
cone is rotated towards the -Z-axis. TextureTransform affects the texture coordinates of
the Cone (see 18.4.8 TextureTransform).

The solid field determines whether the cone is visible when viewed from the inside.
11.2.3 Common geometry fields provides a complete description of the solid field.

This geometry node is fundamentally a mathematical representation. Displayed
geometry shall have sufficient rendering quality that surface and silhouette edges
appear smooth, including when textures are applied.

 13.3.3 Cylinder
Cylinder : X3DGeometryNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [in out] bottom TRUE
 SFFloat [] height 2 (0,∞)
 SFFloat [] radius 1 (0,∞)
 SFBool [in out] side TRUE
 SFBool [] solid TRUE
 SFBool [in out] top TRUE
}

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 13 Geometry3D component

geometry3D.html[8/1/2020 10:00:19 AM]

The Cylinder node specifies a capped cylinder centred at (0,0,0) in the local coordinate
system and with a central axis oriented along the local Y-axis. By default, the cylinder is
sized at "-1" to "+1" in all three dimensions. The radius field specifies the radius of the
cylinder and the height field specifies the height of the cylinder along the central axis.
Both radius and height shall be greater than zero. Figure 13.3 illustrates the Cylinder
node.

The cylinder has three parts: the side, the top (Y = +height/2) and the bottom
(Y = −height/2). Each part has an associated SFBool field that indicates whether the
part exists (TRUE) or does not exist (FALSE). Parts which do not exist are not rendered
and not eligible for intersection tests (EXAMPLE collision detection or sensor activation).

Figure 13.3 — Cylinder node

When a texture is applied to a cylinder, it is applied differently to the sides, top, and
bottom. On the sides, the texture wraps counterclockwise (from above) starting at the
back of the cylinder. The texture has a vertical seam at the back, intersecting the X=0
plane. For the top and bottom caps, a circle is cut out of the unit texture squares
centred at (0, ±height/2, 0) with dimensions 2 × radius by 2 × radius. The top texture
appears right side up when the top of the cylinder is tilted toward the +Z-axis, and the
bottom texture appears right side up when the top of the cylinder is tilted toward the
−Z-axis. TextureTransform affects the texture coordinates of the Cylinder node (see
18.4.8 TextureTransform).

The solid field determines whether the cylinder is visible when viewed from the inside.
11.2.3 Common geometry fields provides a complete description of the solid field.

This geometry node is fundamentally a mathematical representation. Displayed
geometry shall have sufficient rendering quality that surface and silhouette edges

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 13 Geometry3D component

geometry3D.html[8/1/2020 10:00:19 AM]

appear smooth, including when textures are applied.

 13.3.4 ElevationGrid
ElevationGrid : X3DGeometryNode {
 MFFloat [in] set_height
 MFNode [in,out] attrib [] [X3DVertexAttributeNode]
 SFNode [in,out] color NULL [X3DColorNode]
 SFNode [in,out] fogCoord NULL [FogCoordinate]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFNode [in,out] normal NULL [X3DNormalNode]
 SFNode [in,out] texCoord NULL [X3DTextureCoordinateNode]
 SFBool [] ccw TRUE
 SFBool [] colorPerVertex TRUE
 SFFloat [] creaseAngle 0 [0,∞)
 MFFloat [] height [] (-∞,∞)
 SFBool [] normalPerVertex TRUE
 SFBool [] solid TRUE
 SFInt32 [] xDimension 0 [0,∞)
 SFFloat [] xSpacing 1.0 (0,∞)
 SFInt32 [] zDimension 0 [0,∞)
 SFFloat [] zSpacing 1.0 (0,∞)
}

The ElevationGrid node specifies a uniform rectangular grid of varying height in the Y=0
plane of the local coordinate system. The geometry is described by a scalar array of
height values that specify the height of a surface above each point of the grid.

The xDimension and zDimension fields indicate the number of elements of the grid
height array in the X and Z directions. Both xDimension and zDimension shall be
greater than or equal to zero. If either the xDimension or the zDimension is less than
two, the ElevationGrid contains no quadrilaterals. The vertex locations for the
rectangles are defined by the height field and the xSpacing and zSpacing fields:

The height field is an xDimension by zDimension array of scalar values
representing the height above the grid for each vertex.
The xSpacing and zSpacing fields indicate the distance between vertices in the X
and Z directions respectively, and shall be greater than zero.

Thus, the vertex corresponding to the point P[i, j] on the grid is placed at:

 P[i,j].x = xSpacing × i

 P[i,j].y = height[i + j × xDimension]

 P[i,j].z = zSpacing × j

 where 0 ≤ i < xDimension and 0 ≤ j < zDimension,
 and P[0,0] is height[0] units above/below the origin of the local
 coordinate system

If the rendering algorithm being used requires tessellation, the quadrilaterals are split
into triangles along the seam starting at the initial vertex of the quadrilateral and
proceeding to the opposite vertex. The positive direction for the normal of each triangle
shall be on the same side of the quadrilateral. The triangles are defined either
counterclockwise or clockwise depending on the value of the ccw field.

EXAMPLE In Figure 13.4 with the ccw field set to TRUE, the first polygon is split into triangles with vertices [0, 5, 6]
and vertices [0, 6, 1].

The set_height inputOnly field allows the height MFFloat field to be changed to support
animated ElevationGrid nodes.

The color field specifies per-vertex or per-quadrilateral colours for the ElevationGrid
node depending on the value of colorPerVertex. If the color field is NULL, the

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 13 Geometry3D component

geometry3D.html[8/1/2020 10:00:19 AM]

ElevationGrid node is rendered with the overall attributes of the Shape node enclosing
the ElevationGrid node (see 12 Shape component).

The colorPerVertex field determines whether colours specified in the color field are
applied to each vertex or each quadrilateral of the ElevationGrid node. If colorPerVertex
is FALSE and the color field is not NULL, the color field shall specify a node derived from
X3DColorNode containing at least (xDimension-1)×(zDimension-1) colours; one for
each quadrilateral, ordered as follows:

 QuadColor[i,j] = Color[i + j × (xDimension-1)]

 where 0 ≤ i < xDimension-1 and 0 ≤ j < zDimension-1,
 and QuadColor[i,j] is the colour for the quadrilateral defined
 by height[i+j × xDimension], height[(i+1)+j × xDimension],
 height[(i+1)+(j+1) × xDimension] and height[i+(j+1) × xDimension]

If colorPerVertex is TRUE and the color field is not NULL, the color field shall specify a
node derived from X3DColorNode containing at least xDimension × zDimension colours,
one for each vertex, ordered as follows:

 VertexColor[i,j] = Color[i + j × xDimension]

 where 0 ≤ i < xDimension and 0 ≤ j < zDimension,
 and VertexColor[i,j] is the colour for the vertex defined by
 height[i+j × xDimension]

The normal field specifies per-vertex or per-quadrilateral normals for the ElevationGrid
node. If the normal field is NULL, the browser shall automatically generate normals,
using the creaseAngle field to determine if and how normals are smoothed across the
surface (see 11.2.3 Common geometry fields).

The normalPerVertex field determines whether normals are applied to each vertex or
each quadrilateral of the ElevationGrid node depending on the value of
normalPerVertex. If normalPerVertex is FALSE and the normal node is not NULL, the
normal field shall specify a node derived from X3DNormalNode containing at least
(xDimension−1)×(zDimension−1) normals; one for each quadrilateral, ordered as
follows:

 QuadNormal[i,j] = Normal[i + j × (xDimension-1)]

 where 0 ≤ i < xDimension-1 and 0 ≤ j < zDimension-1,
 and QuadNormal[i,j] is the normal for the quadrilateral defined
 by height[i+j × xDimension], height[(i+1)+j × xDimension],
 height[(i+1)+(j+1) × xDimension] and height[i+(j+1) × xDimension]

If normalPerVertex is TRUE and the normal field is not NULL, the normal field shall specify
a node derived from X3DNormalNode containing at least xDimension × zDimension
normals; one for each vertex, ordered as follows:

 VertexNormal[i,j] = Normal[i + j × xDimension]

 where 0 ≤ i < xDimension and 0 ≤ j < zDimension,
 and VertexNormal[i,j] is the normal for the vertex defined
 by height[i+j × xDimension]

The texCoord field specifies per-vertex texture coordinates for the ElevationGrid node.
If texCoord is NULL, default texture coordinates are applied to the geometry. The default
texture coordinates range from (0,0) at the first vertex to (1,1) at the last vertex. The
S texture coordinate is aligned with the positive X-axis, and the T texture coordinate
with positive Z-axis. If texCoord is not NULL, it shall specify a node derived from
X3DTextureCoordinateNode containing at least (xDimension)×(zDimension) texture
coordinates; one for each vertex, ordered as follows:

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 13 Geometry3D component

geometry3D.html[8/1/2020 10:00:19 AM]

 VertexTexCoord[i,j] = TextureCoordinate[i + j × xDimension]

 where 0 ≤ i < xDimension and 0 ≤ j < zDimension,
 and VertexTexCoord[i,j] is the texture coordinate for the vertex
 defined by height[i+j × xDimension]

The ccw, solid, and creaseAngle fields are described in 11.2.3 Common geometry fields.

By default, the quadrilaterals are defined with a counterclockwise ordering. Hence, the
Y-component of the normal is positive. Setting the ccw field to FALSE reverses the
normal direction. Backface culling is enabled when the solid field is TRUE.

See Figure 13.4 for a depiction of the ElevationGrid node.

Figure 13.4 — ElevationGrid node

 13.3.5 Extrusion

 13.3.5.1 Syntax

Extrusion : X3DGeometryNode {
 MFVec2f [in] set_crossSection
 MFRotation [in] set_orientation
 MFVec2f [in] set_scale
 MFVec3f [in] set_spine
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [] beginCap TRUE
 SFBool [] ccw TRUE
 SFBool [] convex TRUE
 SFFloat [] creaseAngle 0 [0,∞)
 MFVec2f [] crossSection [1 1 1 -1 -1 -1 -1 1 1 1] (-∞,∞)
 SFBool [] endCap TRUE
 MFRotation [] orientation 0 0 1 0 [-1,1] or (-∞,∞)
 MFVec2f [] scale 1 1 (0,∞)
 SFBool [] solid TRUE
 MFVec3f [] spine [0 0 0 0 1 0] (-∞,∞)
}

13.3.5.2 Overview

The Extrusion node specifies geometric shapes based on a two dimensional cross-
section extruded along a three dimensional spine in the local coordinate system. The
cross-section can be scaled and rotated at each spine point to produce a wide variety of

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 13 Geometry3D component

geometry3D.html[8/1/2020 10:00:19 AM]

shapes.

An Extrusion node is defined by:

a. a 2D crossSection piecewise linear curve (described as a series of connected
vertices);

b. a 3D spine piecewise linear curve (also described as a series of connected
vertices);

c. a list of 2D scale parameters;
d. a list of 3D orientation parameters.

The scale values shall be positive.

 13.3.5.3 Algorithmic description

Shapes are constructed as follows. The cross-section curve, which starts as a curve in
the Y=0 plane, is first scaled about the origin by the first scale parameter (first value
scales in X, second value scales in Z). It is then translated by the first spine point and
oriented using the first orientation parameter (as explained later). The same procedure
is followed to place a cross-section at the second spine point, using the second scale
and orientation values. Corresponding vertices of the first and second cross-sections are
then connected, forming a quadrilateral polygon between each pair of vertices. This
same procedure is then repeated for the rest of the spine points, resulting in a surface
extrusion along the spine.

The final orientation of each cross-section is computed by first orienting it relative to
the spine segments on either side of point at which the cross-section is placed. This is
known as the spine-aligned cross-section plane (SCP), and is designed to provide a
smooth transition from one spine segment to the next (see Figure 13.5).

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 13 Geometry3D component

geometry3D.html[8/1/2020 10:00:19 AM]

Figure 13.5 — Spine-aligned cross-section plane (SCP) at a spine point.

The SCP for each point is determined by first computing its Y-axis and Z-axis, then
taking the cross product of these to determine the X-axis. These three axes are then
used to determine the rotation value needed to rotate the Y=0 plane to the SCP. This
results in a normal to the plane that is the approximate tangent of the spine at the
point, as shown in Figure 13.5. First the Y-axis is determined, as follows:

Let n be the number of spines and let i be the index variable satisfying
0 ≤ i < n:

a. For all points other than the first or last: The Y-axis for spine[i] is found by
normalizing the vector defined by
(spine[i+1] − spine[i−1]).

b. If the spine curve is closed: The SCP for the first and last points is the same and is
found using (spine[1] − spine[n−2]) to compute the Y-axis.

c. If the spine curve is not closed: The Y-axis used for the first point is the vector
from spine[0] to spine[1], and for the last it is the vector from spine[n−2] to
spine[n−1].

The Z-axis is determined as follows:

d. For all points other than the first or last: Take the following cross-product:
 Z = (spine[i+1] − spine[i]) × (spine[i-1] − spine[i])

e. If the spine curve is closed: The SCP for the first and last points is the same and is

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 13 Geometry3D component

geometry3D.html[8/1/2020 10:00:19 AM]

found by taking the following cross-product:
 Z = (spine[1] − spine[0]) × (spine[n-2] − spine[0])

f. If the spine curve is not closed: The Z-axis used for the first spine point is the
same as the Z-axis for spine[1]. The Z-axis used for the last spine point is the
same as the Z-axis for spine[n−2].

g. After determining the Z-axis, its dot product with the Z-axis of the previous spine
point is computed. If this value is negative, the Z-axis is flipped (multiplied by
−1). In most cases, this prevents small changes in the spine segment angles from
flipping the cross-section 180 degrees.

Once the Y- and Z-axes have been computed, the X-axis can be calculated as their
cross-product.

Each SCP is then rotated by the corresponding orientation value. This rotation is
performed relative to the SCP itself. For example, to impart twist in the cross-section, a
rotation about the local Y-axis (0 1 0) would be used. Other orientation values are valid
and may rotate the cross-section out of the plane of the original SCP.

 13.3.5.4 Special cases

 13.3.5.4.1 Overview

There are a number of special cases require specific handling. These concern the
numbers of values or points, and collinear or coincident spine points.

 13.3.5.4.2 Number of scale or orientation values

If the number of scale or orientation values is greater than the number of spine points,
the excess values are ignored. If they contain one value, it is applied at all spine points.
The results are undefined if the number of scale or orientation values is greater than
one but less than the number of spine points.

 13.3.5.4.3 Collinear spine points

If the three points used in computing the Z-axis are collinear, the cross-product is zero
so the value from the previous point is used instead.

If the Z-axis of the first point is undefined (because the spine is not closed and the first
two spine segments are collinear) then the Z-axis for the first spine point with a defined
Z-axis is used.

If the entire spine is collinear, the SCP for all the spine points is computed by finding
the rotation of a vector along the positive Y-axis (v1) to the vector (v2) defined by
(spine[n] - spine [0]), where spine[n] is the first spine point not coincident with spine
[0]. If v2 is parallel to and in the direction of the negative-Y axis, the rotation will be a
180 degree rotation about the Z-axis. The Y=0 plane is then rotated by this value.

 13.3.5.4.4 Coincident spine points

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 13 Geometry3D component

geometry3D.html[8/1/2020 10:00:19 AM]

If two or more sequential points in a spine array are coincident, they are each treated
as a single point when computing the corresponding SCP, and each will have an
identical SCP.

Note: This case is useful when animating the spine array without needing to simultaneously modify
the corresponding orientation and scale arrays.

If each coincident point has a different orientation value, the surface is constructed by
connecting edges of the cross-sections as normal. This is useful in creating revolved
surfaces.

Note: Combining coincident and non-coincident spine segments, as well as other combinations, can
lead to interpenetrating surfaces which the extrusion algorithm makes no attempt to avoid.

 13.3.5.4.5 Number of distinct spine points

If only 2 distinct, non-coincident, spine points are provided, the corresponding SCP
planes for each are perpendicularto the vector defined by these two points.

If fewer than 2 non-coincident spine points are provided, the extrusion is not well
defined and no results are rendered.

 13.3.5.5 Common cases

The following common cases are among the effects which are supported by the
Extrusion node:

Surfaces of revolution:
If the cross-section is an approximation of a circle and the spine is straight, the
Extrusion is equivalent to a surface of revolution, where the scale parameters
define the size of the cross-section along the spine.

Uniform extrusions:
If the scale is (1, 1) and the spine is straight, the cross-section is extruded
uniformly without twisting or scaling along the spine. The result forms a
parallelepiped with a uniform cross section.

Bend/twist/taper objects:
These shapes are the result of using all fields. The spine curve bends the extruded
shape defined by the cross-section, the orientation parameters (given as rotations
about the Y-axis) twist it around the spine, and the scale parameters taper it (by
scaling about the spine).

 13.3.5.6 Other fields

Extrusion has three parts: the sides, the beginCap (the surface at the initial end of the
spine) and the endCap (the surface at the final end of the spine). The caps have an
associated SFBool field that indicates whether each exists (TRUE) or doesn't exist (FALSE).

When the beginCap or endCap fields are specified as TRUE, planar cap surfaces will be
generated regardless of whether the crossSection is a closed curve. If crossSection is
not a closed curve, the caps are generated by adding a final point to crossSection that
is equal to the initial point. An open surface can still have a cap, resulting (for a simple

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 13 Geometry3D component

geometry3D.html[8/1/2020 10:00:19 AM]

case) in a shape analogous to a soda can sliced in half vertically. These surfaces are
generated even if spine is also a closed curve. If a field value is FALSE, the corresponding
cap is not generated.

Texture coordinates are automatically generated by Extrusion nodes. Textures are
mapped so that the coordinates range in the U direction from 0 to 1 along the
crossSection curve (with 0 corresponding to the first point in crossSection and 1 to the
last) and in the V direction from 0 to 1 along the spine curve (with 0 corresponding to
the first listed spine point and 1 to the last). If either the endCap or beginCap exists,
the crossSection curve is uniformly scaled and translated so that the larger dimension
of the cross-section (X or Z) produces texture coordinates that range from 0.0 to 1.0.
The beginCap and endCap textures' S and T directions correspond to the X and Z
directions in which the crossSection coordinates are defined.

The browser shall automatically generate normals for the Extrusion node, using the
creaseAngle field to determine if and how normals are smoothed across the surface.
Normals for the caps are generated along the Y-axis of the SCP, with the ordering
determined by viewing the cross-section from above (looking along the negative Y-axis
of the SCP). By default, a beginCap with a counterclockwise ordering shall have a
normal along the negative Y-axis. An endCap with a counterclockwise ordering shall
have a normal along the positive Y-axis.

Each quadrilateral making up the sides of the extrusion are ordered from the bottom
cross-section (the one at the earlier spine point) to the top. So, one quadrilateral has
the points:

 spine[0](crossSection[0], crossSection[1])
 spine[1](crossSection[1], crossSection[0])

in that order. By default, normals for the sides are generated as described in 13.2.2
Shape and geometry nodes.

For instance, a circular crossSection with counter-clockwise ordering and the default
spine form a cylinder. With solid TRUE and ccw TRUE, the cylinder is visible from the
outside. Changing ccw to FALSE makes it visible from the inside.

The ccw, solid, convex, and creaseAngle fields are described in 11.2.3 Common
geometry fields.

 13.3.6 IndexedFaceSet
IndexedFaceSet : X3DComposedGeometryNode {
 MFInt32 [in] set_colorIndex
 MFInt32 [in] set_coordIndex
 MFInt32 [in] set_normalIndex
 MFInt32 [in] set_texCoordIndex
 MFNode [in,out] attrib [] [X3DVertexAttributeNode]
 SFNode [in,out] color NULL [X3DColorNode]
 SFNode [in,out] coord NULL [X3DCoordinateNode]
 SFNode [in,out] fogCoord NULL [FogCoordinate]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFNode [in,out] normal NULL [X3DNormalNode]
 SFNode [in,out] texCoord NULL [X3DTextureCoordinateNode]
 SFBool [] ccw TRUE
 MFInt32 [] colorIndex [] [0,∞) or -1
 SFBool [] colorPerVertex TRUE
 SFBool [] convex TRUE
 MFInt32 [] coordIndex [] [0,∞) or -1
 SFFloat [] creaseAngle 0 [0,∞)
 MFInt32 [] normalIndex [] [0,∞) or -1
 SFBool [] normalPerVertex TRUE
 SFBool [] solid TRUE
 MFInt32 [] texCoordIndex [] [-1,∞)
}

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 13 Geometry3D component

geometry3D.html[8/1/2020 10:00:19 AM]

The IndexedFaceSet node represents a 3D shape formed by constructing faces
(polygons) from vertices listed in the coord field. The coord field contains a Coordinate
node that defines the 3D vertices referenced by the coordIndex field. IndexedFaceSet
uses the indices in its coordIndex field to specify the polygonal faces by indexing into
the coordinates in the Coordinate node. An index of "−1" indicates that the current face
has ended and the next one begins. The last face may be (but does not have to be)
followed by a "−1" index. If the greatest index in the coordIndex field is N, the
Coordinate node shall contain N+1 coordinates (indexed as 0 to N). Each face of the
IndexedFaceSet shall have:

a. at least three non-coincident vertices;
b. vertices that define a planar polygon;
c. vertices that define a non-self-intersecting polygon.

Otherwise, The results are undefined.

The IndexedFaceSet node is specified in the local coordinate system and is affected by
the transformations of its ancestors.

Descriptions of the coord, normal, and texCoord fields are provided in Coordinate,
X3DNormalNode, and X3DTextureCoordinateNode, respectively.

Details on lighting equations and the interaction between color field, normal field,
textures, materials, and geometries are provided in 11 Rendering component and 12
Shape component.

If the color field is not NULL, it shall contain a node derived from X3DColorNode whose
colours are applied to the vertices or faces of the IndexedFaceSet as follows:

d. If colorPerVertex is FALSE, colours are applied to each face, as follows:
1. If the colorIndex field is not empty, one colour is used for each face of the

IndexedFaceSet. There shall be at least as many indices in the colorIndex
field as there are faces in the IndexedFaceSet. If the greatest index in the
colorIndex field is N, there shall be N+1 colours in the X3DColorNode. The
colorIndex field shall not contain any negative entries.

2. If the colorIndex field is empty, the colours in the X3DColorNode node are
applied to each face of the IndexedFaceSet in order. There shall be at least as
many colours in the X3DColorNode node as there are faces.

e. If colorPerVertex is TRUE, colours are applied to each vertex, as follows:
1. If the colorIndex field is not empty, colours are applied to each vertex of the

IndexedFaceSet in exactly the same manner that the coordIndex field is used
to choose coordinates for each vertex from the Coordinate node. The
colorIndex field shall contain at least as many indices as the coordIndex field,
and shall contain end-of-face markers (−1) in exactly the same places as the
coordIndex field. If the greatest index in the colorIndex field is N, then there
shall be N+1 colours in the X3DColorNode node.

2. If the colorIndex field is empty, the coordIndex field is used to choose colours
from the X3DColorNode node. If the greatest index in the coordIndex field is
N, then there shall be N+1 colours in the X3DColorNode node.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 13 Geometry3D component

geometry3D.html[8/1/2020 10:00:19 AM]

If the color field is NULL, the geometry shall be rendered normally using the Material and
texture defined in the Appearance node (see 12 Shape component for details).

If the normal field is not NULL, it shall contain a node derived from X3DNormalNode
whose normals are applied to the vertices or faces of the IndexedFaceSet in a manner
exactly equivalent to that described above for applying colours to vertices/faces (where
normalPerVertex corresponds to colorPerVertex and normalIndex corresponds to
colorIndex). If the normal field is NULL, the browser shall automatically generate
normals, using creaseAngle to determine if and how normals are smoothed across
shared vertices (see 11.2.3 Common geometry fields).

If the texCoord field is not NULL, it shall contain a node derived from
X3DTextureCoordinateNode. The texture coordinates in that node are applied to the
vertices of the IndexedFaceSet as follows:

f. If the texCoordIndex field is not empty, then it is used to choose texture
coordinates for each vertex of the IndexedFaceSet in exactly the same manner
that the coordIndex field is used to choose coordinates for each vertex from the
Coordinate node. The texCoordIndex field shall contain at least as many indices as
the coordIndex field, and shall contain end-of-face markers (−1) in exactly the
same places as the coordIndex field. If the greatest index in the texCoordIndex
field is N, then there shall be N+1 texture coordinates in the
X3DTextureCoordinateNode.

g. If the texCoordIndex field is empty, then the coordIndex array is used to choose
texture coordinates from the X3DTextureCoordinateNode node. If the greatest
index in the coordIndex field is N, then there shall be N+1 texture coordinates in
the X3DTextureCoordinateNode node.

If the texCoord field is NULL, a default texture coordinate mapping is calculated using the
local coordinate system bounding box of the shape. The longest dimension of the
bounding box defines the S coordinates, and the next longest defines the T coordinates.
If two or all three dimensions of the bounding box are equal, ties shall be broken by
choosing the X, Y, or Z dimension in that order of preference. The value of the S
coordinate ranges from 0 to 1, from one end of the bounding box to the other. The T
coordinate ranges between 0 and the ratio of the second greatest dimension of the
bounding box to the greatest dimension. Figure 13.6 illustrates the default texture
coordinates for a simple box shaped IndexedFaceSet with an X dimension twice as large
as the Z dimension and four times as large as the Y dimension. Figure 13.7 illustrates
the original texture image used on the IndexedFaceSet used in Figure 13.6.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 13 Geometry3D component

geometry3D.html[8/1/2020 10:00:19 AM]

Figure 13.6 — IndexedFaceSet texture default mapping

Figure 13.7 — ImageTexture for IndexedFaceSet in Figure 13.6

11.2.3 Common geometry fields, provides a description of the ccw, solid, convex, and
creaseAngle fields.

 13.3.7 Sphere
Sphere : X3DGeometryNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFFloat [] radius 1 (0,∞)
 SFBool [] solid TRUE
}

The Sphere node specifies a sphere centred at (0, 0, 0) in the local coordinate system.
The radius field specifies the radius of the sphere and shall be greater than zero. Figure
13.8 depicts the fields of the Sphere node.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 13 Geometry3D component

geometry3D.html[8/1/2020 10:00:19 AM]

Figure 13.8 — Sphere node

When a texture is applied to a sphere, the texture covers the entire surface, wrapping
counterclockwise from the back of the sphere (i.e., longitudinal arc intersecting the -Z-
axis) when viewed from the top of the sphere. The texture has a seam at the back
where the X=0 plane intersects the sphere and Z values are negative.
TextureTransform affects the texture coordinates of the Sphere (see 18.4.8
TextureTransform).

The solid field determines whether the sphere is visible when viewed from the inside.
11.2.3 Common geometry fields provides a complete description of the solid field.

This geometry node is fundamentally a mathematical representation. Displayed
geometry shall have sufficient rendering quality that surface and silhouette edges
appear smooth, including when textures are applied.

 13.4 Geometry3D component support levels.
The Geometry3D component provides three levels of support as specified in Table 13.2.
Level 1 provides the basic indexed geometry types with limited support for some fields,
as well as the geometric primitives and the Shape node. Level 2 adds support for the
IndexedFaceSet node. Level 3 adds support for the ElevationGrid node to enable
lightweight terrain and data visualization and supports all fields in all nodes supported
at Level 3. Level 4 adds support for the Extrusion node.

 Table 13.2 — Geometry3D component support levels

Level Prerequisites Nodes/Features Support

1

Core 1
Grouping 1
Rendering 1

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 13 Geometry3D component

geometry3D.html[8/1/2020 10:00:19 AM]

Shape 1

Box All fields fully supported.

Cone All fields fully supported.

Cylinder All fields fully supported.

Sphere All fields fully supported.

2

Core 1
Grouping 1
Rendering 1
Shape 1

All Level 1 geometry
nodes

All fields as supported in
Level 1.

IndexedFaceSet

ccw optionally supported.
set_colorIndex optionally
supported. set_normalIndex
optionally supported. normal
optionally supported. Only
convex indexed face sets
supported. Hence, convex
optionally supported. For
creaseAngle, only 0 and π
radians supported (or the
equivalent if a different angle
base unit has been specified).
normalIndex optionally
supported.

Face list shall be well-defined
as follows:

1. Each face is terminated
with -1, including the
last face in the array.

2. Each face contains at
least three non-
coincident vertices.

3. A given coordIndex is
not repeated in a face.

4. The vertices of a face
shall define a planar
polygon.

5. The vertices of a face
shall not define a self-
intersecting polygon.

3

Core 1
Grouping 1
Rendering 1
Shape 1

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 13 Geometry3D component

geometry3D.html[8/1/2020 10:00:19 AM]

 All Level 2 geometry
nodes

All fields as supported in
Level 2.

ElevationGrid ccw optionally supported.

4

Core 1
Grouping 1
Rendering 1
Shape 1

 All Level 3 geometry
nodes All fields fully supported.

Extrusion All fields fully supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 34 Cube map environmetal texturing component

environmentalTexturing.html[8/1/2020 10:00:22 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

34 Cube map environmental texturing component

 34.1. Introduction

34.1.1 Name

The name of this component is "CubeMapTexturing". This name shall be used when
referring to this component in the COMPONENT statement (see 7.2.5.4 COMPONENT
statement).

34.1.2 Overview

This clause describes the cube map environmental texturing component of this part of
ISO/IEC 19775. This includes how additional texturing effects are defined to produce
environmental effects such as reflections from objects. Table 34.1 provides lists the
major topics in this clause.

 Table 34.1 — Topics

34.1 Introduction
34.1.1 Name
34.1.2 Overview

34.2 Concepts
34.2.1 Overview
34.2.2 Texture map formats
34.2.3 Texture map image formats
34.2.4 Texture coordinates
34.2.5 Texture orientation

34.3 Abstract types
34.3.1 X3DEnvironmentTextureNode

34.4. Node reference
34.4.1 ComposedCubeMapTexture
34.4.2 GeneratedCubeMapTexture
34.4.3 ImageCubeMapTexture

34.5 Support levels

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 34 Cube map environmetal texturing component

environmentalTexturing.html[8/1/2020 10:00:22 AM]

Figure 34.1 — Mapping texture sides to the texture coordinate axes

Table 34.1 — Topics
Table 34.2 — Environment Texturing component support levels

 34.2 Concepts

34.2.1 Overview

Cube map environmental texturing provides cubic environmental texture mapping
capabilities within X3D. Cubic environment maps support reflection and specular
highlighting in a simple way, often in combination with automatic texture coordinate
generation (see 18.2.3 Texture coordinates). This component may be combined with
the multitexture abilities of the Texturing component (see 18.2.4 Multitexturing) to
provide advanced visual effects.

Cubic environment maps ignore most of the normal texture settings (e.g., there are no
repeat fields) but they can be mipmapped. The sources can be drawn from any 2D
texture source whether dynamically generated or provided from somewhere else as
images or pixel arrays.

34.2.2 Texture Map Formats

Cubic environment mapping nodes defined as part of this component use a collection of
2D texture maps to define each side of the cube. These may contain from one to four
component colour values. The interpretation of the image shall follow the description in
18.2.1 Texture map formats.

All source images shall be square and provide source data in powers of two numbers of
pixels. Source images in a cubic environment map shall have identical sizes. Providing
differently sized images or rectangular images shall be an error.

EXAMPLE It is not valid to define the front image as a 64×64 image and the left side image as 128×128 pixels.

34.2.3 Texture Map Image Formats

Texture nodes that require support for 2D images file formats shall follow the
description defined in 18.2.2 Texture map image formats.

34.2.4 Texture Coordinates

For each texture, the three-dimensional texture coordinates (s,t,r) are treated as a
direction vector from the local origin. Each texel drawn onto the geometry is treated as
the texel in the environment map that is "seen" from this direction vector.

Texture coordinates for using cubic environment mapped textures are usually
dynamically generated as this is far easier to handle for the content developer than
providing explicit texture coordinates. It is recommended that an implementation shall
also support a minimum of Level 2 Texturing component capabilities (see 18.5 Support

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 34 Cube map environmetal texturing component

environmentalTexturing.html[8/1/2020 10:00:22 AM]

levels) in addition to this component. Typically, the CAMERASPACENORMAL or
CAMERASPACEREFLECTIONVECTOR modes are used.

To specify explicit texture coordinates, the TextureCoordinate3D node (see 33
Texture3D component) shall be used.

34.2.5 Texture Orientation

Cubic environment maps define a single texture as consisting of six separate images,
one for each side of a cube. This component defines the six sides as front, back, left,
right, top and bottom. These sides shall be oriented as shown in Figure 34.1.

Figure 34.1 — Mapping texture sides to the texture coordinate axes

 34.3 Abstract Types

34.3.1 X3DEnvironmentTextureNode
X3DEnvironmentTextureNode : X3DSingleTextureNode {
X3DEnvironmentTextureNode : X3DTextureNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

This abstract node type is the base type for all node types that specify cubic
environment map sources for texture images.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 34 Cube map environmetal texturing component

environmentalTexturing.html[8/1/2020 10:00:22 AM]

 34.4 Node reference

34.4.1 ComposedCubeMapTexture
ComposedCubeMapTexture : X3DEnvironmentTextureNode {
 SFNode [in,out] back NULL [X3DTexture2DNode]
 SFNode [in,out] bottom NULL [X3DTexture2DNode]
 SFNode [in,out] front NULL [X3DTexture2DNode]
 SFNode [in,out] left NULL [X3DTexture2DNode]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFNode [in,out] right NULL [X3DTexture2DNode]
 SFNode [in,out] top NULL [X3DTexture2DNode]
}

The ComposedCubeMapTexture node defines a cubic environment map source as an
explicit set of images drawn from individual 2D texture nodes.

See 34.2 Concepts for a general description of cube map environmental texture maps.

See 18 Texturing component for a general description of the X3DTexture2DNode
abstract type and interpretation of rendering for 2D images. When used as a source for
cubic environment maps, the fields repeatS and repeatT fields shall be ignored.

34.4.2 GeneratedCubeMapTexture
GeneratedCubeMapTexture : X3DEnvironmentTextureNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFString [in,out] update "NONE" ["NONE"|"NEXT_FRAME_ONLY"|"ALWAYS"]
 SFInt32 [] size 128 (0,∞)
 SFNode [] textureProperties NULL [TextureProperties]
}

The ComposedCubeMapTexture node defines a cubic environment map that sources its
data from internally generated images, rendered from a virtual situated perspective in
the scene.

The viewpoint of the generated texture is based on the location and orientation of the
associated geometry in world space.

NOTE An object trying to render itself in the scene graph can cause infinite loops in the renderer implementation
and is thus not permitted.

The field of view shall be π/2 radians (or the equivalent angle base units) with an aspect
ratio of 1:1.

The size field indicates the resolution of the generated images in number of pixels per
side.

The update field can be used to request a regeneration of the texture. Setting this field
to "ALWAYS" will cause the texture to be rendered every frame. A value of "NONE" will stop
rendering so that no further updates are performed even if the contained scene graph
changes. When the value is set to "NEXT_FRAME_ONLY", it is an instruction to render the
texture at the end of this frame, and then not render it again. In this case, the update
frame indicator is set to this frame; at the start of the next frame, the update value
shall be automatically set back to "NONE" to indicate that the rendering has already taken
place. Since this is a change of value for the update field, an output event is
automatically generated.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 34 Cube map environmetal texturing component

environmentalTexturing.html[8/1/2020 10:00:22 AM]

34.4.3 ImageCubeMapTexture
ImageCubeMapTexture : X3DEnvironmentTextureNode, X3DUrlObject {
 SFString [in,out] description ""
 SFBool [in,out] load TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFTime [in,out] refresh 0.0 [0,∞)
 MFString [in,out] url [] [URI]
 SFNode [] textureProperties NULL [TextureProperties]
}

The ImageCubeMapTexture node defines a cubic environment map source as a single
file format that contains multiple images, one for each side.

The texture is read from the URL specified by the url field. When the url field contains
no values, texturing is disabled. The url field is defined in 9.2.1 URLs. Browsers are not
required to support any specific cube map environment texture format. It is
recommended that browsers support the Microsoft DDS cube map environment texture
file format (see [DDS]).

See 18.2 Concepts for a general description of texture maps.

 34.5 Support levels
The Cube map environmental texturing component defines three levels of support as
specified in Table 34.2.

 Table 34.2 — Cube map environmental texturing component support levels

Level Prerequisites Nodes/Features Support

1

Core 1
Grouping 1
Shape 1
Rendering 1
Texturing 1

X3DEnvironmentTextureNode n/a

ComposedCubeMapTexture All fields fully
supported.

2

Core 1
Grouping 1
Shape 1
Rendering 1
Texturing 1

ImageCubeMapTexture All fields fully
supported.

3

Core 1
Grouping 1
Shape 1
Rendering 1
Texturing 1

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 34 Cube map environmetal texturing component

environmentalTexturing.html[8/1/2020 10:00:22 AM]

GeneratedCubeMapTexture All fields fully
supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

Annex Z

(normative)

Version content

 Z.1 General
This annex specifies the content supported by the specified versions of X3D. Conformance
requirements are stated in 6 Conformance.

 Z.2 Topics
Table Z.1 provides links to the major topics in this annex.

 Table Z.1 — Topics

Z.1 General
Z.2 Topics
Z.3 Version content

Table Z.1 — Topics
Table Z.2 — Version content (nodes)
Table Z.3 — Version content (statements)

 Z.3 Version content
Table Z.2 lists each node specified by this part of ISO/IEC 19775. For each node, the fields
supported by each version are identified listed in the order specified by the node signature. Nodes
will appear in multiple rows if fields have been added in subsequent versions.

Table Z.2 — Version content (nodes)

 Index: A B C D E F G H I K L M N O P Q R S T U V W X

Node Fields 3.0 3.1 3.2 3.3 4.0

addChildren X X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

Anchor

removeChildren X X X X X

children X X X X X

description X X X X X

metadata X X X X X

parameter X X X X X

url X X X X X

bboxCenter X X X X X

bboxSize X X X X X

Appearance

backMaterial X

fillProperties X X X X X

lineProperties X X X X X

material X X X X X

metadata X X X X X

shaders X X X X

texture X X X X X

textureTransform X X X X X

Arc2D

metadata X X X X X

endAngle X X X X X

radius X X X X X

startAngle X X X X X

ArcClose2D

metadata X X X X X

closureType X X X X X

endAngle X X X X X

radius X X X X X

solid X X X X X

startAngle X X X X X

AudioClip

description X X X X X

loop X X X X X

metadata X X X X X

pauseTime X X X X X

pitch X X X X X

resumeTime X X X X X

startTime X X X X X

stopTime X X X X X

url X X X X X

duration_changed X X X X X

elapsedTime X X X X X

isActive X X X X X

isPaused X X X X X

set_bind X X X X X

groundAngle X X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

Background

groundColor X X X X X

backUrl X X X X X

bottomUrl X X X X X

frontUrl X X X X X

leftUrl X X X X X

metadata X X X X X

rightUrl X X X X X

topUrl X X X X X

skyAngle X X X X X

skyColor X X X X X

transparency X X X

bindTime X X X X X

isBound X X X X X

BallJoint

anchorPoint X X X

body1 X X X

body2 X X X

metadata X X X

mustOutput X X X

body1AnchorPoint X X X

body2AnchorPoint X X X

Billboard

addChildren X X X X X

removeChildren X X X X X

axisOfRotation X X X X X

children X X X X X

metadata X X X X X

bboxCenter X X X X X

bboxSize X X X X X

BlendedVolumeStyle

enabled X X

metadata X X

renderStyle X X

voxels X X

weightConstant1 X X

weightConstant2 X X

weightFunction1 X X

weightFunction2 X X

weightTransferFucntion1 X X

weightTransferFunction2 X X

bboxCenter X X

bboxSize X X

set_boolean X X X X X

metadata X X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

BooleanFilter inputFalse X X X X X

inputNegate X X X X X

inputTrue X X X X X

BooleanSequencer

next X X X X X

previous X X X X X

set_fraction X X X X X

key X X X X X

keyValue X X X X X

metadata X X X X X

value_changed X X X X X

BooleanToggle

set_boolean X X X X X

metadata X X X X X

toggle X X X X X

BooleanTrigger

set_triggerTime X X X X X

metadata X X X X X

triggerTrue X X X X X

BoundaryEnhancementVolumeStyle

boundaryOpacity X X

enabled X X

metadata X X

opacityFactor X X

retainedOpacity X X

transferFunction X X

BoundedPhysicsModel

enabled X X X

geometry X X X

metadata X X X

Box

metadata X X X X X

size X X X X X

solid X X X X X

CADAssembly

addChildren X X X X

removeChildren X X X X

children X X X X

metadata X X X X

name X X X X

bboxCenter X X X X

bboxSize X X X X

CADFace

metadata X X X X

name X X X X

shape X X X X

bboxCenter X X X X

bboxSize X X X X

addChildren X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

CADLayer

removeChildren X X X X

children X X X X

metadata X X X X

name X X X X

visible X X X X

bboxCenter X X X X

bboxSize X X X X

CADPart

addChildren X X X X

removeChildren X X X X

center X X X X

children X X X X

metadata X X X X

name X X X X

rotation X X X X

scale X X X X

scaleOrientation X X X X

translation X X X X

bboxCenter X X X X

bboxSize X X X X

CartoonVolumeStyle

colorSteps X X

enabled X X

metadata X X

orthogonalColor X X

parallelColor X X

surfaceNormals X X

Circle2D
metadata X X X X X

radius X X X X X

ClipPlane

enabled X X X

metadata X X X

plane X X X

CollidableOffset

enabled X X X

metadata X X X

rotation X X X

translation X X X

bboxCenter X X X

bboxSize X X X

collidable X X X

CollidableShape

enabled X X X

metadata X X X

rotation X X X

translation X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

bboxCenter X X X

bboxSize X X X

shape X X X

Collision

addChildren X X X X X

removeChildren X X X X X

enabled X X X X X

children X X X X X

metadata X X X X X

collideTime X X X X X

isActive X X X X X

bboxCenter X X X X X

bboxSize X X X X X

proxy X X X X X

CollisionCollection

appliedParameters X X X

bounce X X X

collidables X X X

enabled X X X

frictionCoefficients X X X

metadata X X X

minBounceSpeed X X X

slipFactors X X X

softnessConstantForceMix X X X

softnessErrorCorrection X X X

surfaceSpeed X X X

CollisionSensor

collidables X X X

enabled X X X

metadata X X X

intersections X X X

contacts X X X

isActive X X X

CollisionSpace

collidables X X X

enabled X X X

metadata X X X

useGeometry X X X

bboxCenter X X X

bboxSize X X X

Color
color X X X X X

metadata X X X X X

set_destination X X

set_value X X

metadata X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

ColorChaser
isActive X X

value_changed X X

duration X X

initialDestination X X

initialValue X X

ColorDamper

set_destination X X X

set_value X X X

metadata X X X

tau X X X

tolerance X X X

isActive X X X

value_changed X X X

initialDestination X X X

initialValue X X X

order X X X

ColorInterpolator

set_fraction X X X X X

key X X X X X

keyValue X X X X X

metadata X X X X X

value_changed X X X X X

ColorRGBA
color X X X X X

metadata X X X X X

ComposedCubeMapTexture

back X X X X

bottom X X X X

front X X X X

left X X X X

metadata X X X X

right X X X X

top X X X X

ComposedShader

activate X X X X

metadata X X X X

parts X X X X

isSelected X X X X

isValid X X X X

language X X X X

ComposedTexture3D

metadata X X X X

repeatS X X X X

repeatT X X X X

repeatR X X X X

texture X X X X

textureProperties X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

ComposedVolumeStyle

enabled X X

metadata X X

renderStyle X X

Cone

metadata X X X X X

bottom X X X X X

bottomRadius X X X X X

height X X X X X

side X X X X X

solid X X X X X

ConeEmitter

angle X X X

direction X X X

metadata X X X

position X X X

speed X X X

variation X X X

mass X X X

surfaceArea X X X

Contact

appliedParameters X X X

body1 X X X

body2 X X X

bounce X X X

enabled X X X

depth X X X

frictionCoefficients X X X

frictionDirection X X X

geometry1 X X X

geometry2 X X X

metadata X X X

minBounceSpeed X X X

position X X X

slipCoefficients X X X

softnessConstantForceMix X X X

softnessErrorCorrection X X X

surfaceSpeed X X X

Contour2D

addChildren X X X X X

removeChildren X X X X X

children X X X X X

metadata X X X X X

ContourPolyline2D
metadata X X X X X

controlPoint X X X X X

Coordinate
metadata X X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

point X X X X X

CoordinateChaser

set_destination X X

set_value X X

metadata X X

isActive X X

value_changed X X

duration X X

initialDestination X X

initialValue X X

CoordinateDamper

set_destination X X X

set_value X X X

metadata X X X

tau X X X

tolerance X X X

isActive X X X

value_changed X X X

initialDestination X X X

initialValue X X X

order X X X

CoordinateDouble
metadata X X X X X

point X X X X X

CoordinateInterpolator

set_fraction X X X X X

key X X X X X

keyValue X X X X X

metadata X X X X X

value_changed X X X X X

CoordinateInterpolator2D

set_fraction X X X X X

key X X X X X

keyValue X X X X X

metadata X X X X X

value_changed X X X X X

Cylinder

metadata X X X X X

bottom X X X X X

height X X X X X

radius X X X X X

side X X X X X

solid X X X X X

top X X X X X

autoOffset X X X X X

description X X X X X

diskAngle X X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

CylinderSensor

enabled X X X X X

maxAngle X X X X X

metadata X X X X X

minAngle X X X X X

offset X X X X X

isActive X X X X X

isOver X X X X X

rotation_changed X X X X X

trackPoint_changed X X X X X

DirectionalLight

ambientIntensity X X X X X

color X X X X X

direction X X X X X

global X X X X

intensity X X X X X

metadata X X X X X

on X X X X X

DISEntityManager

address X X X

applicationID X X X

mapping X X X

metadata X X X

port X X X

siteID X X X

addedEntities X X X

removedEntities X X X

DISEntityTypeMapping

metadata X X X

url X X X

category X X X

country X X X

domain X X X

extra X X X

kind X X X

specific X X X

subcategory X X X

Disk2D

metadata X X X X X

innerRadius X X X X X

outerRadius X X X X X

solid X X X X X

anchorPoint X X X

axis1 X X X

axis2 X X X

body1 X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

DoubleAxisHingeJoint

body2 X X X

desiredAngularVelocity1 X X X

desiredAngularVelocity2 X X X

maxAngle1 X X X

maxTorque1 X X X

maxTorque2 X X X

metadata X X X

minAngle1 X X X

mustOutput X X X

stopBounce1 X X X

stopConstantForceMix1 X X X

stopErrorCorrection1 X X X

suspensionErrorCorrection X X X

suspensionForce X X X

body1AnchorPoint X X X

body2AnchorPoint X X X

body1Axis X X X

body2Axis X X X

hinge1Angle X X X

hinge1AngleRate X X X

hinge2Angle X X X

hinge2AngleRate X X X

EaseInEaseOut

set_fraction X X X

easeInEaseOut X X X

key X X X

metadata X X X

modifiedFraction_changed X X X

EdgeEnhancementVolumeStyle

edgeColor X X

enabled X X

gradientThreshold X X

metadataColor X X

surfaceNormals X X

ElevationGrid

set_height X X X X X

attrib X X X X

color X X X X X

fogCoord X X X X

metadata X X X X X

normal X X X X X

texCoord X X X X X

ccw X X X X X

colorPerVertex X X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

creaseAngle X X X X X

height X X X X X

normalPerVertex X X X X X

solid X X X X X

xDimension X X X X X

xSpacing X X X X X

zDimension X X X X X

zSpacing X X X X X

addChildren X X X X X

removeChildren X X X X X

set_articulationParameterValue0 X X X X X

set_articulationParameterValue1 X X X X X

set_articulationParameterValue2 X X X X X

set_articulationParameterValue3 X X X X X

set_articulationParameterValue4 X X X X X

set_articulationParameterValue5 X X X X X

set_articulationParameterValue6 X X X X X

set_articulationParameterValue7 X X X X X

address X X X X X

applicationID X X X X X

articulationParameterCount X X X X X

articulationParameterDesignatorArray X X X X X

articulationParameterChangeIndicatorArray X X X X X

articulationParameterIdPartAttachedToArray X X X X X

articulationParameterTypeArray X X X X X

articulationParameterArray X X X X X

center X X X X X

children X X X X X

collisionType X X X X X

deadReckoning X X X X X

detonationLocation X X X X X

detonationRelativeLocation X X X X X

detonationResult X X X X X

enabled X X X X

entityCategory X X X X X

entityCountry X X X X X

entityDomain X X X X X

entityExtra X X X X X

entityId X X X X X

entityKind X X X X X

entitySpecific X X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

EspduTransform

entitySubCategory X X X X X

eventApplicationID X X X X X

eventEntityID X X X X X

eventNumber X X X X X

eventSiteID X X X X X

fired1 X X X X X

fired2 X X X X X

fireMissionIndex X X X X X

firingRange X X X X X

firingRate X X X X X

forceID X X X X X

fuse X X X X X

linearVelocity X X X X X

linearAcceleration X X X X X

marking X X X X X

metadata X X X X X

multicastRelayHost X X X X X

multicastRelayPort X X X X X

munitionApplicationID X X X X X

munitionEndPoint X X X X X

munitionEntityID X X X X X

munitionQuantity X X X X X

munitionSiteID X X X X X

munitionStartPoint X X X X X

networkMode X X X X X

port X X X X X

readInterval X X X X X

rotation X X X X X

scale X X X X X

scaleOrientation X X X X X

siteID X X X X X

translation X X X X X

warhead X X X X X

writeInterval X X X X X

articulationParameterValue0_changed X X X X X

articulationParameterValue1_changed X X X X X

articulationParameterValue2_changed X X X X X

articulationParameterValue3_changed X X X X X

articulationParameterValue4_changed X X X X X

articulationParameterValue5_changed X X X X X

articulationParameterValue6_changed X X X X X

articulationParameterValue7_changed X X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

collideTime X X X X X

detonateTime X X X X X

firedTime X X X X X

isActive X X X X X

isCollided X X X X X

isDetonated X X X X X

isNetworkReader X X X X X

isRtpHeaderHeard X X X X X

isStandAlone X X X X X

timestamp X X X X X

bboxCenter X X X X X

bboxSize X X X X X

rtpHeaderExpected X X X X X

ExplosionEmitter

metadata X X X

position X X X

speed X X X

variation X X X

mass X X X

surfaceArea X X X

Extrusion

set_crossSection X X X X X

set_orientation X X X X X

set_scale X X X X X

set_spine X X X X X

metadata X X X X X

beginCap X X X X X

ccw X X X X X

convex X X X X X

creaseAngle X X X X X

crossSection X X X X X

endCap X X X X X

orientation X X X X X

scale X X X X X

solid X X X X X

spine X X X X X

FillProperties

filled X X X X X

hatchColor X X X X X

hatched X X X X X

hatchStyle X X X X X

metadata X X X X X

metadata X X X X

value X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

FloatVertexAttribute
name X X X X

numComponents X X X X

Fog

set_bind X X X X X

color X X X X X

fogType X X X X X

metadata X X X X X

visibilityRange X X X X X

bindTime X X X X X

isBound X X X X X

FogCoordinate
depth X X X X

metadata X X X X

FontStyle

metadata X X X X X

family X X X X X

horizontal X X X X X

justify X X X X X

language X X X X X

leftToRight X X X X X

size X X X X X

spacing X X X X X

style X X X X X

topToBottom X X X X X

ForcePhysicsModel

enabled X X X

force X X X

metadata X X X

GeneratedCubeMapTexture

metadata X X X X

update X X X X

size X X X X

GeoCoordinate

metadata X X X X X

point X X X X X

geoOrigin X X X X X

geoSystem X X X X X

set_height X X X X X

color X X X X X

metadata X X X X X

normal X X X X X

texCoord X X X X X

yScale X X X X X

ccw X X X X X

colorPerVertex X X X X X

creaseAngle X X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

GeoElevationGrid geoGridOrigin X X X X X

geoOrigin X X X X X

geoSystem X X X X X

height X X X X X

normalPerVertex X X X X X

solid X X X X X

xDimension X X X X X

xSpacing X X X X X

zDimension X X X X X

zSpacing X X X X X

GeoLocation

addChildren X X X X X

removeChildren X X X X X

children X X X X X

geoCoord X X X X X

metadata X X X X X

geoOrigin X X X X X

geoSystem X X X X X

bboxCenter X X X X X

bboxSize X X X X X

GeoLOD

metadata X X X X X

children X X X X X

center X X X X X

child1Url X X X X X

child2Url X X X X X

child3Url X X X X X

child4Url X X X X X

geoOrigin X X X X X

geoSystem X X X X X

level_changed X X X X

range X X X X X

rootUrl X X X X X

rootNode X X X X X

bboxCenter X X X X X

bboxSize X X X X X

GeoMetadata

data X X X X X

metadata X X X X X

summary X X X X X

url X X X X X

GeoOrigin (omitted as of 3.3)

geoCoord X X X X

metadata X X X X

geoSystem X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

rotateYUp X X X X

GeoPositionInterpolator

set_fraction X X X X X

key X X X X X

keyValue X X X X X

metadata X X X X X

geovalue_changed X X X X X

value_changed X X X X X

geoOrigin X X X X X

geoSystem X X X X X

GeoProximitySensor

enabled X X X

geoCenter X

center X X

metadata X X X

size X X X

centerOfRotation_changed X X X

enterTime X X X

exitTime X X X

geoCoord_changed X X X

isActive X X X

orientation_changed X X X

position_changed X X X

geoOrigin X X X

geoSystem X X X

GeoTouchSensor

description X X X X X

enabled X X X X X

metadata X X X X X

hitNormal_changed X X X X X

hitPoint_changed X X X X X

hitTexCoord_changed X X X X X

hitGeoCoord_changed X X X X X

isActive X X X X X

isOver X X X X X

touchTime X X X X X

geoOrigin X X X X X

geoSystem X X X X X

addChildren X X X

removeChildren X X X

children X X X

geoCenter X X X

metadata X X X

rotation X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

GeoTransform scale X X X

scaleOrientation X X X

translation X X X

bboxCenter X X X

bboxSize X X X

geoOrigin X X X

geoSystem X X X

GeoViewpoint

set_bind X X X X X

set_orientation X X X X X

set_position X X X X X

description X X X X X

fieldOfView X X X X X

headlight X X X

jump X X X X X

metadata X X X X X

navType X X X

bindTime X X X X X

isBound X X X X X

geoOrigin X X X X X

geoSystem X X X X X

orientation X X X X X

position X X X X X

speedFactor X X X X X

Group

addchildren X X X X X

removeChildren X X X X X

children X X X X X

metadata X X X X X

bboxCenter X X X X X

bboxSize X X X X X

HAnimDisplacer

coordIndex X X X X X

displacements X X X X X

metadata X X X X X

name X X X X X

weight X X X X X

center X X X X X

info X X X X X

joints X X X X X

metadata X X X X X

name X X X X X

rotation X X X X X

scale X X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

HAnimHumanoid

scaleOrientation X X X X X

segments X X X X X

sites X X X X X

skeleton X X X X X

skin X X X X X

skinCoord X X X X X

skinNormal X X X X X

translation X X X X X

version X X X X X

viewpoints X X X X X

bboxCenter X X X X X

bboxSize X X X X X

HAnimJoint

addChildren X X X X X

removeChildren X X X X X

center X X X X X

children X X X X X

displacers X X X X X

limitOrientation X X X X X

llimit X X X X X

metadata X X X X X

name X X X X X

rotation X X X X X

scale X X X X X

scaleOrientation X X X X X

skinCoordIndex X X X X X

skinCoordWeight X X X X X

stiffness X X X X X

translation X X X X X

ulimit X X X X X

bboxCenter X X X X X

bboxSize X X X X X

HAnimSegment

addChildren X X X X X

removeChildren X X X X X

centerOfMass X X X X X

children X X X X X

coord X X X X X

displacers X X X X X

mass X X X X X

metadata X X X X X

momentsOfInertia X X X X X

name X X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

bboxCenter X X X X X

bboxSize X X X X X

HAnimSite

addChildren X X X X X

removeChildren X X X X X

center X X X X X

children X X X X X

metadata X X X X X

name X X X X X

rotation X X X X X

scale X X X X X

scaleOrientation X X X X X

translation X X X X X

bboxCenter X X X X X

bboxSize X X X X X

ImageCubeMapTexture
metadata X X X X

url X X X X

ImageTexture

metadata X X X X X

url X X X X X

repeatS X X X X X

repeatT X X X X X

ImageTexture3D

metadata X X X X

url X X X X

repeatS X X X X

repeatT X X X X

repeatR X X X X

IndexedFaceSet

set_colorIndex X X X X X

set_coordIndex X X X X X

set_normalIndex X X X X X

set_texCoordIndex X X X X X

attrib X X X X

color X X X X X

coord X X X X X

fogCoord X X X X

metadata X X X X X

normal X X X X X

texCoord X X X X X

ccw X X X X X

colorIndex X X X X X

colorPerVertex X X X X X

convex X X X X X

coordIndex X X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

creaseAngle X X X X X

normalIndex X X X X X

normalPerVertex X X X X X

solid X X X X X

texCoordIndex X X X X X

IndexedLineSet

set_colorIndex X X X X X

set_coordIndex X X X X X

attrib X X X X

color X X X X X

coord X X X X X

fogCoord X X X X

metadata X X X X X

colorIndex X X X X X

colorPerVertex X X X X X

coordIndexd X X X X X

IndexedQuadSet

set_index X X X X

attrib X X X X

color X X X X

coord X X X X

fogCoord X X X X

metadata X X X X

normal X X X X

texCoord X X X X

ccw X X X X

colorPerVertex X X X X

normalPerVertex X X X X

solid X X X X

index X X X X

IndexedTriangleFanSet

set_index X X X X X

attrib X X X X

color X X X X X

coord X X X X X

fogCoord X X X X

metadata X X X X X

normal X X X X X

texCoord X X X X X

ccw X X X X X

colorPerVertex X X X X X

normalPerVertex X X X X X

solid X X X X X

index X X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

IndexedTriangleSet

set_index X X X X X

attrib X X X X

color X X X X X

coord X X X X X

fogCoord X X X X

metadata X X X X X

normal X X X X X

texCoord X X X X X

ccw X X X X X

colorPerVertex X X X X X

normalPerVertex X X X X X

solid X X X X X

index X X X X X

IndexedTriangleStripSet

set_index X X X X X

attrib X X X X

color X X X X X

coord X X X X X

creaseAngle X X X X X

fogCoord X X X X

metadata X X X X X

normal X X X X X

texCoord X X X X X

ccw X X X X X

normalPerVertex X X X X X

solid X X X X X

index X X X X X

Inline

load X X X X X

metadata X X X X X

url X X X X X

bboxCenter X X X X X

bboxSize X X X X X

IntegerSequencer

next X X X X X

previous X X X X X

set_fraction X X X X X

key X X X X X

keyValue X X X X X

metadata X X X X X

value_changed X X X X X

IntegerTrigger

set_boolean X X X X X

integerKey X X X X X

metadata X X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

triggerValue X X X X X

IsoSurfaceVolumeData

contourStepSize X X

dimensions X X

gradients X X

metadata X X

renderStyle X X

surfaceTolerance X X

surfaceValues X X

voxels X X

bboxCenter X X

bboxSize X X

KeySensor

enabled X X X X X

metadata X X X X X

actionKeyPress X X X X X

actionKeyRelease X X X X X

altKey X X X X X

controlKey X X X X X

isActive X X X X X

keyPress X X X X X

keyRelease X X X X X

shiftKey X X X X X

Layer

addChildren X X X

removeChildren X X X

children X X X

pickable X X X

metadata X X X

viewport X X X

LayerSet

activeLayer X X X

layers X X X

metadata X X X

order X X X

Layout

align X X X

metadata X X X

offset X X X

offsetUnits X X X

scaleMode X X X

size X X X

sizeUnits X X X

LayoutGroup

addChildren X X X

removeChildren X X X

children X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

layout X X X

metadata X X X

viewport X X X

LayoutLayer

addChildren X X X

removeChildren X X X

children X X X

pickable X X X

layout X X X

metadata X X X

viewport X X X

LinePickSensor

enabled X X X

metadata X X X

objectType X X X

pickingGeometry X X X

pickTarget X X X

isActive X X X

pickedGeometry X X X

pickedNormal X X X

pickedPoint X X X

pickedTextureCoordinate X X X

intersectionType X X X

sortOrder X X X

LineProperties

applied X X X X X

linetype X X X X X

linewidthScaleFactor X X X X X

metadata X X X X X

LineSet

attrib X X X X

color X X X X X

coord X X X X X

fogCoord X X X X

metadata X X X X X

vertexCount X X X X X

LoadSensor

enabled X X X X X

metadata X X X X X

timeOut X X X X X

watchList X X X X X

isActive X X X X X

isLoaded X X X X X

loadTime X X X X X

progress X X X X X

color X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

LocalFog

enabled X X X X

fogType X X X X

metadata X X X X

visibilityRange X X X X

LOD

addChildren X X X X X

removeChildren X X X X X

children X X X X X

metadata X X X X X

level_changed X X X X

bboxCenter X X X X X

bboxSize X X X X X

center X X X X X

forceTransitions X X X X

range X X X X X

Material

ambientIntensity X X X X X

ambientTexture X

ambientTextureMapping X

diffuseColor X X X X X

diffuseTexture X

diffuseTextureMapping X

emissiveColor X X X X X

emissiveTexture X

emissiveTextureMapping X

metadata X X X X X

normalTexture X

normalTextureMapping X

normalScale X

occlusionStrength X

occlusionTexture X

occlusionTextureMapping X

shininess X X X X X

shininessTexture X

shininessTextureMapping X

specularColor X X X X X

specularTexture X

specularTextureMapping X

transparency X X X X X

Matrix3VertexAttribute

metadata X X X X

value X X X X

name X X X X

metadata X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

Matrix4VertexAttribute value X X X X

name X X X X

MetadataBoolean

metadata X X

name X X

reference X X

value X X

MetadataDouble

metadata X X X X X

name X X X X X

reference X X X X X

value X X X X X

MetadataFloat

metadata X X X X X

name X X X X X

reference X X X X X

value X X X X X

MetadataInteger

metadata X X X X X

name X X X X X

reference X X X X X

value X X X X X

MetadataSet

metadata X X X X X

name X X X X X

reference X X X X X

value X X X X X

MetadataString

metadata X X X X X

name X X X X X

reference X X X X X

value X X X X X

MotorJoint

axis1Angle X X X

axis1Torque X X X

axis2Angle X X X

axis2Torque X X X

axis3Angle X X X

axis3Torque X X X

body1 X X X

body2 X X X

enabledAxes X X X

metadata X X X

motor1Axis X X X

motor2Axis X X X

motor3Axis X X X

mustOutput X X X

stop1Bounce X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

stop1ErrorCorrection X X X

stop2Bounce X X X

stop2ErrorCorrection X X X

stop3Bounce X X X

stop3ErrorCorrection X X X

motor1Angle X X X

motor1AngleRate X X X

motor2Angle X X X

motor2AngleRate X X X

motor3Angle X X X

motor3AngleRate X X X

autoCalc X X X

MovieTexture

loop X X X X X

metadata X X X X X

pauseTime X X X X X

pitch X X

resumeTime X X X X X

speed X X X X X

startTime X X X X X

stopTime X X X X X

url X X X X X

repeatS X X X X X

repeatT X X X X X

duration_changed X X X X X

elapsedTime X X X X X

isActive X X X X X

isPaused X X X X X

MultiTexture

alpha X X X X X

color X X X X X

function X X X X X

metadata X X X X X

mode X X X X X

source X X X X X

texture X X X X X

MultiTextureCoordinate
metadata X X X X X

texCoord X X X X X

MultiTextureTransform
metadata X X X X X

textureTransform X X X X X

set_bind X X X X X

avatarSize X X X X X

headlight X X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

NavigationInfo

metadata X X X X X

speed X X X X X

transitionTime X X X X

transitionType X X X X X

type X X X X X

visibilityLimit X X X X X

bindTime X X X X X

isBound X X X X X

transitionComplete X X X X

Normal
metadata X X X X X

vector X X X X X

NormalInterpolator

set_fraction X X X X X

key X X X X X

keyValue X X X X X

metadata X X X X X

value_changed X X X X X

NurbsCurve

controlPoint X X X X X

metadata X X X X X

tessellation X X X X X

weight X X X X X

closed X X X X X

knot X X X X X

order X X X X X

NurbsCurve2D

controlPoint X X X X X

metadata X X X X X

tessellation X X X X X

weight X X X X X

knot X X X X X

order X X X X X

closed X X X X X

NurbsOrientationInterpolator

set_fraction X X X X X

controlPoint X X X X X

knot X X X X X

metadata X X X X X

order X X X X X

weight X X X X X

value_changed X X X X X

controlPoint X X X X X

metadata X X X X X

texCoord X X X X X

uTessellation X X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

NurbsPatchSurface

vTessellation X X X X X

weight X X X X X

solid X X X X X

uClosed X X X X X

uDimension X X X X X

uKnot X X X X X

uOrder X X X X X

vClosed X X X X X

vDimension X X X X X

vKnot X X X X X

vOrder X X X X X

NurbsPositionInterpolator

set_fraction X X X X X

controlPoint X X X X X

knot X X X X X

metadata X X X X X

order X X X X X

weight X X X X X

value_changed X X X X X

NurbsSet

addGeometry X X X X X

removeGeometry X X X X X

geometry X X X X X

metadata X X X X X

tessellationScale X X X X X

bboxCenter X X X X X

bboxSize X X X X X

NurbsSurfaceInterpolator

set_fraction X X X X X

controlPoint X X X X X

metadata X X X X X

weight X X X X X

position_changed X X X X X

normal_changed X X X X X

uDimension X X X X X

uKnot X X X X X

uOrder X X X X X

vDimension X X X X X

vKnot X X X X X

vOrder X X X X X

NurbsSweptSurface

crossSectionCurve X X X X X

metadata X X X X X

trajectoryCurve X X X X X

ccw X X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

solid X X X X X

NurbsSwungSurface

metadata X X X X X

profileCurve X X X X X

trajectoryCurve X X X X X

ccw X X X X X

solid X X X X X

NurbsTextureCoordinate

controlPoint X X X X X

metadata X X X X X

weight X X X X X

uDimension X X X X X

uKnot X X X X X

uOrder X X X X X

vDimension X X X X X

vKnot X X X X X

vOrder X X X X X

NurbsTrimmedSurface

addTrimmingContour X X X X X

removeTrimmingContour X X X X X

controlPoint X X X X X

metadata X X X X X

texCoord X X X X X

trimmingContour X X X X X

uTessellation X X X X X

vTessellation X X X X X

weight X X X X X

solid X X X X X

uClosed X X X X X

uDimension X X X X X

uKnot X X X X X

uOrder X X X X X

vClosed X X X X X

vDimension X X X X X

vKnot X X X X X

vOrder X X X X X

OpacityMapVolumeStyle

enabled X X

metadata X X

transferFunction X X

OrientationChaser

set_destination X X X

set_value X X X

metadata X X X

isActive X X X

value_changed X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

duration X X X

initialDestination X X X

initialValue X X X

OrientationDamper

set_destination X X X

set_value X X X

metadata X X X

tau X X X

tolerance X X X

isActive X X X

value_changed X X X

initialDestination X X X

initialValue X X X

order X X X

OrientationInterpolator

set_fraction X X X X X

key X X X X X

keyValue X X X X X

metadata X X X X X

value_changed X X X X X

OrthoViewpoint

set_bind X X X

centerOfRotation X X X

description X X X

fieldOfView X X X

jump X X X

metadata X X X

orientation X X X

position X X X

retainUserOffsets X X X

bindTime X X X

isBound X X X

PackagedShader

activate X X X X

metadata X X X X

url X X X X

isSelected X X X X

isValid X X X X

language X X X X

Any number of additional fields as specified
in 31.4.4 PackagedShader. X X X X

appearance X X X

createParticles X X X

geometry X X X

enabled X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

ParticleSystem

lifetimeVariation X X X

maxParticles X X X

metadata X X X

particleLifetime X X X

particleSize X X X

isActive X X X

bboxCenter X X X

bboxSize X X X

colorRamp X X X

colorKey X X X

emitter X X X

geometryType X X X

physics X X X

texCoordRamp X X X

texCoordKey X X X

PhysicalMaterial

baseColor X

baseTexture X

baseTextureMapping X

metallic X

metallicRoughnessTexture X

metallicRoughnessTextureMapping X

emissiveColor X

emissiveTexture X

emissiveTextureMapping X

metadata X

normalTexture X

normalTextureMapping X

normalScale X

occlusionStrength X

occlusionTexture X

occlusionTextureMapping X

roughness X

transparency X

PickableGroup

addChildren X X X

removeChildren X X X

children X X X

metadata X X X

objectType X X X

pickable X X X

bboxCenter X X X

bboxSize X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

PixelTexture

image X X X X X

metadata X X X X X

repeatS X X X X X

repeatT X X X X X

PixelTexture3D

metadata X X X X

image X X X X

repeatS X X X X

repeatT X X X X

repeatR X X X X

PlaneSensor

autoOffset X X X X X

description X X X X X

enabled X X X X X

maxPosition X X X X X

metadata X X X X X

minPosition X X X X X

offset X X X X X

isActive X X X X X

isOver X X X X X

trackPoint_changed X X X X X

translation_changed X X X X X

PointEmitter

direction X X X

metadata X X X

position X X X

speed X X X

variation X X X

mass X X X

surfaceArea X X X

PointLight

ambientIntensity X X X X X

attenuation X X X X X

color X X X X X

global X X X X

intensity X X X X X

location X X X X X

metadata X X X X X

on X X X X X

radius X X X X X

PointPickSensor

enabled X X X

metadata X X X

objectType X X X

pickingGeometry X X X

pickTarget X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

isActive X X X

pickedGeometry X X X

pickedPoint X X X

intersectionType X X X

sortOrder X X X

PointSet

attrib X X X X

color X X X X X

coord X X X X X

fogCoord X X X X

metadata X X X X X

PolylineEmitter

set_coordIndex X X X

coord X X X

direction X X X

metadata X X X

speed X X X

variation X X X

coordIndex X X X

mass X X X

surfaceArea X X X

Polyline2D
metadata X X X X X

lineSegments X X X X X

Polypoint2D
metadata X X X X X

point X X X X X

PositionChaser

set_destination X X X

set_value X X X

metadata X X X

isActive X X X

value_changed X X X

duration X X X

initialDestination X X X

initialValue X X X

PositionChaser2D

set_destination X X X

set_value X X X

metadata X X X

isActive X X X

value_changed X X X

duration X X X

initialDestination X X X

initialValue X X X

set_destination X X X

set_value X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

PositionDamper

metadata X X X

tau X X X

tolerance X X X

isActive X X X

value_changed X X X

initialDestination X X X

initialValue X X X

order X X X

PositionDamper2D

set_destination X X X

set_value X X X

metadata X X X

tau X X X

tolerance X X X

isActive X X X

value_changed X X X

initialDestination X X X

initialValue X X X

order X X X

PositionInterpolator

set_fraction X X X X X

key X X X X X

keyValue X X X X X

metadata X X X X X

value_changed X X X X X

PositionInterpolator2D

set_fraction X X X X X

key X X X X X

keyValue X X X X X

metadata X X X X X

value_changed X X X X X

PrimitivePickSensor

enabled X X X

metadata X X X

objectType X X X

pickingGeometry X X X

pickTarget X X X

isActive X X X

pickedGeometry X X X

intersectionType X X X

sortOrder X X X

ProgramShader

activate X X X X

metadata X X X X

programs X X X X

isSelected X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

isValid X X X X

language X X X X

ProjectionVolumeStyle

enabled X X

metadata X X

intensityThreshold X X

type X X

ProximitySensor

center X X X X X

enabled X X X X X

metadata X X X X X

size X X X X X

enterTime X X X X X

exitTime X X X X X

centerOfRotation_changed X X X X X

isActive X X X X X

orientation_changed X X X X X

position_changed X X X X X

QuadSet

attrib X X X X

color X X X X

coord X X X X

fogCoord X X X X

metadata X X X X

normal X X X X

texCoord X X X X

ccw X X X X

colorPerVertex X X X X

normalPerVertex X X X X

solid X X X X

address X X X X X

applicationID X X X X

enabled X X X X

entityID X X X X

metadata X X X X

multicastRelayHost X X X X

multicastRelayPort X X X X

networkMode X X X X

port X X X X

radioID X X X X

readInterval X X X X

receivedPower X X X X

receiverState X X X X

rtpHeaderExpected X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

ReceiverPdu siteID X X X X

transmitterApplicationID X X X X

transmitterEntityID X X X X

transmitterRadioID X X X X

transmitterSiteID X X X X

whichGeometry X X X X

writeInterval X X X X

isActive X X X X

isNetworkReader X X X X

isNetworkWriter X X X X

isRtpHeaderHeard X X X X

isStandAlone X X X X

timestamp X X X X

bboxCenter X X X X

bboxSize X X X X X

Rectangle2D

metadata X X X X X

size X X X X X

solid X X X X X

RigidBody

angularDampingFactor X X X

angularVelocity X X X

autoDamp X X X

autoDisable X X X

centerOfMass X X X

disableAngularSpeed X X X

disableLinearSpeed X X X

disableTime X X X

enabled X X X

finiteRotationAxis X X X

fixed X X X

forces X X X

geometry X X X

inertia X X X

linearDampingFactor X X X

linearVelocity X X X

mass X X X

massDensityModel X X X

metadata X X X

orientation X X X

position X X X

torques X X X

useFiniteRotation X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

useGlobalGravity X X X

RigidBodyCollection

set_contacts X X X

autoDisable X X X

bodies X X X

constantForceMix X X X

constantSurfaceThickness X X X

disableAngularSpeed X X X

disableLinearSpeed X X X

disableTime X X X

enabled X X X

errorCorrection X X X

gravity X X X

iterations X X X

joints X X X

maxCorrectionSpeed X X X

metadata X X X

preferAccuracy X X X

collider X X X

ScalarChaser

set_destination X X X

set_value X X X

metadata X X X

isActive X X X

value_changed X X X

duration X X X

initialDestination X X X

initialValue X X X

ScalarDamper

set_destination X X

set_value X X

metadata X X

tau X X

tolerance X X

isActive X X

value_changed X X

initialDestination X X

initialValue X X

order X X

ScalarInterpolator

set_fraction X X X X X

key X X X X X

keyValue X X X X X

metadata X X X X X

value_changed X X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

ScreenFontStyle

metadata X X X

family X X X

horizontal X X X

justify X X X

language X X X

leftToRight X X X

pointSize X X X

spacing X X X

style X X X

topToBottom X X X

ScreenGroup

addChildren X X X

removeChildren X X X

children X X X

metadata X X X

bboxCenter X X X

bboxSize X X X

Script

metadata X X X X X

url X X X X X

directOutput X X X X X

mustEvaluate X X X X X

Any number of additional fields as specified
in 29.4.1 Script. X X X X X

SegmentedVolumeData

dimensions X X

metadata X X

renderStyle X X

segmentEnabled X X

segmentIdentifiers X X

voxels X X

bboxCenter X X

bboxSize X X

ShadedVolumeStyle

enabled X X

lighting X X

material X X

metadata X X

shadows X X

surfaceNormals X X

phaseFunction X X

ShaderPart

metadata X X X X

url X X X X

type X X X X

metadata X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

ShaderProgram
url X X X X

type X X X X

Any number of additional fields as specified
in 31.4.7 ShaderProgram. X X X X

Shape

appearance X X X X X

geometry X X X X X

metadata X X X X X

bboxCenter X X X X X

bboxSize X X X X X

SignalPdu

address X X X X X

applicationID X X X X X

data X X X X X

dataLength X X X X X

enabled X X X X

encodingScheme X X X X X

entityID X X X X X

metadata X X X X X

multicastRelayHost X X X X X

multicastRelayPort X X X X X

networkMode X X X X X

port X X X X X

radioID X X X X X

readInterval X X X X X

rtpHeaderExpected X X X X X

sampleRate X X X X X

samples X X X X X

siteID X X X X X

tdlType X X X X X

whichGeometry X X X X X

writeInterval X X X X X

isActive X X X X X

isNetworkReader X X X X X

isNetworkWriter X X X X X

isRtpHeaderHeard X X X X X

isStandAlone X X X X X

timestamp X X X X X

bboxCenter X X X X X

bboxSize X X X X X

SilhouetteEnhancementVolumeStyle

enabled X X

metadata X X

silhouetteBoundaryOpacity X X

silhouetteRetainedOpacity X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

silhouetteSharpness X X

surfaceNormals X X

SingleAxisHingeJoint

anchorPoint X X X

axis X X X

body1 X X X

body2 X X X

maxAngle X X X

metadata X X X

minAngle X X X

mustOutput X X X

stopBounce X X X

stopErrorCorrection X X X

angle X X X

angleRate X X X

body1AnchorPoint X X X

body2AnchorPoint X X X

SliderJoint

axis X X X

body1 X X X

body2 X X X

maxSeparation X X X

metadata X X X

minSeparation X X X

mustOutput X X X

stopBounce X X X

stopErrorCorrection X X X

separation X X X

separationRate X X X

Sound

direction X X X X X

intensity X X X X X

location X X X X X

maxBack X X X X X

maxFront X X X X X

metadata X X X X X

minBack X X X X X

minFront X X X X X

priority X X X X X

source X X X X X

spatialize X X X X X

Sphere

metadata X X X X X

radius X X X X X

solid X X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

SphereSensor

autoOffset X X X X X

description X X X X X

enabled X X X X X

metadata X X X X X

offset X X X X X

isActive X X X X X

isOver X X X X X

rotation_changed X X X X X

trackPoint_changed X X X X X

SplinePositionInterpolator

set_fraction X X X

closed X X X

key X X X

keyValue X X X

keyVelocity X X X

metadata X X X

normalizeVelocity X X X

value_changed X X X

SplinePositionInterpolator2D

set_fraction X X X

closed X X X

key X X X

keyValue X X X

keyVelocity X X X

metadata X X X

normalizeVelocity X X X

value_changed X X X

SplineScalarInterpolator

set_fraction X X X

closed X X X

key X X X

keyValue X X X

keyVelocity X X X

metadata X X X

normalizeVelocity X X X

value_changed X X X

SpotLight

ambientIntensity X X X X X

attenuation X X X X X

beamWidth X X X X X

color X X X X X

cutOffAngle X X X X X

direction X X X X X

global X X X X

intensity X X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

location X X X X X

metadata X X X X X

on X X X X X

radius X X X X X

SquadOrientationInterpolator

set_fraction X X X

key X X X

keyValue X X X

metadata X X X

normalizeVelocity X X X

value_changed X X X

StaticGroup

metadata X X X X X

children X X X X X

bboxCenter X X X X X

bboxSize X X X X X

StringSensor

deletionAllowed X X X X X

enabled X X X X X

metadata X X X X X

enteredText X X X X X

finalText X X X X X

isActive X X X X X

SurfaceEmitter

set_coordIndex X X X

metadata X X X

speed X X X

variation X X X

coordIndex X X X

mass X X X

surface X X X

surfaceArea X X X

Switch

addChildren X X X X X

removeChildren X X X X X

children X X X X X

metadata X X X X X

whichChoice X X X X X

bboxCenter X X X X X

bboxSize X X X X X

TexCoordChaser2D

set_destination X X

set_value X X

metadata X X

isActive X X

value_changed X X

duration X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

initialDestination X X

initialValue X X

TexCoordDamper2D

set_destination X X X

set_value X X X

metadata X X X

tau X X X

tolerance X X X

isActive X X X

value_changed X X X

initialDestination X X X

initialValue X X X

order X X X

Text

fontStyle X X X X X

length X X X X X

maxExtent X X X X X

metadata X X X X X

string X X X X X

lineBounds X X X X

textBounds X X X X

solid X X X X X

TextureBackground

set_bind X X X X X

groundAngle X X X X X

groundColor X X X X X

backTexture X X X X X

bottomTexture X X X X X

frontTexture X X X X X

leftTexture X X X X X

metadata X X X X X

rightTexture X X X X X

topTexture X X X X X

skyAngle X X X X X

skyColor X X X X X

transparency X X X

bindTime X X X X X

isBound X X X X X

TextureCoordinate

mapping X

metadata X X X X X

point X X X X X

TextureCoordinate3D

mapping X

metadata X X X X

point X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

TextureCoordinate4D

mapping X

metadata X X X X

point X X X X

TextureCoordinateGenerator

mapping X

metadata X X X X X

mode X X X X X

parameter X X X X X

TextureProperties

anisotropicDegree X X X

borderColor X X X

borderWidth X X X

boundaryModeS X X X

boundaryModeT X X X

boundaryModeR X X X

magnificationFilter X X X

metadata X X X

minificationFilter X X X

textureCompression X X X

texturePriority X X X

generateMipMaps X X X

TextureTransform

center X X X X X

mapping X

metadata X X X X X

rotation X X X X X

scale X X X X X

translation X X X X X

TextureTransform3D

center X X X X

mapping X

metadata X X X X

rotation X X X X

scale X X X X

translation X X X X

TextureTransformMatrix3D

mapping X

metadata X X X X

matrix X X X X

TimeSensor

cycleInterval X X X X X

enabled X X X X X

loop X X X X X

metadata X X X X X

pauseTime X X X X X

resumeTime X X X X X

startTime X X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

stopTime X X X X X

cycleTime X X X X X

elapsedTime X X X X X

fraction_changed X X X X X

isActive X X X X X

isPaused X X X X X

time X X X X X

TimeTrigger

set_boolean X X X X X

metadata X X X X X

triggerTime X X X X X

ToneMappedVolumeStyle

coolColor X X

enabled X X

metadata X X

surfaceNormals X X

warmColor X X

TouchSensor

description X X X X X

enabled X X X X X

metadata X X X X X

hitNormal_changed X X X X X

hitPoint_changed X X X X X

hitTexCoord_changed X X X X X

isActive X X X X X

isOver X X X X X

touchTime X X X X X

Transform

addChildren X X X X X

removeChildren X X X X X

center X X X X X

children X X X X X

metadata X X X X X

rotation X X X X X

scale X X X X X

scaleOrientation X X X X X

translation X X X X X

bboxCenter X X X X X

bboxSize X X X X X

TransformSensor

center X X X

enabled X X X

metadata X X X

size X X X

targetObject X X X

enterTime X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

exitTime X X X

isActive X X X

orientation_changed X X X

position_changed X X X

TransmitterPdu

address X X X X X

antennaLocation X X X X X

antennaPatternLength X X X X X

antennaPatternType X X X X X

applicationID X X X X X

cryptoKeyID X X X X X

cryptoSystem X X X X X

enabled X X X X

entityID X X X X X

frequency X X X X X

inputSource X X X X X

lengthOfModulationParameters X X X X X

metadata X X X X X

modulationTypeDetail X X X X X

modulationTypeMajor X X X X X

modulationTypeSpreadSpectrum X X X X X

modulationTypeSystem X X X X X

multicastRelayHost X X X X X

multicastRelayPort X X X X X

networkMode X X X X X

port X X X X X

power X X X X X

radioEntityTypeCategory X X X X X

radioEntityTypeCountry X X X X X

radioEntityTypeDomain X X X X X

radioEntityTypeKind X X X X X

radioEntityTypeNomenclature X X X X X

radioEntityTypeNomenclatureVersion X X X X X

radioID X X X X X

readInterval X X X X X

relativeAntennaLocation X X X X X

rtpHeaderExpected X X X X X

siteID X X X X X

transmitFrequencyBandwidth X X X X X

transmitState X X X X X

whichGeometry X X X X X

writeInterval X X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

isActive X X X X X

isNetworkReader X X X X X

isNetworkWriter X X X X X

isRtpHeaderHeard X X X X X

isStandAlone X X X X X

timestamp X X X X X

bboxCenter X X X X X

bboxSize X X X X X

TriangleFanSet

attrib X X X X

color X X X X X

coord X X X X X

fanCount X X X X X

fogCoord X X X X

metadata X X X X X

normal X X X X X

texCoord X X X X X

ccw X X X X X

colorPerVertex X X X X X

normalPerVertex X X X X X

solid X X X X X

TriangleSet

attrib X X X X

color X X X X X

coord X X X X X

fogCoord X X X X

metadata X X X X X

normal X X X X X

texCoord X X X X X

ccw X X X X X

colorPerVertex X X X X X

normalPerVertex X X X X X

solid X X X X X

TriangleSet2D

metadata X X X X X

vertices X X X X X

solid X X X X X

TriangleStripSet

attrib X X X X

color X X X X X

coord X X X X X

fogCoord X X X X

metadata X X X X X

normal X X X X X

stripCount X X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

texCoord X X X X X

ccw X X X X X

colorPerVertex X X X X X

normalPerVertex X X X X X

solid X X X X X

TwoSidedMaterial

ambientIntensity X X X

backAmbientIntensity X X X

backDiffuseColor X X X

backEmissiveColor X X X

backShininess X X X

backSpecularColor X X X

backTransparency X X X

diffuseColor X X X

emissiveColor X X X

metadata X X X

shininess X X X

separateBackColor X X X

specularColor X X X

transparency X X X

UnlitMaterial

emissiveColor X

emissiveTexture X

emissiveTextureMapping X

metadata X

normalTexture X

normalTextureMapping X

normalScale X

transparency X

UniversalJoint

anchorPoint X X X

axis1 X X X

axis2 X X X

body1 X X X

body2 X X X

metadata X X X

mustOutput X X X

stop1Bounce X X X

stop1ErrorCorrection X X X

stop2Bounce X X X

stop2ErrorCorrection X X X

body1AnchorPoint X X X

body1Axis X X X

body2AnchorPoint X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

body2Axis X X X

 Viewpoint

set_bind X X X X X

centerOfRotation X X X X X

description X X X X X

fieldOfView X X X X X

jump X X X X X

metadata X X X X X

orientation X X X X X

retainUserOffsets X X X

position X X X X X

bindTime X X X X X

isBound X X X X X

ViewpointGroup

center X X X

children X X X

description X X X

displayed X X X

metadata X X X

retainUserOffsets X X X

size X X X

Viewport

addChildren X X X

removeChildren X X X

children X X X

clipBoundary X X X

metadata X X X

bboxCenter X X X

bboxSize X X X

VisibilitySensor

center X X X X X

enabled X X X X X

metadata X X X X X

size X X X X X

enterTime X X X X X

exitTime X X X X X

isActive X X X X X

VolumeData

dimensions X X

metadata X X

renderStyle X X

voxels X X

bboxCenter X X

bboxSize X X

set_coordIndex X X X

coord X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

VolumeEmitter

direction X X X

metadata X X X

speed X X X

variation X X X

coordIndex X X X

internal X X X

mass X X X

surfaceArea X X X

VolumePickSensor

enabled X X X

metadata X X X

objectType X X X

pickingGeometry X X X

pickTarget X X X

isActive X X X

pickedGeometry X X X

intersectionType X X X

sortOrder X X X

WindPhysicsModel

direction X X X

enabled X X X

gustiness X X X

metadata X X X

speed X X X

turbulence X X X

WorldInfo

metadata X X X X X

info X X X X X

title X X X X X

X3DAppearanceChildNode metadata X X X X X

X3DAppearanceNode metadata X X X X X

X3DBackgroundNode

set_bind X X X X X

groundAngle X X X X X

groundcolor X X X X X

metadata X X X X X

skyAngle X X X X X

skyColor X X X X X

transparency X X X

bindTime X X X X X

isBound X X X X X

set_bind X X X X X

metadata X X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

X3DBindableNode
bindTime X X X X X

isBound X X X X X

X3DBoundedObject
bboxCenter X X X X X

bboxSize X X X X X

X3DChaserNode

set_destination X X X

set_value X X X

metadata X X X

isActive X X X

value_changed X X X

duration X X X

initialDestination X X X

initialValue X X X

X3DChildNode metadata X X X X X

X3DColorNode metadata X X X X X

X3DComposableVolumeRenderStyleNode
enabled X X

metadata X X

X3DComposedGeometryNode

attrib X X X X

color X X X X X

coord X X X X X

fogCoord X X X X

metadata X X X X X

normal X X X X X

texCoord X X X X X

ccw X X X X X

colorPerVertex X X X X X

normalPerVertex X X X X X

solid X X X X X

X3DCoordinateNode metadata X X X X X

X3DDamperNode

set_destination X X X

set_value X X X

metadata X X X

tau X X X

tolerance X X X

isActive X X X

value_changed X X X

initialDestination X X X

initialValue X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

order X X X

X3DDragSensorNode

autoOffset X X X X X

description X X X X X

enabled X X X X X

metadata X X X X X

isActive X X X X X

isOver X X X X X

trackPoint_changed X X X X X

X3DEnvironmentalSensorNode

center X X X X X

enabled X X X X X

metadata X X X X X

size X X X X X

enterTime X X X X X

exitTime X X X X X

isActive X X X X X

X3DEnvironmentTextureNode metadata X X X X

X3DFollowerNode

set_destination X X X

set_value X X X

metadata X X X

isActive X X X

value_changed X X X

initialDestination X X X

initialValue X X X

X3DFogObject

color X X X X

fogType X X X X

visibilityRange X X X X

X3DFontStyleNode metadata X X X X X

X3DGeometricPropertyNode metadata X X X X X

X3DGeometryNode metadata X X X X X

X3DGroupingNode

addChildren X X X X X

removeChildren X X X X X

children X X X X X

metadata X X X X X

bboxCenter X X X X X

bboxSize X X X X X

X3DInfoNode metadata X X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

X3DInterpolatorNode

set_fraction X X X X X

key X X X X X

keyValue X X X X X

metadata X X X X X

value_changed X X X X X

X3DKeyDeviceSensorNode

enabled X X X X X

metadata X X X X X

isActive X X X X X

X3DLayerNode

pickable X X X

metadata X X X

viewport X X X

X3DLayoutNode metadata X X X

X3DLightNode

ambientIntensity X X X X X

color X X X X X

global X X X X X

intensity X X X X X

metadata X X X X X

on X X X X X

X3DMaterialNode metadata X X X X X

X3DMetadataObject
name X X X X X

reference X X X X X

X3DNBodyCollidableNode

enabled X X X

metadata X X X

rotation X X X

translation X X X

bboxCenter X X X

bboxSize X X X

X3DNBodyCollisionSpaceNode

enabled X X X

metadata X X X

bboxCenter X X X

bboxSize X X X

X3DNetworkSensorNode

enabled X X X X X

metadata X X X X X

isActive X X X X X

X3DNode metadata X X X X X

X3DNormalNode metadata X X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

X3DNurbsControlCurveNode
controlPoint X X X X X

metadata X X X X X

X3DNurbsSurfaceGeometryNode

controlPoint X X X X X

metadata X X X X X

texCoord X X X X X

uTessellation X X X X X

vTessellation X X X X X

weight X X X X X

solid X X X X X

uClosed X X X X X

uDimension X X X X X

uKnot X X X X X

uOrder X X X X X

vClosed X X X X X

vDimension X X X X X

vKnot X X X X X

vOrder X X X X X

X3DOneSidedMaterialNode

emissiveColor X

emissiveTexture X

emissiveTextureMapping X

metadata X

normalTexture X

normalTextureMapping X

normalScale X

X3DParametricGeometryNode metadata X X X X X

X3DParticleEmitterNode

metadata X X X

speed X X X

variation X X X

mass X X X

surfaceArea X X X

X3DParticlePhysicsModelNode
enabled X X X

metadata X X X

X3DPickableObject
enabled X X X

metadata X X X

X3DPickSensorNode

enabled X X X

metadata X X X

matchCriterion X X X

objectType X X X

pickingGeometry X X X

pickTarget X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

pickedGeometry X X X

isActive X X X

intersectionType X X X

sortOrder X X X

X3DPointingDeviceSensorNode

description X X X X X

enabled X X X X X

metadata X X X X X

isActive X X X X X

isOver X X X X X

X3DProductStructureChildNode
metadata X X X X

name X X X X

X3DProgrammableShaderObject none X X X X

X3DPrototypeInstance metadata X X X X X

X3DRigidJointNode

body1 X X X

body2 X X X

metadata X X X

mustOutput X X X

X3DScriptNode metadata X X X

X3DSensorNode

enabled X X X X X

metadata X X X X X

isActive X X X X X

X3DSequencerNode

next X X X X X

previous X X X X X

set_fraction X X X X X

key X X X X X

keyValue X X X X X

metadata X X X X X

value_changed X X X X X

X3DShaderNode

activate X X X X

metadata X X X X

isSelected X X X X

isValid X X X X

language X X X X

X3DShapeNode

appearance X X X X X

geometry X X X X X

metadata X X X X X

bboxCenter X X X X X

bboxSize X X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

X3DSoundNode metadata X X X X X

X3DSoundSourceNode

description X X X X X

loop X X X X X

metadata X X X X X

pauseTime X X X X X

pitch X X X X X

resumeTime X X X X X

startTime X X X X X

stopTime X X X X X

duration_changed X X X X X

elapsedTime X X X X X

isActive X X X X X

isPaused X X X X X

X3DSingleTextureCoordinateNode
mapping X

metadata X

X3DSingleTextureCoordinateNode metadata X

X3DSingleTextureCoordinateNode
mapping X

metadata X

X3DTexture2DNode

metadata X X X X X

repeatS X X X X X

repeatT X X X X X

X3DTexture3DNode

metadata X X X X

repeatS X X X X

repeatT X X X X

repeatR X X X X

X3DTextureCoordinateNode metadata X X X X X

X3DTextureNode metadata X X X X X

X3DTextureTransformNode metadata X X X X X

X3DTimeDependentNode

loop X X X X X

metadata X X X X X

pauseTime X X X X X

resumeTime X X X X X

startTime X X X X X

stopTime X X X X X

elapsedTime X X X X X

isActive X X X X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

isPaused X X X X X

X3DTouchSensorNode

description X X X X X

enabled X X X X X

metadata X X X X X

isActive X X X X X

isOver X X X X X

touchTime X X X X X

X3DTriggerNode metadata X X X X X

X3DUrlObject url X X X X X

X3DVertexAttributeNode
metadata X X X X

name X X X X

X3DViewpointNode

set_bind X X X

centerOfRotation X X X

description X X X

jump X X X

metadata X X X

orientation X X X

position X X X

retainUserOffsets X X X

bindTime X X X

isBound X X X

X3DViewportNode

addChildren X X X

removeChildren X X X

children X X X

metadata X X X

bboxCenter X X X

bboxSize X X X

X3DVolumeDataNode

dimensions X X

metadata X X

bboxCenter X X

bboxSize X X

X3DVolumeRenderStyleNode
enabled X X

metadata X X

Table Z.3 lists each statement specified by this part of ISO/IEC 19775. For each statement, the
parameters supported by each version are identified listed in the order specified by the statement
definition. Statements will appear in multiple rows if parameters have been added in subsequent
versions.

Table Z.3 — Version content (statements)

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content

versionContent.html[8/1/2020 10:00:25 AM]

Statement Parameters 3.0 3.1 3.2 3.3 4.0

COMPONENT
name X X X X X

level X X X X X

EXTERNPROTO

externprotoName X X X X X

externprotoInterfaceDeclaration X X X X X

externprotoURL X X X X X

header

standard X X X X X

version X X X X X

character encoding X X X X X

comments X X X X X

META
key X X X X X

data X X X X X

PROFILE name X X X X X

PROTO

protoName X X X X X

protoInterfaceDeclaration X X X X X

protoDefinition X X X X X

ROUTE

fromNodeName X X X X X

fromFieldName X X X X X

toNodeName X X X X X

toFieldName X X X X X

UNIT

category X X

name X X

conversionFactor X X

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 14 Geometry2D component

geometry2D.html[8/1/2020 10:00:40 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

14 Geometry2D component

 14.1 Introduction

14.1.1 Name

The name of this component is "Geometry2D". This name shall be used when referring
to this component in the COMPONENT statement (see 7.2.5.4 Component statement).

14.1.2 Overview

This clause describes the Geometry2D component of this part of ISO/IEC 19775. This
includes how two-dimensional geometry is specified and what shapes are available.
Table 14.1 provides links to the major topics in this clause.

Table 14.1 — Topics

14.1 Introduction
14.1.1 Name
14.1.2 Overview

14.2 Concepts
14.2.1 Overview of geometry
14.2.2 Shape and geometry nodes
14.2.3 Geometric property nodes
14.2.4 Appearance nodes

14.3 Node Reference
14.3.1 Arc2D
14.3.2 ArcClose2D
14.3.3 Circle2D
14.3.4 Disk2D
14.3.5 Polyline2D
14.3.6 Polypoint2D
14.3.7 Rectangle2D
14.3.8 TriangleSet2D

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 14 Geometry2D component

geometry2D.html[8/1/2020 10:00:40 AM]

14.4 Support levels

Figure 14.1 — Arc2D node
Figure 14.2 — ArcClose2D node ("PIE" closure)
Figure 14.2 — ArcClose2D node ("CHORD" closure)
Figure 13.4 — Circle2D node
Figure 14.5 — Disk2D node
Figure 14.6 — Polyline2D node
Figure 14.7 — Polypoint2D node
Figure 14.8 — Rectangle2D node
Figure 14.9 — TriangleSet2D node

Table 14.1 — Topics
Table 14.2 — Geometry2D component support levels

 14.2 Concepts

14.2.1 Overview of geometry

The geometry2D component consists of only geometry nodes since it uses the shape,
geometry property, and appearance nodes defined in the Shape component. The
geometry2D nodes may be considered to be planar objects.

The two-dimensional coordinate system in which all 2D nodes are specified is defined to
be the z=0 plane of the current 3D coordinate system with x- and y-axes coincident
with those of the current 3D coordinate system. The origin of the 2D coordinate system
is defined to be the origin of the 3D coordinate system. The unspecified z-component
of a 2D coordinate is defined to always have value zero. The position and orientation of
2D nodes are affected by all transformations whether 2D or 3D.

Each face in a 2D node is coplanar with the z=0 plane of the coordinate system in which
it is defined. Faces have both a front and a back face. The front face is defined to be
that on the positive side of the z=0 plane. Faces are subject to culling as defined
elsewhere in this standard for 3D geometry.

When 2D nodes are viewed edge-on, they disappear as they have no depth.

14.2.2 Shape and geometry nodes

The Shape node is defined in 12 Shape component.

14.2.3 Geometric property nodes

Several geometry nodes contain geometric property nodes such as Coordinate, Color,
ColorRGBA, and/or Normal. These nodes are specified in 11 Rendering component. The
X3DTextureCoordinate nodes specified in 18 Texturing component are also geometry
property nodes.

14.2.4 Appearance nodes

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 14 Geometry2D component

geometry2D.html[8/1/2020 10:00:40 AM]

Shape nodes may specify an Appearance node that describes the appearance properties
(material and texture) to be applied to the Shape's geometry. Appearance is described
in 12 Shape component

The interaction between the appearance properties and properties specific to geometry
nodes is described in 12 Shape component.

 14.3 Node reference

14.3.1 Arc2D
Arc2D : X3DGeometryNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFFloat [] endAngle π/2 [-2π,2π]
 SFFloat [] radius 1 (0,∞)
 SFFloat [] startAngle 0 [-2π,2π]
}

The Arc node specifies a linear circular arc whose center is at (0,0) and whose angles
are measured starting at the positive x-axis and sweeping towards the positive y-axis.
The radius field specifies the radius of the circle of which the arc is a portion. The arc
extends from the startAngle counterclockwise to the endAngle. The values of startAngle
and endAngle shall be in the range [-2π, 2π] radians (or the equivalent if a different
angle base unit has been specified). If startAngle and endAngle have the same value, a
circle is specified.

See Figure 14.1 for a depiction of the Arc node.

Figure 14.1 — Arc2D node

14.3.2 ArcClose2D
ArcClose2D : X3DGeometryNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFString [] closureType "PIE" ["PIE"|"CHORD"]
 SFFloat [] endAngle π/2 [-2π,2π]
 SFFloat [] radius 1 (0,∞)
 SFBool [] solid FALSE
 SFFloat [] startAngle 0 [-2π,2π]
}

The ArcClose node specifies a portion of a circle whose center is at (0,0) and whose
angles are measured starting at the positive x-axis and sweeping towards the positive
y-axis. The end points of the arc specified are connected as defined by the closureType
field. The radius field specifies the radius of the circle of which the arc is a portion. The
arc extends from the startAngle counterclockwise to the endAngle. The value of radius
shall be greater than zero. The values of startAngle and endAngle shall be in the range
[-2π, 2π] radians (or the equivalent if a different default angle base unit has been

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 14 Geometry2D component

geometry2D.html[8/1/2020 10:00:40 AM]

specified). If startAngle and endAngle have the same value, a circle is specified and
closureType is ignored. If the absolute difference between startAngle and endAngle is
greater than or equal to 2π, a complete circle is produced with no chord or radial line(s)
drawn from the center.

A closureType of "PIE" connects the end point to the start point by defining two straight
line segments first from the end point to the center and then the center to the start
point. This forms a pie wedge as shown in Figure 14.2.

Figure 14.2 — ArcClose2D node ("PIE" closure)

A closureType of "CHORD" connects the end point to the start point by defining a straight
line segment from the end point to the start point. This forms an arc segment as shown
in Figure 14.3.

Figure 14.3 — ArcClose2D node ("CHORD" closure)

Textures are applied individually to each face of the ArcClose2D. On the front (+Z) and
back (-Z) faces of the ArcClose2D, when viewed from the +Z-axis, the texture is
mapped onto each face with the same orientation as if the image were displayed
normally in 2D. TextureTransform affects the texture coordinates of the ArcClose2D
(see 18.4.9 TextureTransform).

11.2.3 Common geometry fields provides a complete description of the solid field.

14.3.3 Circle2D
Circle2D : X3DGeometryNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFFloat [] radius 1 (0,∞)
}

The Circle2D node specifies a circle centred at (0,0) in the local 2D coordinate system.
The radius field specifies the radius of the Circle2D. The value of radius shall be greater
than zero. Figure 14.4 illustrates the Circle2D node with a dashed linetype applied.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 14 Geometry2D component

geometry2D.html[8/1/2020 10:00:40 AM]

Figure 14.4 — Circle2D node

14.3.4 Disk2D
Disk2D : X3DGeometryNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFFloat [] innerRadius 0 [0,∞)
 SFFloat [] outerRadius 1 (0,∞)
 SFBool [] solid FALSE
}

The Disk2D node specifies a circular disk which is centred at (0, 0) in the local
coordinate system. The outerRadius field specifies the radius of the outer dimension of
the Disk2D. The innerRadius field specifies the inner dimension of the Disk2D. The
value of outerRadius shall be greater than zero. The value of innerRadius shall be
greater than or equal to zero and less than or equal to outerRadius. If innerRadius is
zero, the Disk2D is completely filled. Otherwise, the area within the innerRadius forms a
hole in the Disk2D. If innerRadius is equal to outerRadius, a solid circular line shall be
drawn using the current line properties. Figure 14.5 illustrates the Disk2D node
containing a non-zero innerRadius.

Figure 14.5 — Disk2D node

Textures are applied individually to each face of the Disk2D. On the front (+Z) and back
(-Z) faces of the Disk2D, when viewed from the +Z-axis, the texture is mapped onto
each face with the same orientation as if the image were displayed normally in 2D.
TextureTransform affects the texture coordinates of Disk2D nodes (see 18.4.9
TextureTransform).

11.2.3 Common geometry fields provides a complete description of the solid field.

14.3.5 Polyline2D
Polyline2D : X3DGeometryNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFVec2f [] lineSegments [] (-∞,∞)
}

The Polyline2D node specifies a series of contiguous line segments in the local 2D
coordinate system connecting the specified vertices. The lineSegments field specifies
the vertices to be connected. Figure 14.6 illustrates the Polyline2D node.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 14 Geometry2D component

geometry2D.html[8/1/2020 10:00:40 AM]

Figure 14.6 — Polyline2D node

14.3.6 Polypoint2D
Polypoint2D : X3DGeometryNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFVec2f [in,out] point [] (-∞,∞)
}

The Polyline2D node specifies a set of vertices in the local 2D coordinate system at each
of which is displayed a point. The points field specifies the vertices to be displayed.
Figure 14.7 illustrates the Polypoint2D node by depicting the line in Figure 14.6 (with
points augmented for illustrative purposes).

Figure 14.7 — Polypoint2D node

14.3.7 Rectangle2D
Rectangle2D : X3DGeometryNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFVec2f [] size 2 2 (0,∞)
 SFBool [] solid FALSE
}

The Rectangle2D node specifies a rectangle centred at (0, 0) in the current local 2D
coordinate system and aligned with the local coordinate axes. By default, the box
measures 2 units in each dimension, from -1 to +1. The size field specifies the extents
of the box along the X-, and Y-axes respectively and each component value shall be
greater than zero. Figure 14.8 illustrates the Rectangle2D node with a FillProperties
node defining a hatch style.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 14 Geometry2D component

geometry2D.html[8/1/2020 10:00:40 AM]

Figure 14.8 — Rectangle2D node

Textures are applied individually to each face of the Rectangle2D. On the front (+Z)
and back (-Z) faces of the Rectangle2D, when viewed from the +Z-axis, the texture is
mapped onto each face with the same orientation as if the image were displayed
normally in 2D. TextureTransform affects the texture coordinates of the Rectangle2D
(see 18.4.9 TextureTransform).

11.2.3 Common geometry fields provides a complete description of the solid field.

14.3.8 TriangleSet2D
TriangleSet2D : X3DGeometryNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFVec2f [in,out] vertices [] (-∞,∞)
 SFBool [] solid FALSE
}

The TriangleSet2D node specifies a set of triangles in the local 2D coordinate system.
The vertices field specifies the triangles to be displayed. The number of vertices
provided shall be evenly divisible by three. Excess vertices shall be ignored. Figure
14.9 illustrates the TriangleSet2D node.

Figure 14.9 — TriangleSet2D node

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 14 Geometry2D component

geometry2D.html[8/1/2020 10:00:40 AM]

11.2.3 Common geometry fields provides a complete description of the solid field.

Textures are applied individually to each face of the TriangleSet2D. On the front (+Z)
and back (-Z) faces of the TriangleSet2D, when viewed from the +Z-axis, the texture is
mapped onto each face with the same orientation as if the image were displayed
normally in 2D. TextureTransform affects the texture coordinates of the TriangleSet2D
(see 18.4.9 TextureTransform).

 14.4 Support levels
The Geometry2D component provides two levels of support as specified in Table 14.2.
Level 1 provides the basic support for two-dimensional geometry with straight sides.
Level 2 adds support for two-dimensional geometry with non-straight sides.

 Table 14.2 — Geometry2D component support levels

Level Prerequisites Nodes/Features Support

1

Core 1
Grouping 1
Shape 1
Rendering 1

Polyline2D All fields fully
supported.

Polypoint2D All fields fully
supported.

Rectangle2D All fields fully
supported.

TriangleSet2D All fields fully
supported.

2

Core 1
Grouping 1
Shape 1
Rendering 1

All Level 1 Geometry2D
nodes

All fields fully
supported.

Arc2D All fields fully
supported.

ArcClose2D All fields fully
supported.

Circle2D All fields fully
supported.

All fields fully

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 14 Geometry2D component

geometry2D.html[8/1/2020 10:00:40 AM]

Disk2D supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 35 Layering component

layering.html[8/1/2020 10:00:41 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

35 Layering component

 35.1 Introduction

35.1.1 Name

The name of this component is "Layering". This name shall be used when referring to
this component in the COMPONENT statement (see 7.2.5.4 Component statement).

35.1.2 Overview

This subclause describes the Layering component of this International Standard. This
includes how to layer a set of subscene layers into a composite scene. Table 35.1
provides links to the major topics in this subclause.

Table 35.1 — Topics

35.1 Introduction
35.1.1 Name
35.1.2 Overview

35.2 Concepts
35.2.1 Overview of layering
35.2.2 Layer sets
35.2.3 Layers
35.2.4 Viewports

35.3 Abstract types
35.3.1 X3DLayerNode
35.3.2 X3DViewportNode

35.4 Node reference
35.4.1 Layer
35.4.2 LayerSet
35.4.3 Viewport

35.5 Support levels

Table 35.1 — Topics

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 35 Layering component

layering.html[8/1/2020 10:00:41 AM]

Table 35.2 — Layering component support levels

35.2 Concepts

35.2.1 Overview of layering

A scene is embodied by the basic concept of layering. A scene is defined to consist of a
sequence of layers and the order in which they are to be rendered.

35.2.2 Layer sets

A layer set is defined to be an ordered list of X3DLayerNode nodes that form a scene.
The layers are assigned ordinals according to their position in the list in the LayerSet
node. The rendering order is specified by the order field. Thus, the layer first specified
in the order field will be the first layer rendered and will appear to be below any other
layers. The layer last specified in the order field will be the last layer rendered and will
correspondingly appear to be on top of all other layers.

The LayerSet node may make access to some of its content public by using the EXPORT
statement to identify public names.

Only one LayerSet node is allowed and shall be a root node.

35.2.3 Layers

Each subscene is specified by a single X3DLayerNode node that contains its definition.
The X3DLayerNode nodes may contain any child nodes allowed in grouping nodes.
Hence, X3DLayerNode nodes may be used to create special effects such as heads up
displays or non-transforming control elements. Each X3DLayerNode node contains its
own binding stacks and thus has its own viewpoints and navigation.

35.2.4 Viewports

The output to a surface can be constrained further by using an X3DViewportNode node.
These nodes are special grouping nodes that each define a set of clipping bounds within
the extent of a surface within which the children nodes of the X3DViewportNode will
appear. This provides support for the typical front/side/back/oblique views used by CAD
systems.

35.3 Abstract types

35.3.1 X3DLayerNode

X3DLayerNode : X3DNode, X3DPickableObject {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFString [in,out] objectType "ALL" ["ALL","NONE","TERRAIN",...]
 SFBool [in,out] pickable TRUE
 SFNode [in,out] viewport NULL [X3DViewportNode]
 SFBool [in out] visible TRUE
}

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 35 Layering component

layering.html[8/1/2020 10:00:41 AM]

The X3DLayerNode abstract node type is the base node type for layer nodes.

The pickable field determines if pick traversal is to be performed for this layer. An
X3DLayerNode node specified with pickable set to FALSE will not participate in picking
operations.

The viewport field constrains the output of the layer to a sub-region of the render
surface.

The visible field specifies whether or not the content within a node is visually displayed.
The value of this field has no effect on animation behaviors, collision behaviors, event
passing, or other non-visual characteristics.

35.3.2 X3DViewportNode

X3DViewportNode : X3DGroupingNode {
 MFNode [in] addChildren [X3DChildNode]
 MFNode [in] removeChildren [X3DChildNode]
 MFNode [in,out] children [] [X3DChildNode]
 SFBool [in out] bboxDisplay FALSE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [in out] visible TRUE
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 (0,∞) or -1 -1 -1
}

The X3DViewportNode abstract node type is the base node type for viewport nodes.
Nodes of this type specify a boundary to which all content affected by the node is to be
clipped. The boundary is specified in units appropriate for the surface on which the
content is to be rendered.

More details on the children, addChildren, and removeChildren fields can be found in
10.2 Concepts.

The bboxCenter and bboxSize fields specify a bounding box that encloses the children.
This is a hint that may be used for optimization purposes. The results are undefined if
the specified bounding box is smaller than the actual bounding box of the children at
any time. The default bboxSize value, (-1, -1, -1), implies that the bounding box is not
specified and, if needed, shall be calculated by the browser. More details on the
bboxCenter and bboxSize fields can be found in 10.2.2 Bounding boxes.

35.4 Node Reference

35.4.1 Layer

Layer : X3DLayerNode {
 MFNode [in] addChildren [X3DChildNode]
 MFNode [in] removeChildren [X3DChildNode]
 MFNode [in,out] children [] [X3DChildNode]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFString [in,out] objectType "ALL" ["ALL","NONE","TERRAIN",...]
 SFBool [in,out] pickable TRUE
 SFNode [in,out] viewport NULL [X3DViewportNode]
 SFBool [in out] visible TRUE
}

The Layer node specifies a children field that contains a list of nodes that define the
contents of the layer.

10.2.1 Grouping and children node types provides a description of the children,
addChildren, and removeChildren fields.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 35 Layering component

layering.html[8/1/2020 10:00:41 AM]

35.4.2 LayerSet

LayerSet : X3DNode {
 SFInt32 [in,out] activeLayer 0 ([0,∞)
 MFNode [in,out] layers [] [X3DLayerNode]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFInt32 [in,out] order [0] ([0,∞)
}

The LayerSet node specifies a list of layers and a rendering order.

The activeLayer field specifies the layer in which navigation takes place.

The list defined by layers contains the constituent parts of the scene. Each layer is
assigned an ordinal number depending on its position in the list. Ordinals start with the
numeral 1 representing the first item in the list.

The list defined by order specifies the order in which the layers are rendered. The
number specified correspond to the ordinals of the layers. Order may contain
repetitions of the ordinals in which case the layer is rendered again. If order contains
numbers that are not ordinals assigned to layers, such numbers are ignored. Layers
included in layers that are not listed in order are not rendered.

Object picking according to the pickable field of a Layer node occurs even if that Layer
is not visible.

Nodes that are not part of a layer are considered to be the first nodes in layer 0.

35.4.3 Viewport

Viewport : X3DViewportNode, X3DBoundedObject {
 MFNode [in] addChildren [X3DChildNode]
 MFNode [in] removeChildren [X3DChildNode]
 MFNode [in,out] children [] [X3DChildNode]
 MFFloat [in,out] clipBoundary 0 1 0 1 [0,1]
 SFBool [in out] bboxDisplay FALSE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [in out] visible TRUE
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 (0,∞) or -1 -1 -1
}

The Viewport node is a grouping node that specifies a set of rectangular clip boundaries
against which the children nodes are clipped as they are rendered.

The clipBoundary field is specified in fractions of the normal render surface in the
sequence left/right/bottom/top. When the children are rendered, the output will only
appear in the specified subset of the render surface.

35.5 Support levels

The Layering component provides four levels of support as specified in Table 35.2. Level
1 provides the support for scenes and layers.

Table 35.2 — Layering component support levels

Level Prerequisites Nodes Support

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 35 Layering component

layering.html[8/1/2020 10:00:41 AM]

1 Core 1;
Grouping 1

 X3DLayerNode n/a

 X3DViewportNode n/a

 Layer All fields fully supported.

 LayerSet All fields fully supported.

 Viewport All fields fully supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Bibliography

bibliography.html[8/1/2020 10:00:42 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

Bibliography

This annex contains the informative references in this part of ISO/IEC 19775. These are references to
unofficial standards or documents. All official standards are referenced in 2 Normative references.

Identifier Reference

BLINN
James F. Blinn, Models of light reflection for computer synthesized pictures. Proc. 4th annual conference on
computer graphics and interactive techniques: 192.
http://dx.doi.org/10.1145/563858.563893.

CATROM Catmull, E. and Rom, R., A class of local interpolating splines in Computer-Aided Geometric Design" by
Barnhill, R.E and Reisenfeld, R. F., New York Press 1974.

Cg nVidia Cg Shading Language Specification
https://developer.download.nvidia.com/cg/Cg_1.5/1.5.0/0019/Cg_Specification.pdf

COM Component Object Model (General), Microsoft Developer Network Library Component Development
http://msdn.microsoft.com/library

DDS DDS File Reference, Microsoft Software Developer Network, 2004.
http://msdn.microsoft.com/en-us/library/windows/desktop/bb943992%28v=vs.85%29.aspx

DICOM The DICOM Standard, Digital Imaging and Communications in Medicine, Rosslyn, VA, 2003.
http://medical.nema.org

EBERT D.Ebert and P Rheingans, Volume Illustration: Non Photorealistic Rendering of Volume Model, Proceedings
of IEEE Visualization '00, (San Francisco, California 2000), 195-202.

ENGEL K. Engel, et. al., Real-Time Volume Graphics, A. K. Peters.
http://www.real-time-volume-graphics.org

FOLEY
Foley, van Dam, Feiner and Hughes, Computer Graphics Principles and Practice, 2nd Edition, Addison
Wesley, Reading, MA, 1990.
http://www.aw-bc.com

FX Effect Reference, Microsoft Software Developer Network, 2004.
http://msdn.microsoft.com/en-us/library/windows/desktop/bb219839%28v=vs.85%29.aspx

GOOCH1

Amy Gooch, Bruce Gooch, Peter Shirley, and Elaine Cohen. 1998. A non-photorealistic lighting model for
automatic technical illustration. In Proceedings of the 25th annual conference on Computer graphics and
interactive techniques (SIGGRAPH '98). ACM, New York, NY, USA, 447-452.
http://doi.acm.org/10.1145/280814.280950

GOOCH2 Bruce Gooch and Amy Gooch, Non-photorealistic rendering, A K Peters, Ltd., Natick, MA, 2001.

GIF
"GIF™" — Graphics Interchange Format™" — A standard defining a mechanism for the storage and
transmission of raster-based graphics information, Version 89a, CompuServe.
http://www.w3.org/Graphics/GIF/spec-gif89a.txt

http://portal.acm.org/citation.cfm?doid=563858.563893
http://portal.acm.org/citation.cfm?doid=563858.563893
http://dx.doi.org/10.1145/563858.563893
https://developer.download.nvidia.com/cg/Cg_1.5/1.5.0/0019/Cg_Specification.pdf
http://msdn.microsoft.com/library
http://msdn.microsoft.com/en-us/library/windows/desktop/bb943992(v=vs.85).aspx
http://medical.nema.org/
http://www.real-time-volume-graphics.org/
http://www.aw-bc.com/
http://msdn.microsoft.com/en-us/library/windows/desktop/bb219839(v=vs.85).aspx
http://doi.acm.org/10.1145/280814.280950
http://www.w3.org/Graphics/GIF/spec-gif89a.txt

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Bibliography

bibliography.html[8/1/2020 10:00:42 AM]

GLSL The OpenGL Shading Language Language Version 1.10 Document Revision 59, Silicon Graphics, Inc. 2004

HENYEY L. Henyey and J. Greenstein, Diffuse radiation in the galaxy, Astrophysics Journal, Vol 93, 1941.

HLSL Microsoft High Level Shading Language Specification for DirectX 9.0 http://msdn.microsoft.com/en-
us/library/windows/desktop/bb509638%28v=vs.85%29.aspx

JAPI

The Java™ Application Programming Interface, Volume 1 Core Packages by James Gosling, Frank Yellin and
The Java Team, Addison Wesley, Reading Massachusetts, 1996, ISBN 0-201-63453-8.

The Java™ Application Programming Interface, Volume 2 Window Toolkit and Applets by James Gosling,
Frank Yellin and The Java Team, Addison Wesley, Reading Massachusetts, 1996, ISBN 0-201-63459-7.

LMIP
Sato et. al., Local Maximum Intensity Projection: A new rendering method for vascular visualisation,
Journal of Computer Assisted Tomography, Vol 22, No 6, 1998, 2005
http://citeseer.ist.psu.edu/31456.html

NRRD Definition of NRRD File Format.
http://teem.sourceforge.net/nrrd/format.html

NURBS Piegl, Les and Tiller, Wayne; The NURBS Book, 2nd Edition, Springer-Verlag (Berlin), 1997, ISBN: 3-540-
61545-8.

OPENGL The OpenGL Graphics System: A Specification (Version 2.0 - October 22, 2004), Silicon Graphics, Inc.,
2004.

PERL
Programming Perl, 4th Edition by Tom Christiansen, Brian D. Foy, Larry Wall, and John Orwant, O'Reilly
Media, Sebastapol, CA, 2012.
http://www.oreilly.com

PHONG B. T. Phong, Illumination for computer generated pictures, Communications of ACM 18 (1975), no. 6, 311–
317.

SHOE Shoemake, Ken, Animating Rotations with Quaternion Calculus, ACM SIGGRAPH 1987, Course Notes 10.

SNDA Fundamentals of Computer Music, Dodge & Jerse, Shirmer Books, New York, 1985, pp 20-21.

SNDB
Spatial Audio Work in the Multimedia Computing Group, Graphics, Visualization, and Usability Center,
Georgia Institute of Technology, Atlanta, GA.
http://apple2.org.za/gswv/a2zine/GS.WorldView/Resources/MISC/Hightech.Sound/Spatial.Audio.Work.html

SNY87 MAP Projections - A Working Manual by J. P. Snyder. . U.S. Geological Survey Professional Paper 1395.
U.S. Government Printing Office, Washington, DC, 1987.

UDP IETF RFC 768, User Datagram Protocol, Internet standards track protocol.

URI IETF RFC 1630, Universal Resource Identifiers in WWW.

VOL Brooks, Paul, Volume data format, 2000.
http://paulbourke.net/dataformats/volumetric

WAV
Waveform Audio File Format, Multimedia Programming Interface and Data Specification v1.0, Issued by
IBM & Microsoft, 1991.
http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/Docs/RIFFNEW.pdf

http://oss.sgi.com/projects/ogl-sample/registry/ARB/GLSLangSpec.Full.1.10.59.pdf
http://msdn.microsoft.com/en-us/library/windows/desktop/bb509638(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb509638(v=vs.85).aspx
http://citeseer.ist.psu.edu/31456.html
http://teem.sourceforge.net/nrrd/format.html
http://www.opengl.org/documentation/specs/version2.0/glspec20.pdf
http://www.opengl.org/documentation/specs/version2.0/glspec20.pdf
http://www.oreilly.com/
http://apple2.org.za/gswv/a2zine/GS.WorldView/Resources/MISC/Hightech.Sound/Spatial.Audio.Work.html
http://www.ietf.org/rfc/rfc1738.txt?number=1738
http://www.ietf.org/rfc/rfc1630.txt?number=1630
http://paulbourke.net/dataformats/volumetric/
http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/Docs/RIFFNEW.pdf

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 15 Text component

text.html[8/1/2020 10:00:44 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

15 Text component

 15.1 Introduction

15.1.1 Name

The name of this component is "Text". This name shall be used when referring to this
component in the COMPONENT statement (see 7.2.5.4 Component statement).

15.1.2 Overview

This clause describes the Text component of this part of ISO/IEC 19775. Table 15.1
provides links to the major topics in this clause.

 Table 15.1 — Topics

15.1 Introduction
15.1.1 Name
15.1.2 Overview

15.2 Concepts
15.2.1 Text semantics

15.2.1.1 Overview
15.2.1.2 Appearance

15.2.2 Text formatting
15.2.2.1 Introduction
15.2.2.2 Font family and style
15.2.2.3 Direction and justification
15.2.2.4 Language

15.3 Abstract types
15.3.1 X3DFontStyleNode

15.4 Node reference
15.4.1 FontStyle
15.4.2 Text

15.5 Support levels

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 15 Text component

text.html[8/1/2020 10:00:44 AM]

Figure 15.1 — Key for Tables 15.5 and 15.6
Figure 15.2 — Text size and spacing fields
Figure 15.3 — lineBounds and textBounds measurements

Table 15.1 — Topics
Table 15.2 — Major Alignment, horizontal = TRUE
Table 15.3 — Major Alignment, horizontal = FALSE
Table 15.4 — Minor Alignment, horizontal = TRUE
Table 15.5 — Minor Alignment, horizontal = FALSE
Table 15.6 — horizontal = TRUE
Table 15.7 — horizontal = FALSE
Table 15.8 — Text component support levels

 15.2 Concepts

15.2.1 Text semantics

15.2.1.1 Overview

Text is processed as geometry in X3D. There are special considerations when specifying
text as well as when displaying text. This subclause describes the manner in which text
values are specified in X3D using the Text node. 15.2.2 Text formatting describes text
formatting.

15.2.1.2 Appearance

Textures are applied to text as follows. The texture origin is at the origin of the first
string, as determined by the justification. The texture is scaled equally in both S and T
dimensions, with the font height representing 1 unit. S increases to the right, and T
increases up.

12 Shape component specifies how Appearance, material and textures interact with
lighting. 17 Lighting component specifies the X3D lighting equations.

15.2.2 Text formatting

15.2.2.1 Introduction

There is a long history of text layout and formatting. This standard specifies techniques
to be used in X3D that provide support for a variety of languages and layout schemes.
Additional layout functionality is specified in 36 Layout component.

15.2.2.2 Font family and style

Font attributes are defined with the family and style fields. The browser shall map the
specified font attributes to an appropriate available font as described below.

The family field contains a case-sensitive MFString value that specifies a sequence of

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 15 Text component

text.html[8/1/2020 10:00:44 AM]

font family names in preference order. The browser shall search the MFString value for
the first font family name matching a supported font family. If none of the string values
matches a supported font family, the default font family "SERIF" shall be used. All
browsers shall support at least "SERIF" (the default) for a serif font such as Times
Roman; "SANS" for a sans-serif font such as Helvetica; and "TYPEWRITER" for a fixed-pitch
font such as Courier. An empty family value is identical to ["SERIF"]. Any font family
may be specified as shown in the following example of the specification of a font family:

 ["Lucida Sans Typewriter", "Lucida Sans", "Helvetica", "SANS"]

In this example, the browser would first look for the font family "Lucida Sans
Typewriter" on the system on which the browser is operating. If that is not available,
the browser looks for "Lucida Sans". If that is not available, the browser looks for
"Helvetica". If that is not available, the browser looks for any sans-serif font. If there
are not sans-serif fonts installed, the browser will use any serif font (the default). It is
the responsibility of the author that a suitable list of font families be specified so that
the desired appearance is achieved in most operating environments. However, the
author should always be willing to accept that the requested font families may not be
available resulting in the use of a browser-selected "SERIF" font being used.

The style field specifies a case-sensitive SFString value that may be "PLAIN" (the
default) for default plain type; "BOLD" for boldface type; "ITALIC" for italic type; or
"BOLDITALIC" for bold and italic type. An empty style value ("") is identical to "PLAIN". In
the case where the requested style is not available, the available style that is closest to
the requested style shall be used. For example, some font families specify a Demibold
style rather than Bold. In this case, specifying "BOLD" will result in the browser using
Demibold as the nearest substitute.

 15.2.2.3 Direction and justification

The horizontal, leftToRight, and topToBottom fields indicate the direction of the text.
The horizontal field indicates whether the text advances horizontally in its major
direction (horizontal = TRUE, the default) or vertically in its major direction (horizontal =
FALSE). The leftToRight and topToBottom fields indicate direction of text advance in the
major (characters within a single string) and minor (successive strings) axes of layout.
Which field is used for the major direction and which is used for the minor direction is
determined by the horizontal field. Note that the direction specification overrides any
modes inherent in a particular language.

For horizontal text (horizontal = TRUE), characters on each line of text advance in the
positive X direction if leftToRight is TRUE or in the negative X direction if leftToRight is
FALSE. Characters are advanced according to their natural advance width. Each line of
characters is advanced in the negative Y direction if topToBottom is TRUE or in the
positive Y direction if topToBottom is FALSE. Lines are advanced by the amount of
size × spacing.

For vertical text (horizontal = FALSE), characters on each line of text advance in the
negative Y direction if topToBottom is TRUE or in the positive Y direction if topToBottom
is FALSE. Characters are advanced according to their natural advance height. Each line of
characters is advanced in the positive X direction if leftToRight is TRUE or in the negative
X direction if leftToRight is FALSE. Lines are advanced by the amount of size × spacing.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 15 Text component

text.html[8/1/2020 10:00:44 AM]

The justify field determines alignment of the above text layout relative to the origin of
the object coordinate system. The justify field is an MFString which can contain 2
values. The first value specifies alignment along the major axis and the second value
specifies alignment along the minor axis, as determined by the horizontal field. An
empty justify value ("") is equivalent to the default value. If the second string, minor
alignment, is not specified, minor alignment defaults to the value "FIRST". Thus, justify
values of "", "BEGIN", and ["BEGIN" "FIRST"] are equivalent.

The major alignment is along the X-axis when horizontal is TRUE and along the Y-axis
when horizontal is FALSE. The minor alignment is along the Y-axis when horizontal is TRUE
and along the X-axis when horizontal is FALSE. The possible values for each enumerant
of the justify field are "FIRST", "BEGIN", "MIDDLE", and "END". For major alignment, each
line of text is positioned individually according to the major alignment enumerant. For
minor alignment, the block of text representing all lines together is positioned according
to the minor alignment enumerant. Tables 15.2-15.5 describe the behaviour in terms of
which portion of the text is at the origin.

 Table 15.2 — Major Alignment, horizontal = TRUE

justify Enumerant leftToRight = TRUE leftToRight = FALSE

 FIRST Left edge of each line Right edge of each line

 BEGIN Left edge of each line Right edge of each line

 MIDDLE Centred about X-axis Centred about X-axis

 END Right edge of each line Left edge of each line

 Table 15.3 — Major Alignment, horizontal = FALSE

justify Enumerant topToBottom = TRUE topToBottom = FALSE

 FIRST Top edge of each line Bottom edge of each line

 BEGIN Top edge of each line Bottom edge of each line

 MIDDLE Centred about Y-axis Centre about Y-axis

 END Bottom edge of each line Top edge of each line

 Table 15.4 — Minor Alignment, horizontal = TRUE

justify Enumerant topToBottom = TRUE topToBottom = FALSE

FIRST Baseline of first line Baseline of first line

BEGIN Top edge of first line Bottom edge of first line

MIDDLE Centred about Y-axis Centred about Y-axis

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 15 Text component

text.html[8/1/2020 10:00:44 AM]

END Bottom edge of last line Top edge of last line

 Table 15.5 — Minor Alignment, horizontal = FALSE

justify Enumerant leftToRight = TRUE leftToRight = FALSE

FIRST Left edge of first line Right edge of first line

BEGIN Left edge of first line Right edge of first line

MIDDLE Centred about X-axis Centred about X-axis

END Right edge of last line Left edge of last line

The default minor alignment is "FIRST". This is a special case of minor alignment when
horizontal is TRUE. Text starts at the baseline at the Y-axis. In all other cases, "FIRST" is
identical to "BEGIN". In Tables 15.6 and 15.7, each colour-coded cross-hair indicates
where the X-axis and Y-axis shall be in relation to the text. Figure 15.1 describes the
symbols used in Tables 15.6 and Table 15.7.

Figure 15.1 — Key for Tables 15.6 and 15.7

 Table 15.6 — horizontal = TRUE

 Table 15.7 — horizontal = FALSE

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 15 Text component

text.html[8/1/2020 10:00:44 AM]

 15.2.2.4 Language

The language field specifies the context of the language for the text string in the form
of a language and a country in which that language is used. Both the language and the
country are specified using the language tags defined in 2.[RFC3066] which may specify
only a country (using the three-character codes defined in ISO 3166) or both a
language (using the two-character codes specified in ISO 639) and a country (using the
three-character codes specified in ISO 3166) utilizing a sub-tag structure as specified in
2.[RFC3066]). The language tags contain between one and eight characters. Note that
the characters used in the language tag are in the Basic Latin alphabet that maps to
single-byte characters in the UTF-8 encoding.

See 2 Normative references, for more information on RFC 3066 (2.[RFC3066]), ISO/IEC
10646, ISO/IEC 639, and ISO 3166.

 15.3 Abstract types

15.3.1 X3DFontStyleNode
X3DFontStyleNode : X3DNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

This abstract node type is the base node type for all font style nodes.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 15 Text component

text.html[8/1/2020 10:00:44 AM]

 15.4 Node reference

 15.4.1 FontStyle
FontStyle : X3DFontStyleNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFString [] family "SERIF"
 SFBool [] horizontal TRUE
 MFString [] justify "BEGIN" ["BEGIN","END","FIRST","MIDDLE",""]
 SFString [] language ""
 SFBool [] leftToRight TRUE
 SFFloat [] size 1.0 (0,∞)
 SFFloat [] spacing 1.0 [0,∞)
 SFString [] style "PLAIN" ["PLAIN"|"BOLD"|"ITALIC"|"BOLDITALIC"|""]
 SFBool [] topToBottom TRUE
}

The FontStyle node defines the size, family, and style used for Text nodes (see 15.2.2
Text formatting), as well as the direction of the text strings and any language-specific
rendering techniques used for non-English text. See Text for a description of the Text
node.

The size field specifies the nominal height, in the local coordinate system of the Text
node, of glyphs rendered and determines the spacing of adjacent lines of text. Values of
the size field shall be greater than zero.

The spacing field determines the line spacing between adjacent lines of text. The
distance between the baseline of each line of text is (spacing × size) in the appropriate
direction (depending on other fields described below). The effects of the size and
spacing field are depicted in Figure 15.2 (spacing greater than 1.0). Values of the
spacing field shall be non-negative.

Figure 15.2 — Text size and spacing fields

 15.4.2 Text
Text : X3DGeometryNode {
 SFNode [in,out] fontStyle NULL [X3DFontStyleNode]
 MFFloat [in,out] length [] [0,∞)
 SFFloat [in,out] maxExtent 0.0 [0,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFString [in,out] string []
 MFVec2f [out] lineBounds
 SFVec3f [out] origin
 SFVec2f [out] textBounds
 SFBool [] solid FALSE
}

The Text node specifies a two-sided (by default), flat text string object positioned in the
Z=0 plane of the local coordinate system based on values defined in the fontStyle field
(see 15.4.1 FontStyle). Text nodes may contain multiple text strings specified using the
UTF-8 encoding as specified by ISO 10646. The text strings are stored in the order in
which the text mode characters are to be produced as defined by the parameters in the
FontStyle node.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 15 Text component

text.html[8/1/2020 10:00:44 AM]

The text strings are contained in the string field. The fontStyle field contains one
FontStyle node that specifies the font size, font family and style, direction of the text
strings, and any specific language rendering techniques used for the text. If no
FontStyle node is specified by the fontStyle field, the default values of the FontStyle
node are used.

The maxExtent field limits and compresses all of the text strings if the length of the
maximum string is longer than the maximum extent, as measured in the local
coordinate system. If the text string with the maximum length is shorter than the
maxExtent, then there is no compressing. The maximum extent is measured
horizontally for horizontal text (FontStyle node: horizontal=TRUE) and vertically for
vertical text (FontStyle node: horizontal=FALSE). The maxExtent field shall be greater
than or equal to zero.

The length field contains an MFFloat value that specifies the length of each text string in
the local coordinate system. The length of each line of type is measured horizontally for
horizontal text (FontStyle node: horizontal=TRUE) and vertically for vertical text
(FontStyle node: horizontal=FALSE). The length and maxExtent fields thus refer to local
coordinate units along the dimension of type flow (major axis). If the string is too short,
it is stretched (either by scaling the text or by adding space between the characters). If
the string is too long, it is compressed (either by scaling the text or by subtracting
space between the characters). If a length value is missing (for example, if there are
four strings but only three length values), the missing values are considered to be 0.
The length field shall be greater than or equal to zero.

Specifying a value of 0 for both the maxExtent and length fields indicates that the string
may be any length.

When the default values of length and maxExtent are used, the Text node shall
generate events called origin, lineBounds and textBounds to provide applications with
spatial data regarding the size and position of the rendered string(s) with the font being
used. These events are also generated when the default values of length and
maxExtent are used and the text is redrawn (e.g., the string field is changed
programmatically or the FontStyle node is replaced).

The field origin is a single 3D position that specifies the origin of the text local
coordinate system in units of the coordinate system in which the Text node is
embedded. The value of the origin field represents the upper left corner of the
textBounds. The field lineBounds is a set of 2D vectors where each vector contains the
size of the 2D bounding box for each line of rendered text in local text x and y units.
The textBounds event is a single 2D vector that contains the size in x and y dimensions
of the Text node’s 2D bounding box (all strings) as rendered. An example for each
value of the topToBottom of the FontStyle node is depicted in Figure 15.3. Through the
origin event, authors can locate relative measures of lineBounds and textBounds
regardless of the FontStyle's major or minor axis.

NOTE In horizontal font styles, the x dimension of the lineBounds and textBounds fields is equivalent to a specified
length or maxExtent (the major axis). However, in vertical font styles, the x dimension of the lineBounds and
textBounds fields is along the minor axis.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 15 Text component

text.html[8/1/2020 10:00:44 AM]

Figure 15.3 — lineBounds and textBounds measurements

11.2.3 Common geometry fields provides a complete description of the solid field.

 15.5 Support levels
The Text component provides 1 level of support as specified in Table 15.8.

 Table 15.8 — Text component support levels

Level Prerequisites Nodes/Features Support

1

Core 1
Grouping 1
Shape 1
Rendering 1

X3DFontStyleNode(abstract) n/a

FontStyle All fields fully
supported.

Text All fields fully
supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 15 Text component

text.html[8/1/2020 10:00:44 AM]

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 36 Layout component

layout.html[8/1/2020 10:00:46 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

36 Layout component

 36.1 Introduction

36.1.1 Name

The name of this component is "Layout". This name shall be used when referring to this
component in the COMPONENT statement (see 7.2.5.4 Component statement).

36.1.2 Overview

This subclause describes the Layout component of this part of ISO/IEC 19775. This
includes how to precisely position content in a scene in relation to the rendered results.
Table 36.1 provides links to the major topics in this subclause.

Table 36.1 — Topics

36.1 Introduction
36.1.1 Name
36.1.2 Overview

36.2 Concepts
36.2.1 Overview
36.2.2 Pixel-specific addressing
36.2.3 Viewports

36.3 Abstract types
36.3.1 X3DLayoutNode

36.4 Node reference
36.4.1 Layout
36.4.2 LayoutGroup
36.4.3 LayoutLayer
36.4.4 ScreenFontStyle
36.4.5 ScreenGroup

36.4 Support levels

Table 36.1 — Topics
Table 36.2 — Layout component support levels

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 36 Layout component

layout.html[8/1/2020 10:00:46 AM]

36.2 Concepts

36.2.1 Overview

This component provides a set of nodes that allow users to better integrate 2D content
with 3D content. In X3D, authors have historically generated a Heads-Up Display (HUD)
by placing content in a group that moves along with the user’s viewpoint. This approach
is limited in that the author has limited control over where the HUD geometry is
rendered relative to the display viewport.

EXAMPLE There is no way to ensure that the content will be aligned with a particular edge of the display viewport.

This component provides several nodes that enable the integration of 2D content into
the 3D scene. It allows for constructing a hierarchy of rectangular regions that are well
suited to contain 2D content, but can also contain 3D content. These 2D regions are not
effected by the user navigation or the bound X3DViewpointNode. They are aligned
relative to the main scene viewport, or the 2D region that act as its parent.

This component also contains a new X3DFontStyleNode node that can render text so
that it appears identical to typical 2D applications, with the eye soothing technique of
anti-aliasing.

36.2.2 Pixel-specific addressing

This component also provides utilities that allowing content authors the ability to scale
and locate 2D regions and content using pixel-specific addressing. Therefore, some of
the nodes and options in this component are dependent on the concept of pixel-based
display devices. It is recognized that some implementations do not use such devices.
Therefore, those pixel-specific nodes and options are not applicable to those
implementations. The pixel-specific nodes and options are contained in a support level
designated for pixel-specific concepts.

A node is specified that can exist anywhere in the scene hierarchy. This node forces a
scale so that one unit is one pixel.

36.2.3 Viewports

The output to a surface can be constrained further by using an X3DViewportNode node.
This node is a special grouping node that defines a set of clipping bounds within the
extent of a surface within which the children nodes of the viewport will appear. This
provides support for the typical front/side/back/oblique views used by CAD systems.

36.3 Abstract types

36.3.1 X3DLayoutNode
X3DLayoutNode : X3DChildNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 36 Layout component

layout.html[8/1/2020 10:00:46 AM]

}

This is the base node type for layout nodes.

36.4 Node Reference

36.4.1 Layout
Layout : X3DLayoutNode {
 MFString [in,out] align ["CENTER","CENTER"] ["LEFT"|"CENTER"|"RIGHT"&
 "BOTTOM"|"CENTER"|"TOP"]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFFloat [in,out] offset [0,0] (-∞,∞)
 MFString [in,out] offsetUnits ["WORLD","WORLD"] ["WORLD","FRACTION","PIXEL"]
 MFString [in,out] scaleMode ["NONE","NONE"] ["NONE","FRACTION","STRETCH","PIXEL"]
 MFFloat [in,out] size [1,1] (0,∞)
 MFString [in,out] sizeUnits ["WORLD","WORLD"] ["WORLD","FRACTION","PIXEL"]
}

The Layout node is used in the layout field of the LayoutLayer and LayoutGroup nodes.
The Layout node provides all the parameters that are required to define the size and
location of a 2D rectangular region that is associated with the containing node. Also, it
contains a field that defines how the content of the containing node shall be scaled.

The fields of interest in the Layout node are MFString and MFFloat fields. All have two
elements. The first value corresponds to the horizontal direction and the second field
corresponds to the vertical direction. If a field has a length of one, that value applies to
both the horizontal and vertical directions. If the align field has only one value, that
value shall be "CENTER".

The width and height of the layout rectangle is defined by two values in the size field.
The sizeUnits field specifies how to interpret the size values. If the value of the
sizeUnits field is "FRACTION", the size of the corresponding dimension is interpreted as a
fraction of the corresponding parent’s dimension.

EXAMPLE If the size value is (0.25, 0.5) and the value of sizeUnits (["FRACTION", "FRACTION"]), the width of the
region is one quarter of the width of the parent and the height of the region is one half of the height of the parent.

A sizeUnits value of "WORLD" specifies that the corresponding size value is interpreted
using the current world units of the parent node. Since the LayoutLayer node does not
have a parent, a value of "WORLD" is equivalent to a value of "FRACTION". Lastly, a sizeUnits
value of "PIXEL" specifies that the corresponding size value is in pixel units.

NOTE Implementations that do not support the concept of a pixel are not required to support the "PIXEL" option.

The values of the align, offset, and offsetUnits fields are used to determine the location
of the layout region. First, the align field values align the sized rectangle to an edge or
center of the parent rectangle. Then, the offset is applied using the units specified in
the offsetUnits field. The first value of the align field corresponds to the horizontal
alignment. The value "LEFT" specifies that the left side of this rectangle shall be aligned
with the left side of the parent rectangle. The value "RIGHT" specifies that the right side
of this rectangle shall be aligned with the right side of the parent rectangle. The value
"CENTER" specifies that this rectangle shall be horizontally centred in its parent. Similarly,
the second align field value aligns the vertical position of the rectangle to either the
"TOP", "BOTTOM" or "CENTER" of the parent rectangle.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 36 Layout component

layout.html[8/1/2020 10:00:46 AM]

After the alignment is applied, the values of the offset field are used to translate the
location of this rectangle after the initial alignment. The value of the offset field is
interpreted using the value of the offsetUnits field, using the same options and logic as
the sizeUnits field, described above.

The scaleMode field specifies how the scale of the parent is modified. The scale field has
two values, the first specifies the horizontal scale and the second value specifies the
vertical scale. A scaleMode field value of "NONE" specifies that the corresponding scale
value is not modified. Instead, the scale is inherited from its parent. Since a
LayoutLayer node does not have a parent, the value of "NONE" reverts to "FRACTION". A
scaleMode value of "FRACTION" specifies a scale in the corresponding direction so that one
unit is equal to the dimension (width or height) of this rectangle. A value of "PIXEL"
specifies a scale in the corresponding direction such that one unit is equal to one pixel.

NOTE Implementations that do not support the concept of a pixel are not required to support this "PIXEL" option.

A scaleMode value of "STRETCH" specifies a scale in the corresponding direction such that
the resulting scale in the horizontal direction is equal to the scale in the vertical
direction, thus producing a uniform scale. If one of the dimensions has a scaleMode
value of "STRETCH", and the other dimension has a value other than "STRETCH", the scale for
the dimension that is not "STRETCH" shall be computed first and the dimension
corresponding to the value of "STRETCH" can then be computed to achieve a uniform
scale. If both components of the scaleMode field are "STRETCH", the scale component
corresponding to the larger dimension of the rectangular region is set so that one unit is
equal to the dimension of the rectangle, and the other scale component is set so that
the resulting scale in the horizontal and vertical directions are the same.

36.4.2 LayoutGroup
LayoutGroup : X3DGroupingNode {
 MFNode [in] addChildren [X3DChildNode]
 MFNode [in] removeChildren [X3DChildNode]
 MFNode [in,out] children [] [X3DChildNode]
 SFBool [in out] bboxDisplay FALSE
 SFNode [in,out] layout NULL [X3DLayoutNode]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFNode [in,out] viewport NULL [X3DViewportNode]
 SFBool [in out] visible TRUE
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize 0 0 0 (-∞,∞)
}

The LayoutGroup is a grouping node whose children are related by a common layout
within a parent layout. Thus, a LayoutGroup can only be a child of a LayoutLayer node
or another LayoutGroup node.

The layout field contains an X3DLayoutNode node that specifies the information
required to locate and size the layout region of the LayoutGroup node relative to its
parent’s layout region and to scale the contents of the LayoutGroup. The content of the
LayoutGroup is clipped by the specified viewport.

10.2.1 Grouping and children node types specifies the children, addChildren, and
removeChildren fields.

The origin of the node is always in the center of its layout region. Thus, children (with
the exception of LayoutGroup) are specified in a coordinate system whose origin is
located at the center of the rectangle and can be transformed from that location.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 36 Layout component

layout.html[8/1/2020 10:00:46 AM]

The LayoutGroup node does not directly have any pixel dependent concepts. However,
the LayoutGroup node does contain a Layout node that does have pixel-specific options.

36.4.3 LayoutLayer
LayoutLayer : X3DLayerNode {
 MFNode [in] addChildren [X3DChildNode]
 MFNode [in] removeChildren [X3DChildNode]
 MFNode [in,out] children [] [X3DChildNode]
 SFNode [in,out] layout NULL [X3DLayoutNode]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFString [in,out] objectType "ALL" ["ALL","NONE","TERRAIN",...]
 SFBool [in,out] isPickablepickable TRUE
 SFNode [in,out] viewport NULL [X3DViewportNode]
 SFBool [in out] visible TRUE
}

The LayoutLayer node specifies a children field that contains a list of nodes that define
the subscene.

10.2.1 Grouping and children node types specifies the children, addChildren, and
removeChildren fields.

An OrthoViewpoint node is automatically established as the default node on the binding
stack. Although not restricted to require this, the LayoutLayer node is typically used as
the last rendered node in a LayerSet ordering.

The layout field contains an instance of X3DLayoutNode that contains the information
required to locate and size the LayoutLayer node’s rectangular region relative to the
main viewport, and to scale the content of the LayoutLayer. The content of the
LayoutLayer is clipped by the defined rectangular region.

36.4.4 ScreenFontStyle
ScreenFontStyle : X3DFontStyleNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFString [] family "SERIF"
 SFBool [] horizontal TRUE
 MFString [] justify "BEGIN" ["BEGIN","END","FIRST","MIDDLE",""]
 SFString [] language ""
 SFBool [] leftToRight TRUE
 SFFloat [] pointSize 12.0 (0,∞)
 SFFloat [] spacing 1.0 [0,∞)
 SFString [] style "PLAIN" ["PLAIN"|"BOLD"|"ITALIC"|"BOLDITALIC"|""]
 SFBool [] topToBottom TRUE
}

The ScreenFontStyle node specifies fonts styles in terms of the characteristics of a
particular surface upon which the text is to be rendered.

The fields in the ScreenFontStyle node are the same as those in the FontStyle node with
a single exception: the size field of the FontStyle node is replaced with a pointSize
field. The pointSize field specifies the size of text in points. Thus, the distance between
the baseline of each line of text is (spacing × pointSize) in the appropriate direction.

Each glyph of the text should be rendered as a quadrilateral with texture applied. The
texture for each character shall be generated using the specified font and font
attributes. The texture shall have an alpha component whose alpha value shall be
derived from the anti-aliasing feature of the glyph. Rendering should occur with bi-
linear filtering turned off for best results.

Otherwise, the attributes are as specified in 15.4.1 FontStyle.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 36 Layout component

layout.html[8/1/2020 10:00:46 AM]

36.4.5 ScreenGroup
ScreenGroup : X3DGroupingNode {
 MFNode [in] addChildren [X3DChildNode]
 MFNode [in] removeChildren [X3DChildNode]
 MFNode [in,out] children [] [X3DChildNode]
 SFBool [in out] bboxDisplay FALSE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [in out] visible TRUE
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 (0,∞) or -1 -1 -1
}

The ScreenGroup node is a node derived from X3DGroupingNode with one additional
functional feature: it modifies the scale in such a way that one unit is equal to one
pixel in both the horizontal and vertical directions.

If the ScreenGroup node is a child of a Billboard node that is screen-aligned (i.e., has
an axisOfRotation value of (0,0,0)), the children of the ScreenGroup shall be both
screen-aligned and scaled so that one unit is equal to one pixel. This allows users to
place screen-aligned and screen-scaled content into the 3D scene. It will maintain its
location in the 3D scene but can be occluded by other geometry that lies in front.
Additionally, it can occlude other geometry that lies in back.

10.2.1 Grouping and children node types specifies the children, addChildren, and
removeChildren fields.

The bboxCenter and bboxSize fields specify a bounding box that encloses the children.
This is a hint that may be used for optimization purposes. The results are undefined if
the specified bounding box is smaller than the actual bounding box of the children at
any time. The default bboxSize value, (-1, -1, -1), implies that the bounding box is not
specified and, if needed, shall be calculated by the browser. More details on the
bboxCenter and bboxSize fields can be found in 10.2.2 Bounding boxes.

36.5 Support levels
The Layout component provides two levels of support as specified in Table 36.2. Level 1
provides the basic support for layout. Level 2 provides for pixel-specific addressing.

Table 36.2 — Layout component support levels

Level Prerequisites Nodes Support

1
Core 1
Grouping 1
Layering 1

 X3DLayoutNode n/a

 Layout
All fields fully supported except
"PIXEL" values not optionally
supported.

 LayoutGroup All fields fully supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 36 Layout component

layout.html[8/1/2020 10:00:46 AM]

 LayoutLayer All fields fully supported.

2

Core 1
Grouping 1
Layering 1
Text 1

 All Level 1
nodes All fields fully supported.

 ScreenFontStyle All fields fully supported.

 ScreenGroup All fields fully supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Component index

componentIndex.html[8/1/2020 10:00:47 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

Component index

 General
This index lists the components in alphabetical order by component title. The
"Component" column lists the component title. The entries in the "Component" column
are also hyperlinked and includes links to the component specification. The "Name"
column lists the component name used in the COMPONENT statement. The "Clause"
column specifies the clause that contains the specification of the component.

Component Name Clause

Annotation CADGeometry 42

CAD geometry CADGeometry 32

Core Core 7

Cube map environmental texturing CubeMapTexturing 34

Distributed interactive simulation DIS 28

Environmental effects EnvironmentalEffects 24

Environmental sensor EnvironmentalSensor 22

Event utilities EventUtilities 30

Followers Followers 39

Geometry2D Geometry2D 14

Geometry3D Geometry3D 13

Geospatial Geospatial 25

Grouping Grouping 10

Humanoid animation (H-Anim) H-Anim 26

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Component index

componentIndex.html[8/1/2020 10:00:47 AM]

Interpolation Interpolation 19

Key device sensor KeyDeviceSensor 21

Layering Layering 35

Layout Layout 36

Lighting Lighting 17

Navigation Navigation 23

Networking Networking 9

NURBS NURBS 27

Particle systems ParticleSystems 40

Picking sensor PickingSensor 38

Pointing device sensor PointDeviceSensor 20

Programmable shaders Shaders 31

Projective texture mapping ProjectiveTextureMapping 43

Rendering Rendering 11

Rigid body physics RigidBodyPhysics 37

Scripting Scripting 29

Shape Shape 12

Sound Sound 16

Text Text 15

Texturing Texturing 18

Texturing3D Texturing3D 33

Time Time 8

Volume rendering VolumeRendering 41

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 16 Sound component

sound.html[8/1/2020 10:00:49 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

16 Sound component

 16.1 Introduction

16.1.1 Name

The name of this component is "Sound". This name shall be used when referring to this component in the
COMPONENT statement (see 7.2.5.4 Component statement).

16.1.2 Overview

This clause describes the Sound component of this part of ISO/IEC 19775. This includes how sound is delivered to
an X3D world as well as how sounds are accessed. Table 16.1 provides links to the major topics in this clause.

 Table 16.1 — Topics

16.1 Introduction
16.1.1 Name
16.1.2 Overview

16.2 Concepts
16.2.1 Sound priority
16.2.2 Sound attenuation and spatialization
16.2.3 Sound propagation
16.2.4 Sound effects processing

16.3 Abstract types
16.3.1 X3DSoundAnalysisNode
16.3.2 X3DSoundChannelNode
16.3.3 X3DSoundDestinationNode
16.3.4 X3DSoundProcessingNode
16.3.5 X3DSoundNode
16.3.6 X3DSoundSourceNode

16.4 Node reference
16.4.1 Analyser
16.4.2 AudioBufferSource
16.4.3 AudioClip
16.4.4 AudioDestination
16.4.5 BiquadFilter
16.4.6 ChannelMerger
16.4.7 ChannelSplitter
16.4.8 Convolver
16.4.9 Delay
16.4.10 DynamicsCompressor
16.4.11 ListenerPoint
16.4.12 MicrophoneSource
16.4.13 OscillatorSource
16.4.14 PeriodicWave
16.4.15 SpatialSound
16.4.16 Sound

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 16 Sound component

sound.html[8/1/2020 10:00:49 AM]

16.4.17 StreamAudioDestination
16.4.18 StreamAudioSource
16.4.19 WaveShaper

16.5 Support levels

Figure 16.1 — Stereo panning
Figure 16.2 — Sound node geometry
Figure 16.3 — SpatialSound Panning Gain Relationships for viewer (or ListenerPoint)

Table 16.1 — Topics
Table 16.2 — Sound component support levels

 16.2 Concepts

 16.2.1 Sound priority

If the browser does not have the resources to play all of the currently active sounds, it is recommended that the
browser sort the active sounds into an ordered list using the following sort keys in the order specified:

a. decreasing priority;
b. for sounds with priority > 0.5, increasing (now-startTime);
c. decreasing intensity at viewer location (intensity × "intensity attenuation");

where priority is the priority field of the Sound node, now represents the current time, startTime is the startTime
field of the audio source node specified in the source field, and "intensity attenuation" refers to the intensity
multiplier derived from the linear decibel attenuation ramp between inner and outer ellipsoids.

It is important that sort key 2 be used for the high priority (event and cue) sounds so that new cues are heard even
when the browser is "full" of currently active high priority sounds. Sort key 2 should not be used for normal priority
sounds, so selection among them is based on sort key 3 (intensity at the location of the viewer).

The browser shall play as many sounds from the beginning of this sorted list as it can given available resources and
allowable latency between rendering. On most systems, the resources available for MIDI streams are different from
those for playing sampled sounds, thus it may be beneficial to maintain a separate list to handle MIDI data.

 16.2.2 Sound attenuation and spatialization

In order to create a linear decrease in loudness as the viewer moves from the inner to the outer ellipsoid of the
sound, the attenuation must be based on a linear decibel ramp. To make the falloff consistent across browsers, the
decibel ramp is to vary from 0 dB at the minimum ellipsoid to -20 dB at the outer ellipsoid. Sound nodes with an
outer ellipsoid that is ten times larger than the minimum will display the inverse square intensity drop-off that
approximates sound attenuation in an anechoic environment.

Browsers may support spatial localization of sounds whose spatialize field is TRUE as well as their underlying sound
libraries will allow. Browsers shall at least support stereo panning of non-MIDI sounds based on the angle between
the viewer and the source. This angle is obtained by projecting the Sound location (in global space) onto the XZ
plane of the viewer. Determine the angle between the Z-axis and the vector from the viewer to the transformed
location, and assign a pan value in the range [0.0, 1.0] as depicted in Figure 16.1. Given this pan value, left and
right channel levels can be obtained using the following equations:

 leftPanFactor = 1 - pan2

 rightPanFactor = 1 - (1 - pan)2

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 16 Sound component

sound.html[8/1/2020 10:00:49 AM]

Figure 16.1 — Stereo panning

Using this technique, the loudness of the sound is modified by the intensity field value, then distance attenuation to
obtain the unspatialized audio output. The values in the unspatialized audio output are then scaled by leftPanFactor
and rightPanFactor to determine the final left and right output signals. The use of more sophisticated localization
techniques is encouraged, but not required (see [SNDB]).

These planar gain-reduction relationships pertain to relative direction of current viewer and also any ListenerPoint
nodes.

 16.2.3 Sound propagation

Sound-propagation techniques can be used to simulate sound waves as they travel from each source to scene
listening points by taking into account the expected interactions with various objects in the scene. In other words,
spatial sound rendering includes the estimation of physical effects involved in sound propagation such as surface
reflection (specular, diffusion) and wave phenomena (refraction, diffraction) within a 3D scene. Figure 16.2 provides
an overview of the physical models of sound propagation that are considered.

Figure 16.2 — Sound Propagation Phenomena

Specular and diffuse reflection: during the propagation of a sound wave in an enclosed space, the wave hits
objects or room boundaries and its free propagation is disturbed. Moreover, during this process, at least a

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 16 Sound component

sound.html[8/1/2020 10:00:49 AM]

portion of the incident wave is thrown back, a phenomenon known as reflection. If the wavelength of the sound
wave is small enough with respect to the dimensions of the reflecting object and large compared with possible
irregularities of the reflecting surface, a specular reflection occurs. This phenomenon is illustrated in Figure 16.2
(inset a), in which the angle of reflection is equal to the angle of incidence. In contrast, if the sound wavelength
is comparable to the corrugation dimensions of an irregular reflection surface, the incident sound wave is
scattered in many directions. In this case, the phenomenon is called diffuse reflection and is illustrated in Figure
16.2 (inset b).
Refraction: it is the change in the propagation direction of waves when they obliquely cross the boundary
between two mediums where their speed changes, as shown in Figure 16.2 (inset c). For transmission of a
plane sound wave from air into another medium, the refraction index in following equation (Snell’s Law) is
used, for calculating the geometric conditions.
 n = c'/c = sinθ'/sinθ where c’ and c the sound speed in the two media, θ the angle of incidence and θ’ the angle of
refraction.
Diffraction: the fact that a listener can hear sounds around corners and around barriers involves a diffraction
model of sound. It is the spread of waves around corners, behind obstacles or around the edges of an opening
as illustrated in Figure 16.2 (inset d). The amount of diffraction increases with wavelength, meaning that sound
waves with lower frequencies, and thus with greater wavelengths than obstacles or openings dimensions, is
spread over larger regions behind the openings or around the obstacles.

(TODO: consider improvement or removal.) Diffraction sources are not explicitly represented in this component, and
often can be handled by computational engines. Complex geometric openings may also be modeled by an audio
chain including ListenerPoint and SpatialSound to emulate sophisticated diffraction propagation paths.

If a simplified geometry alternative from Collision proxy field is available, it is used preferentially by collision-
detection algorithms for sound propagation, rather than descendant children of the Collision node. Such geometric
simplifications can often reduce computational costs significantly without reduction in perceived audio fidelity of 3D
scene acoustics. (TODO: consider need for acousticProxy field, or if Shape/Appearance/AcousticProperties is
sufficient.)

 16.2.4 Sound effects processing

Sound streams can be manipulated by a variety of sound effects. Audio graphs are a powerful mechanism for
modeling the diversity of real-world and electronic modifications to sound that can occur. Close integration of sound
rendering and effects with 3D models and aggregate scenes provides powerful capabilities for increased realism.

Historically a wide variety of computational libraries for sound generation and propagation have been available, often
with significant differences and limitations. Sound propagation and effects processing in this component are based
on design patterns found in W3C Web Audio API [W3C-WebAudio]. Design goals of that specification include
supporting "the capabilities found in modern game audio engines as well as some of the mixing, processing, and
filtering tasks that are found in modern desktop audio production applications." These capabilities are broad,
implemented in a variety of libraries, and deployed in multiple Web browsers. The primary interfaces of W3C Web
Audio API [W3C-WebAudio] necessary for creating audio graphs have corresponding X3D node support in this
component.

TODO continued design, implementation and evaluation work for this component is needed to ensure that full
coverage of W3C Audio API capabilities is achieved.

Descriptions follow for a number of fields that are common to multiple nodes related to sound processing.

The channelCount field is the number of channels used when up-mixing and down-mixing connections to any inputs
of a node. The default value is typically 2 except for specific nodes where its value is specially determined This
attribute has no effect for nodes with no inputs.

The channelCountMode field is used to determine the computedNumberOfChannels that controls how inputs to a
node are to be mixed.

"max": use computedNumberOfChannels (value for channelCount is ignored)
"clamped-max": use computedNumberOfChannels clamped to maximum value given by channelCount
"explicit": Up-mix by filling channels until they run out then zero out remaining channels. Down-mix by filling
as many channels as possible, then dropping remaining channels. .

The channelInterpretation field determines how individual channels are treated when up-mixing and down-mixing
connections to any inputs to the node. The default value is "speakers". This attribute has no effect for nodes with no
inputs. Allowed values include the following:

"speakers": use up-mix equations or down-mix equations. In cases where the number of channels do not match
"discrete"

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 16 Sound component

sound.html[8/1/2020 10:00:49 AM]

any of these basic speaker layouts, revert to .
"discrete": computedNumberOfChannels is the exact value as specified by the channelCount.

The gain field is amplification applied to an input signal. TODO linear factor or decibels?

The numberOfInputs field is the number of inputs feeding into a node.

The numberOfOutputs field is the number of outputs coming out of a node.

16.3 Abstract types
TODO: do most or all interfaces include a gain field?

 16.3.1 X3DSoundAnalysisNode
X3DSoundAnalysisNode : X3DNode {
 SFString [in,out] description ""

 SFInt32 [in,out] channelCount 0 [0,∞)
 SFString [in,out] channelCountMode "max" ["max", "clamped-max", "explicit"]
 SFString [in,out] channelInterpretation "speakers" ["speakers", "discrete"]
 SFInt32 [in,out] numberOfInputs 0 [0,∞)
 SFInt32 [in,out] numberOfOutputs 0 [0,∞)
 # Mechanisms for parent-child input-output graph design remain under review
}

This is the base node type for nodes which receive real-time generated data, without any change from the input to
output sound information.

TODO: if enabled FALSE, does signal pass through unmodified or is it blocked? Perhaps an additional boolean is
needed for pass-through state? Modeling the 'connect' attribute and defining defaults is necessary for each case.

16.3.2 X3DSoundChannelNode
X3DSoundChannelNode : X3DTimeDependentNode {
 SFString [in,out] description ""
 SFBool [in,out] enabled TRUE
 SFBool [in,out] loop FALSE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFTime [in,out] pauseTime 0 (-∞,∞)
 SFTime [in,out] resumeTime 0 (-∞,∞)
 SFTime [in,out] startTime 0 (-∞,∞)
 SFTime [in,out] stopTime 0 (-∞,∞)
 SFTime [out] elapsedTime
 SFBool [out] isActive
 SFBool [out] isPaused

 SFInt32 [in,out] channelCount 0 [0,∞)
 SFString [in,out] channelCountMode "max" ["max", "clamped-max", "explicit"]
 SFString [in,out] channelInterpretation "speakers" ["speakers", "discrete"]
 SFInt32 [in,out] numberOfInputs 0 [0,∞)
 SFInt32 [in,out] numberOfOutputs 0 [0,∞)
 # Mechanisms for parent-child input-output graph design remain under review
}

This is the base node type for nodes that handle of channels in an audio stream, allowing them to be split or
merged.

(Section moved here and adapted from AudioClip.)
The description, enabled, loop, pauseTime, resumeTime, startTime, and stopTime inputOutput fields and the
elapsedTime, isActive, and isPaused outputOnly fields, and their effects on nodes implementing this abstract node
type, are discussed in detail in X3DTimeDependentNode and 8.2.4 Time-dependent nodes.

TODO: if enabled FALSE, does signal pass through unmodified or is it blocked? Perhaps an additional boolean is
needed for pass-through state? Modeling the 'connect' attribute and defining defaults is necessary for each case.

16.3.3 X3DSoundDestinationNode
X3DSoundDestinationNode : X3DTimeDependentNode {
 SFString [in,out] description ""
 SFBool [in,out] enabled TRUE
 SFBool [in,out] loop FALSE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFTime [in,out] pauseTime 0 (-∞,∞)
 SFTime [in,out] resumeTime 0 (-∞,∞)
 SFTime [in,out] startTime 0 (-∞,∞)
 SFTime [in,out] stopTime 0 (-∞,∞)
 SFTime [out] elapsedTime
 SFBool [out] isActive
 SFBool [out] isPaused

 SFInt32 [in,out] channelCount 0 [0,∞)
 SFString [in,out] channelCountMode "max" ["max", "clamped-max", "explicit"]
 SFString [in,out] channelInterpretation "speakers" ["speakers", "discrete"]
 SFInt32 [in,out] numberOfInputs 0 [0,∞)
 SFInt32 [in,out] numberOfOutputs 0 [0,∞)
 # Mechanisms for parent-child input-output graph design remain under review
}

This is the base node type for all sound destination nodes, which represent the final destination of an audio signal

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 16 Sound component

sound.html[8/1/2020 10:00:49 AM]

and are what the user can ultimately hear. Such nodes are often considered as audio output devices which are
connected to speakers. All rendered audio that is intended to be heard gets routed to these terminal nodes.

(Section moved here and adapted from AudioClip.)
The description, enabled, loop, pauseTime, resumeTime, startTime, and stopTime inputOutput fields and the
elapsedTime, isActive, and isPaused outputOnly fields, and their effects on nodes implementing this abstract node
type, are discussed in detail in X3DTimeDependentNode and 8.2.4 Time-dependent nodes.

TODO: if enabled FALSE, does signal pass through unmodified or is it blocked? Perhaps an additional boolean is
needed for pass-through state? Modeling the 'connect' attribute and defining defaults is necessary for each case.

16.3.4 X3DSoundProcessingNode
X3DSoundProcessingNode : X3DTimeDependentNode {
 SFString [in,out] description ""
 SFBool [in,out] enabled TRUE
 SFBool [in,out] loop FALSE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFTime [in,out] pauseTime 0 (-∞,∞)
 SFTime [in,out] resumeTime 0 (-∞,∞)
 SFTime [in,out] startTime 0 (-∞,∞)
 SFTime [in,out] stopTime 0 (-∞,∞)
 SFTime [out] elapsedTime
 SFBool [out] isActive
 SFBool [out] isPaused
 # Mechanisms for parent-child input-output graph design remain under review
}

This is the base node type for all sound processing nodes, which are used to enhance audio with filtering, delaying,
changing gain, etc.

(Section moved here and adapted from AudioClip.)
The description, enabled, loop, pauseTime, resumeTime, startTime, and stopTime inputOutput fields and the
elapsedTime, isActive, and isPaused outputOnly fields, and their effects on nodes implementing this abstract node
type, are discussed in detail in X3DTimeDependentNode and 8.2.4 Time-dependent nodes.

TODO: if enabled FALSE, does signal pass through unmodified or is it blocked? Perhaps an additional boolean is
needed for pass-through state? Modeling the 'connect' attribute and defining defaults is necessary for each case.

16.3.5 X3DSoundNode
X3DSoundNode : X3DChildNode {
 SFString [in,out] description ""
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

This abstract node type is the base for all sound nodes.

16.3.6 X3DSoundSourceNode
X3DSoundSourceNode : X3DTimeDependentNode {
 SFString [in,out] description ""
 SFBool [in,out] loop FALSE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFTime [in,out] pauseTime 0 (-∞,∞)
 SFFloat [in,out] pitch 1.0 (0,∞)
 SFTime [in,out] resumeTime 0 (-∞,∞)
 SFTime [in,out] startTime 0 (-∞,∞)
 SFTime [in,out] stopTime 0 (-∞,∞)
 SFTime [out] duration_changed
 SFTime [out] elapsedTime
 SFBool [out] isActive
 SFBool [out] isPaused
}

This abstract node type is used to derive node types that can emit audio data.

(Section moved here and adapted from AudioClip.)
The description, loop, pauseTime, resumeTime, startTime, and stopTime inputOutput fields and the elapsedTime,
isActive, and isPaused outputOnly fields, and their effects on nodes implementing this abstract node type, are
discussed in detail in X3DTimeDependentNode and 8.2.4 Time-dependent nodes.

The pitch field specifies a multiplier for the rate at which sampled sound is played. Values for the pitch field shall be
greater than zero. Changing the pitch field affects both the pitch and playback speed of a sound. A set_pitch event
to an active AudioClip node is ignored and no pitch_changed field is generated. If pitch is set to 2.0, the sound shall
be played one octave higher than normal and played twice as fast. For a sampled sound, the pitch field alters the
sampling rate at which the sound is played. The proper implementation of pitch control for MIDI (or other note
sequence sound clips) is to multiply the tempo of the playback by the pitch value and adjust the MIDI Coarse Tune
and Fine Tune controls to achieve the proper pitch change.

A duration_changed event is sent whenever there is a new value for the "normal" duration of the clip. Typically, this
will only occur when the current url in use changes and the sound data has been loaded, indicating that the clip is

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 16 Sound component

sound.html[8/1/2020 10:00:49 AM]

playing a different sound source. The duration is the length of time in seconds for one cycle of the audio for a pitch
set to 1.0. Changing the pitch field will not trigger a duration_changed event. A duration value of "−1" implies that
the sound data has not yet loaded or the value is unavailable for some reason. A duration_changed event shall be
generated if the AudioClip node is loaded when the X3D file is read or the AudioClip node is added to the scene
graph.

The isActive field may be used by other nodes to determine if the clip node is currently active.

 16.4 Node reference

16.4.1 Analyser
Analyser : X3DSoundAnalysisNode {
 SFString [in,out] description ""
 SFInt32 [in,out] fftSize 2048 [0,∞)
 SFInt32 [in,out] frequencyBinCount 1024 [0,∞)
 SFFloat [in,out] minDecibels -100 (-∞,∞)
 SFFloat [in,out] maxDecibels -30 (-∞,∞)
 SFFloat [in,out] smoothingTimeConstant 0.8 [0,∞)

 SFInt32 [in,out] channelCount 0 [0,∞)
 SFString [in,out] channelCountMode "max" ["max", "clamped-max", "explicit"]
 SFString [in,out] channelInterpretation "speakers" ["speakers", "discrete"]
 SFInt32 [in,out] numberOfInputs 0 [0,∞)
 SFInt32 [in,out] numberOfOutputs 0 [0,∞)
 # Mechanisms for parent-child input-output graph design remain under review
}

The Analyser node provides real-time frequency and time-domain analysis information, without any change to the
input.

The fftSize field is an unsigned long value representing the size of the FFT (Fast Fourier Transform) to be used to
determine the frequency domain.

The frequencyBinCount field is an unsigned long value half that of the FFT size. This generally equates to the
number of data values you will have to play with for the visualization.

The minDecibels field is a value representing the minimum power value in the scaling range for the FFT analysis
data, for conversion to unsigned byte values.

The maxDecibels field is a value representing the maximum power value in the scaling range for the FFT analysis
data, for conversion to unsigned byte values.

The smoothingTimeConstant field is a value representing the averaging constant with the last analysis frame.

TODO determine if accessType is outputOnly for derived information

16.4.2 AudioBufferSource
AudioBufferSource : X3DSoundSourceNode {
 MFFloat [in,out] buffer NULL [−1,1]
 SFString [in,out] description ""
 SFFloat [in,out] detune 0 [0,∞)
 SFFloat [in,out] duration 0 [0,∞)
 SFBool [in,out] loop FALSE
 SFFloat [in,out] loopStart 0 [0,∞)
 SFFloat [in,out] loopEnd 0 [0,∞)
 SFInt32 [in,out] numberOfChannels 0 [0,∞)
 SFFloat [in,out] playbackRate 0 [-∞,∞)
 SFFloat [in,out] sampleRate 0 [0,∞)
 SFInt32 [out] length 0 [0,∞)

 SFInt32 [in,out] channelCount 0 [0,∞)
 SFString [in,out] channelCountMode "max" ["max", "clamped-max", "explicit"]
 SFString [in,out] channelInterpretation "speakers" ["speakers", "discrete"]
 SFInt32 [in,out] numberOfInputs 0 [0,∞)
 SFInt32 [in,out] numberOfOutputs 0 [0,∞)
 # Mechanisms for parent-child input-output graph design remain under review
}

The AudioBufferSource node represents a memory-resident audio asset. Its format is non-interleaved 32-bit
floating-point linear PCM values with a normal range of [−1,1], but values are not limited to this range. It can
contain one or more channels. Typically, it would be expected that the length of the PCM data would be fairly short
(usually somewhat less than a minute). For longer sounds, such as music soundtracks, streaming such as
StreamAudioSource should be used.

The buffer field is a data block holding the audio sample data.

The detune field

The duration field indicates the duration of the PCM audio data in seconds, computed from the length field divided by
sampleRate field.

The length field is the length of the PCM audio data in sample-frames.

https://en.wikipedia.org/wiki/Fast_Fourier_transform

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 16 Sound component

sound.html[8/1/2020 10:00:49 AM]

The numberOfChannels field is the discrete number of audio channels for this buffer.

The playbackRate field is the speed at which to render the audio stream.

The sampleRate field is the sample-rate used for the PCM audio data in samples per second.

16.4.3 AudioClip
AudioClip : X3DSoundSourceNode, X3DUrlObject {
 SFString [in,out] description ""
 SFBool [in,out] load TRUE
 SFBool [in,out] loop FALSE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFTime [in,out] pauseTime 0 (-∞,∞)
 SFFloat [in,out] pitch 1.0 (0,∞)
 SFTime [in,out] refresh 0.0 [0,∞)
 SFTime [in,out] resumeTime 0 (-∞,∞)
 SFTime [in,out] startTime 0 (-∞,∞)
 SFTime [in,out] stopTime 0 (-∞,∞)
 MFString [in,out] url [] [URI]
 SFTime [out] duration_changed
 SFTime [out] elapsedTime
 SFBool [out] isActive
 SFBool [out] isPaused
}

An AudioClip node specifies audio data that can be referenced by Sound nodes.

The description field specifies a textual description of the audio source. A browser is not required to display the
description field but may choose to do so in addition to playing the sound.

The url field specifies the URL from which the sound is loaded. Browsers shall support at least the wavefile format in
uncompressed PCM format (see [WAV]). It is recommended that browsers also support the MIDI file type 1 sound
format (see 2.[MIDI]) and the MP3 compressed format (see 2.[I11172-1]). MIDI files are presumed to use the
General MIDI patch set. 9.2.1 URLs contains details on the url field.

(Sections moved to parent interface X3DSoundSourceNode and related interfaces in this component.)
The loop, pauseTime, resumeTime, startTime, and stopTime inputOutput fields and the elapsedTime, isActive, and
isPaused outputOnly fields, and their effects on the AudioClip node, are discussed in detail in 8 Time component.

The pitch field specifies a multiplier for the rate at which sampled sound is played. Values for the pitch field shall be
greater than zero. Changing the pitch field affects both the pitch and playback speed of a sound. A set_pitch event
to an active AudioClip is ignored and no pitch_changed field is generated. If pitch is set to 2.0, the sound shall be
played one octave higher than normal and played twice as fast. For a sampled sound, the pitch field alters the
sampling rate at which the sound is played. The proper implementation of pitch control for MIDI (or other note
sequence sound clips) is to multiply the tempo of the playback by the pitch value and adjust the MIDI Coarse Tune
and Fine Tune controls to achieve the proper pitch change.

A duration_changed event is sent whenever there is a new value for the "normal" duration of the clip. Typically, this
will only occur when the current url in use changes and the sound data has been loaded, indicating that the clip is
playing a different sound source. The duration is the length of time in seconds for one cycle of the audio for a pitch
set to 1.0. Changing the pitch field will not trigger a duration_changed event. A duration value of "−1" implies that
the sound data has not yet loaded or the value is unavailable for some reason. A duration_changed event shall be
generated if the AudioClip node is loaded when the X3D file is read or the AudioClip node is added to the scene
graph.

The "cycle" of an AudioClip is the length of time in seconds for one playing of the audio at the specified pitch.

The isActive field may be used by other nodes to determine if the clip is currently active. If an AudioClip is active, it
shall be playing the sound corresponding to the sound time (i.e., in the sound's local time system with sample 0 at
time 0):

 t = (now − startTime) modulo (duration / pitch)

16.4.4 AudioDestination
AudioDestination : X3DSoundDestinationNode {
 SFString [in,out] description ""
 SFInt32 [in,out] maxChannelCount 2 [0,∞)

 SFInt32 [in,out] channelCount 0 [0,∞)
 SFString [in,out] channelCountMode "max" ["max", "clamped-max", "explicit"]
 SFString [in,out] channelInterpretation "speakers" ["speakers", "discrete"]
 SFInt32 [in,out] numberOfInputs 0 [0,∞)
 SFInt32 [in,out] numberOfOutputs 0 [0,∞)
 # Mechanisms for parent-child input-output graph design remain under review
}

AudioDestination represents the final audio destination and is what user ultimately hears, typically from the
speakers of user device. An AudioDestinationNode representing the audio hardware end-point (the normal case) can

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 16 Sound component

sound.html[8/1/2020 10:00:49 AM]

potentially output more than 2 channels of audio if the audio hardware is multi-channel.

The maxChannelCount field is the maximum number of channels that the destination is capable of supporting.

16.4.5 BiquadFilter
BiquadFilter : X3DSoundProcessingNode {
 SFString [in,out] description ""
 SFFloat [in,out] detune 0 [0,∞)
 SFInt32 [in,out] frequency 350 [0,∞)
 SFFloat [in,out] Q 1 [0,∞)
 SFFloat [in,out] gain 0 [0,∞)
 SFString [in,out] type "lowpass" ["lowpass", "highpass", "bandpass", "lowshelf",
 "highshelf", "peaking", "notch", "allpass"]

 SFInt32 [in,out] channelCount 0 [0,∞)
 SFString [in,out] channelCountMode "max" ["max", "clamped-max", "explicit"]
 SFString [in,out] channelInterpretation "speakers" ["speakers", "discrete"]
 SFInt32 [in,out] numberOfInputs 0 [0,∞)
 SFInt32 [in,out] numberOfOutputs 0 [0,∞)
 # Mechanisms for parent-child input-output graph design remain under review
}

BiquadFilter represents different kinds of filters, tone control devices, and graphic equalizers. Low-order filters are
the building blocks of basic tone controls (bass, mid, treble), graphic equalizers, and more advanced filters. Multiple
BiquadFilterNode filters can be combined to form more complex filters. The filter parameters such as frequency can
be changed over time for filter sweeps, etc.

The detune field is a detune value, in cents, for the frequency..

The frequency field is the frequency at which the BiquadFilterNode will operate, in Hz.

The gain field is the amplitude gain of the filter. Its value is in dB units. The gain is only used for lowshelf, highshelf,
and peaking filters.

The Q field is Quality Factor (Q) of the filter.

The type field is the type of this BiquadFilterNode. Note that the meaning of the different properties (frequency,
detune and Q) differs depending on the type of the filter used.

Enumeration Description

"lowpass"

A lowpass filter allows frequencies below the cutoff frequency to pass through and
attenuates frequencies above the cutoff. It implements a standard second-order resonant
lowpass filter with 12dB/octave rolloff.

frequency

The cutoff frequency

Q

Controls how peaked the response will be at the cutoff frequency. A large value
makes the response more peaked.

gain

Not used in this filter type

"highpass"

A highpass filter is the opposite of a lowpass filter. Frequencies above the cutoff frequency
are passed through, but frequencies below the cutoff are attenuated. It implements a
standard second-order resonant highpass filter with 12dB/octave rolloff.

frequency

The cutoff frequency below which the frequencies are attenuated

Q

Controls how peaked the response will be at the cutoff frequency. A large value
makes the response more peaked.

gain

Not used in this filter type

A bandpass filter allows a range of frequencies to pass through and attenuates the
frequencies below and above this frequency range. It implements a second-order bandpass
filter.

https://en.wikipedia.org/wiki/Low-pass_filter
https://en.wikipedia.org/wiki/Low-pass_filter
https://en.wikipedia.org/wiki/Q_factor
https://en.wikipedia.org/wiki/High-pass_filter
https://en.wikipedia.org/wiki/High-pass_filter
https://en.wikipedia.org/wiki/Q_factor
https://en.wikipedia.org/wiki/Band-pass_filter
https://en.wikipedia.org/wiki/Band-pass_filter

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 16 Sound component

sound.html[8/1/2020 10:00:49 AM]

"bandpass"

frequency

The center of the frequency band

Q

Controls the width of the band. The width becomes narrower as the Q value
increases.

gain

Not used in this filter type

"lowshelf"

The lowshelf filter allows all frequencies through, but adds a boost (or attenuation) to the
lower frequencies. It implements a second-order lowshelf filter.

frequency

The upper limit of the frequences where the boost (or attenuation) is applied.

Q

Not used in this filter type.

gain

The boost, in dB, to be applied. If the value is negative, the frequencies are
attenuated.

"highshelf"

The highshelf filter is the opposite of the lowshelf filter and allows all frequencies through,
but adds a boost to the higher frequencies. It implements a second-order highshelf filter

frequency

The lower limit of the frequences where the boost (or attenuation) is applied.

Q

Not used in this filter type.

gain

The boost, in dB, to be applied. If the value is negative, the frequencies are
attenuated.

"peaking"

The peaking filter allows all frequencies through, but adds a boost (or attenuation) to a
range of frequencies.

frequency

The center frequency of where the boost is applied.

Q

Controls the width of the band of frequencies that are boosted. A large value implies
a narrow width.

gain

The boost, in dB, to be applied. If the value is negative, the frequencies are
attenuated.

"notch"

The notch filter (also known as a band-stop or band-rejection filter) is the opposite of a
bandpass filter. It allows all frequencies through, except for a set of frequencies.

frequency

The center frequency of where the notch is applied.

Q

Controls the width of the band of frequencies that are attenuated. A large value
implies a narrow width.

gain

Not used in this filter type.

https://en.wikipedia.org/wiki/Q_factor
https://en.wikipedia.org/wiki/Q_factor
https://en.wikipedia.org/wiki/Q_factor
https://en.wikipedia.org/wiki/Q_factor
https://en.wikipedia.org/wiki/Band-stop_filter
https://en.wikipedia.org/wiki/Band-stop_filter
https://en.wikipedia.org/wiki/Q_factor

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 16 Sound component

sound.html[8/1/2020 10:00:49 AM]

"allpass"

An allpass filter allows all frequencies through, but changes the phase relationship between
the various frequencies. It implements a second-order allpass filter

frequency

The frequency where the center of the phase transition occurs. Viewed another way,
this is the frequency with maximal group delay.

Q

Controls how sharp the phase transition is at the center frequency. A larger value
implies a sharper transition and a larger group delay.

gain

Not used in this filter type.

16.4.6 ChannelMerger
ChannelMerger : X3DSoundChannelNode {
 SFString [in,out] description ""
 SFBool [in,out] enabled TRUE
 SFBool [in,out] loop FALSE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFTime [in,out] pauseTime 0 (-∞,∞)
 SFTime [in,out] resumeTime 0 (-∞,∞)
 SFTime [in,out] startTime 0 (-∞,∞)
 SFTime [in,out] stopTime 0 (-∞,∞)
 SFTime [out] elapsedTime
 SFBool [out] isActive
 SFBool [out] isPaused

 SFInt32 [in,out] channelCount 0 [0,∞)
 SFString [in,out] channelCountMode "max" ["max", "clamped-max", "explicit"]
 SFString [in,out] channelInterpretation "speakers" ["speakers", "discrete"]
 SFInt32 [in,out] numberOfInputs 0 [0,∞)
 SFInt32 [in,out] numberOfOutputs 0 [0,∞)
 # Mechanisms for parent-child input-output graph design remain under review
}

ChannelMerger unites different monophonic input channels into a single output channel.

16.4.7 ChannelSplitter
ChannelSplitter : X3DSoundChannelNode {
 SFString [in,out] description ""
 SFBool [in,out] enabled TRUE
 SFBool [in,out] loop FALSE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFTime [in,out] pauseTime 0 (-∞,∞)
 SFTime [in,out] resumeTime 0 (-∞,∞)
 SFTime [in,out] startTime 0 (-∞,∞)
 SFTime [in,out] stopTime 0 (-∞,∞)
 SFTime [out] elapsedTime
 SFBool [out] isActive
 SFBool [out] isPaused

 SFInt32 [in,out] channelCount 0 [0,∞)
 SFString [in,out] channelCountMode "max" ["max", "clamped-max", "explicit"]
 SFString [in,out] channelInterpretation "speakers" ["speakers", "discrete"]
 SFInt32 [in,out] numberOfInputs 0 [0,∞)
 SFInt32 [in,out] numberOfOutputs 0 [0,∞)
 # Mechanisms for parent-child input-output graph design remain under review
}

ChannelSplitter separates the different channels of an audio source into a set of monophonic output channels.

16.4.8 Convolver
Convolver : X3DSoundProcessingNode {
 SFString [in,out] description ""
 MFFloat [in,out] buffer NULL [−1,1]
 SFBool [in,out] normalize FALSE

 SFInt32 [in,out] channelCount 0 [0,∞)
 SFString [in,out] channelCountMode "max" ["max", "clamped-max", "explicit"]
 SFString [in,out] channelInterpretation "speakers" ["speakers", "discrete"]
 SFInt32 [in,out] numberOfInputs 0 [0,∞)
 SFInt32 [in,out] numberOfOutputs 0 [0,∞)
 # Mechanisms for parent-child input-output graph design remain under review
}

Convolver performs a linear convolution on a given AudioBuffer, often used to achieve a reverberation effect.
Potential modifications include chorus effects, reverberation, and telephone-like speech.

The idea for producing room effects is to play back a reference sound in a room, record it, and then (metaphorically)
take the difference between the original sound and the recorded one. The result of this is an impulse response that
captures the effect that the room has on a sound. These impulse responses are painstakingly recorded in very
specific studio settings, and doing this on your own requires serious dedication. There are sites that host many of
these pre-recorded impulse response files (stored as audio files). The Web Audio API provides an easy way to apply
these impulse responses to your sounds using the ConvolverNode.

https://en.wikipedia.org/wiki/All-pass_filter#Digital_Implementation
https://en.wikipedia.org/wiki/Group_delay
https://en.wikipedia.org/wiki/Q_factor

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 16 Sound component

sound.html[8/1/2020 10:00:49 AM]

The buffer field represents a memory-resident audio asset (for one-shot sounds and other short audio clips). Its
format is non-interleaved 32-bit linear floating-point PCM values with a normal range of [−1,1], but values are not
limited to this range. It can contain one or more channels. Typically, it would be expected that the length of the PCM
data would be fairly short (usually somewhat less than a minute). For longer sounds, such as music soundtracks,
streaming should be used with the <audio> HTML element and AudioClip.

The normalize field is a boolean that controls whether the impulse response from the buffer is scaled by an equal-
power normalization when the buffer attribute is set, or not.

16.4.9 Delay
Delay : X3DSoundProcessingNode {
 SFString [in,out] description ""
 SFInt32 [in,out] delayTime 0 [0,∞)

 SFInt32 [in,out] channelCount 0 [0,∞)
 SFString [in,out] channelCountMode "max" ["max", "clamped-max", "explicit"]
 SFString [in,out] channelInterpretation "speakers" ["speakers", "discrete"]
 SFInt32 [in,out] numberOfInputs 0 [0,∞)
 SFInt32 [in,out] numberOfOutputs 0 [0,∞)
 # Mechanisms for parent-child input-output graph design remain under review
}

Delay causes a time delay between the arrival of input data and subsequent propagation to the output.

The delayTime field represents the amount of delay (in seconds) to apply.

16.4.10 DynamicsCompressor
DynamicsCompressor : X3DSoundProcessingNode {
 SFString [in,out] description ""
 SFFloat [in,out] attack 0.003 [0,∞)
 SFInt32 [in,out] knee 30 [0,∞)
 SFInt32 [in,out] ratio 12 [0,∞)
 SFFloat [in,out] reduction 0 [0,∞)
 SFInt32 [in,out] release 0.25 (-∞,∞)
 SFFloat [in,out] threshold -24 [0,∞)

 SFInt32 [in,out] channelCount 0 [0,∞)
 SFString [in,out] channelCountMode "max" ["max", "clamped-max", "explicit"]
 SFString [in,out] channelInterpretation "speakers" ["speakers", "discrete"]
 SFInt32 [in,out] numberOfInputs 0 [0,∞)
 SFInt32 [in,out] numberOfOutputs 0 [0,∞)
 # Mechanisms for parent-child input-output graph design remain under review
}

DynamicsCompressor implements a dynamics compression effect, lowering the volume of the loudest parts of the
signal and raises the volume of the softest parts.

The attack field is the amount of time (in seconds) to reduce the gain by 10dB.

The knee field contains a decibel value representing the range above the threshold where the curve smoothly
transitions to the compressed portion.

The ratio field represents the amount of change, in dB, needed in the input for a 1 dB change in the output.

The reduction field represents the amount of gain reduction currently applied by the compressor to the signal.

The release field represents the amount of time (in seconds) to increase the gain by 10dB.

The threshold field represents the decibel value above which the compression will start taking effect.

16.4.11 ListenerPoint
ListenerPoint : X3DAudioListenerNode {
 SFBool [in] set_bind
 SFString [in,out] description ""
 SFBool [in,out] enabled TRUE
 SFInt32 [in,out] gain 1 [0,∞)
 SFFloat [in out] interauralDistance 0 [0, infinity)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFRotation [in,out] orientation 0 0 1 0 [-1,1],(-∞,∞)
 SFVec3f [in,out] position 0 0 10 (-∞,∞)
 SFBool [in,out] trackCurrentView FALSE
 SFTime [out] bindTime
 SFBool [out] isBound
 # Mechanisms for parent-child input-output graph design remain under review
}

ListenerPoint represents the position and orientation of the person listening to the audio scene. It provides single or
multiple sound channels as output. Multiple ListenerPoint nodes can be active for sound processing, but only one can
be bound as the active listening point for the user.

The interauralDistance field is used for binaural recording.

If TRUE the trackCurrentView field matches position and orientation to the user's current view.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 16 Sound component

sound.html[8/1/2020 10:00:49 AM]

16.4.12 MicrophoneSource
MicrophoneSource : X3DSoundSourceNode {
 SFString [in,out] description ""
 SFBool [in,out] enabled TRUE
 SFBool [in,out] isActive FALSE
 SFString [in,out] mediaDeviceID ""
 # Mechanisms for parent-child input-output graph design remain under review
}

MicrophoneSource captures input from a physical microphone.

The mediaDeviceID field is a unique identifier for the represented device.

TODO: reconcile whether all the many fields of X3DSoundSourceNode are appropriate.

16.4.13 OscillatorSource
Oscillator : X3DSoundSourceNode {
 SFString [in,out] description ""
 SFBool [in,out] loop FALSE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFTime [in,out] pauseTime 0 (-∞,∞)
 SFFloat [in,out] pitch 1.0 (0,∞)
 SFTime [in,out] resumeTime 0 (-∞,∞)
 SFTime [in,out] startTime 0 (-∞,∞)
 SFTime [in,out] stopTime 0 (-∞,∞)
 SFTime [out] duration_changed
 SFTime [out] elapsedTime
 SFBool [out] isActive
 SFBool [out] isPaused

 SFFloat [in,out] detune 0 [0,∞)
 SFInt32 [in,out] frequency 0 [0,∞)
 SFNode [in,out] periodicWave NULL [PeriodicWave]
 SFString [in,out] type "sine" ["sine", "square", "sawtooth", "triangle", "custom"]
 # Mechanisms for parent-child input-output graph design remain under review
}

The Oscillator node represents an audio source generating a periodic waveform, providing a constant tone.

The detune field is an a-rate AudioParam representing detuning of oscillation in cents (though the AudioParam
returned is read-only, the value it represents is not).

The frequency field is an a-rate AudioParam representing the frequency of oscillation in hertz (though the
AudioParam returned is read-only, the value it represents is not). The default value is 440 Hz (a standard middle-A
note).

The periodicWave field is an PeriodicWave used when type="custom" is indicated.

The type field is a string which specifies the shape of waveform to play; this can be one of a number of standard
values, or custom to use a PeriodicWave to describe a custom waveform. Different types of waves produce different
sounds. Standard values are "sine", "square", "sawtooth", "triangle" and "custom". Allowed values are

"sine": a sine wave
"square": a square wave of duty period 0.5
"sawtooth": a sawtooth wave
"triangle": a triangle wave
"custom": a custom periodic wave

16.4.14 PeriodicWave
PeriodicWave : X3DSoundProcessingNode {
 SFString [in,out] description ""
 SFInt32 [in,out] frequency 0 [0,∞)
 SFString [in,out] type "square"
 SFFloat [in,out] detune 0 [0,∞)
}

PeriodicWave defines a periodic waveform that can be used to shape the output of an Oscillator.

TODO confirm and describe attributes

16.4.15 SpatialSound
SpatialSound : X3DSoundNode {
 SFFloat [in,out] coneInnerAngle 6.2832 [0,2π]
 SFFloat [in,out] coneOuterAngle 6.2832 [0,2π]
 SFFloat [in,out] coneOuterGain 0 (-∞,∞)
 SFString [in,out] description ""
 SFVec3f [in,out] direction 0 0 1 (-∞,∞)
 SFString [in,out] distanceModel "INVERSE" ["LINEAR" "INVERSE" "EXPONENTIAL"]
 SFFloat [in,out] intensity 1 [0,1]
 SFVec3f [in,out] location 0 0 0 (-∞,∞)
 SFFloat [in,out] maxDistance 10000 [0,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [in,out] enableHRTF FALSE

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 16 Sound component

sound.html[8/1/2020 10:00:49 AM]

 SFFloat [in,out] referenceDistance 1 [0,∞)
 SFFloat [in,out] rolloffFactor 1 [0,∞)
 SFFloat [in,out] priority 0 [0,1]
 SFNode [in,out] source NULL [X3DSoundSourceNode] # and other types
 SFBool [] spatialize TRUE
}

SpatialSound represents a processing node which positions, emits and spatializes an audio stream in three-
dimensional space.

The coneInnerAngle is centered along direction and defines the inner conical volume, inside of which no source gain
reduction occurs. The coneOuterAngle is centered along direction and defines an outer conical volume, within which
the sound gain decreases linearly from full gain to coneOuterGain. Outside of coneOuterAngle, gain equals
coneOuterGain. The value of coneOuterAngle is greater than or equal to coneInnerAngle. Corresponding gain
reductions for 2D and 3D spatial panning between this source and a viewer (or ListenerPoint) are shown in Figure
16.3.

Figure 16.3 — SpatialSound Panning Gain Relationships for viewer (or ListenerPoint)

The direction. intensity, location, priority, source and spatialize fields match field definitions for Sound node.

The referenceDistance field is reference distance for reducing volume as source moves further from the listener.

The rolloffFactor field indicates how quickly volume is reduced as source moves further from listener.

The distanceModel field specifies which algorithm to use for sound attenuation, corresponding to distance between
an audio source and a listener. as it moves away from the listener.

a. LINEAR gain model determined by
1 - rolloffFactor * (distance - referenceDistance) / (maxDistance - referenceDistance)

b. INVERSE gain model determined by
refDistance / (referenceDistance + rolloffFactor * (Math.max(distance, referenceDistance) - referenceDistance))

c. EXPONENTIAL gain model determined by
pow((Math.max(distance, referenceDistance) / referenceDistance, -rolloffFactor)

The enableHRTF field specifies whether to enable Head Related Transfer Function (HRTF) auralization, if available.

The maxDistance field is the maximum distance where sound is renderable between source and listener, after which
no reduction in sound volume occurs.

Spatial sound has a conceptual role in the Web3D environments, due to highly realism scenes that can provide.
Since Web Audio API is the most popular sound engine, we propose to get the necessary steps required to make
X3D fully compatible with this library. In fact, we propose the enrichment of X3D with spatial sound features, using
the structure and the functionality of Web Audio API.

Particularly, the Web Audio API involves handling audio operations inside an audio context and has been designed to
allow modular routing. Also, the approach of Web Audio API is based on the concept of audio context, which

https://www.w3.org/TR/webaudio/

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 16 Sound component

sound.html[8/1/2020 10:00:49 AM]

represents the direction of audio stream flows between sound nodes.

TODO describe "cone" fields, likely need explanatory diagram.

16.4.16 Sound
Sound : X3DSoundNode {
 SFVec3f [in,out] direction 0 0 1 (-∞,∞)
 SFFloat [in,out] intensity 1 [0,1]
 SFVec3f [in,out] location 0 0 0 (-∞,∞)
 SFFloat [in,out] maxBack 10 [0,∞)
 SFFloat [in,out] maxFront 10 [0,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFFloat [in,out] minBack 1 [0,∞)
 SFFloat [in,out] minFront 1 [0,∞)
 SFFloat [in,out] priority 0 [0,1]
 SFNode [in,out] source NULL [X3DSoundSourceNode]
 SFBool [] spatialize TRUE
}

The Sound node specifies the spatial presentation of a sound in a X3D scene. The sound is located at a point in the
local coordinate system and emits sound in an elliptical pattern (defined by two ellipsoids). The ellipsoids are
oriented in a direction specified by the direction field. The shape of the ellipsoids may be modified to provide more or
less directional focus from the location of the sound.

The source field specifies the sound source for the Sound node. If the source field is not specified, the Sound node
will not emit audio. The source field shall specify either an AudioClip node or a MovieTexture node. If a MovieTexture
node is specified as the sound source, the MovieTexture shall refer to a movie format that supports sound (EXAMPLE
 MPEG-1Systems, see ISO/IEC 11172-1).

The intensity field adjusts the loudness (decibels) of the sound emitted by the Sound node. The intensity field has a
value that ranges from 0.0 to 1.0 and specifies a factor which shall be used to scale the normalized sample data of
the sound source during playback. A Sound node with an intensity of 1.0 shall emit audio at its maximum loudness
(before attenuation), and a Sound node with an intensity of 0.0 shall emit no audio. Between these values, the
loudness should increase linearly from a -20 dB change approaching an intensity of 0.0 to a 0 dB change at an
intensity of 1.0.

NOTE This is different from the traditional definition of intensity with respect to sound; see [SNDA].

The priority field provides a hint for the browser to choose which sounds to play when there are more active Sound
nodes than can be played at once due to either limited system resources or system load. 16.2 Concepts describes a
recommended algorithm for determining which sounds to play under such circumstances. The priority field ranges
from 0.0 to 1.0, with 1.0 being the highest priority and 0.0 the lowest priority.

The location field determines the location of the sound emitter in the local coordinate system. A Sound node's output
is audible only if it is part of the traversed scene. Sound nodes that are descended from LOD, Switch, or any
grouping or prototype node that disables traversal (i.e., drawing) of its children are not audible unless they are
traversed. If a Sound node is disabled by a Switch or LOD node, and later it becomes part of the traversal again, the
sound shall resume where it would have been had it been playing continuously.

The Sound node has an inner ellipsoid that defines a volume of space in which the maximum level of the sound is
audible. Within this ellipsoid, the normalized sample data is scaled by the intensity field and there is no attenuation.
The inner ellipsoid is defined by extending the direction vector through the location. The minBack and minFront
fields specify distances behind and in front of the location along the direction vector respectively. The inner ellipsoid
has one of its foci at location (the second focus is implicit) and intersects the direction vector at minBack and
minFront.

The Sound node has an outer ellipsoid that defines a volume of space that bounds the audibility of the sound. No
sound can be heard outside of this outer ellipsoid. The outer ellipsoid is defined by extending the direction vector
through the location. The maxBack and maxFront fields specify distances behind and in front of the location along
the direction vector respectively. The outer ellipsoid has one of its foci at location (the second focus is implicit) and
intersects the direction vector at maxBack and maxFront.

The minFront, maxFront, minBack, and maxBack fields are defined in local coordinates, and shall be greater than or
equal to zero. The minBack field shall be less than or equal to maxBack, and minFront shall be less than or equal
to maxFront. The ellipsoid parameters are specified in the local coordinate system but the ellipsoids' geometry is
affected by ancestors' transformations.

Between the two ellipsoids, there shall be a linear attenuation ramp in loudness, from 0 dB at the minimum ellipsoid
to -20 dB at the maximum ellipsoid:

 attenuation = -20 × (d' / d")

where d' is the distance along the location-to-viewer vector, measured from the transformed minimum ellipsoid

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 16 Sound component

sound.html[8/1/2020 10:00:49 AM]

boundary to the viewer, and d" is the distance along the location-to-viewer vector from the transformed minimum
ellipsoid boundary to the transformed maximum ellipsoid boundary (see Figure 16.2).

Figure 16.2 — Sound Node Geometry

The spatialize field specifies if the sound is perceived as being directionally located relative to the viewer. If the
spatialize field is TRUE and the viewer is located between the transformed inner and outer ellipsoids, the viewer's
direction and the relative location of the Sound node should be taken into account during playback. Details outlining
the minimum required spatialization functionality can be found in 16.2.2 Sound attenuation and spatialization. If the
spatialize field is FALSE, directional effects are ignored, but the ellipsoid dimensions and intensity will still affect the
loudness of the sound. If the sound source is multi-channel (EXAMPLE stereo), the source shall retain its channel
separation during playback.

16.4.17 StreamAudioDestination
StreamAudioDestination : X3DSoundDestinationNode {
 SFString [in,out] description ""
 MFFloat [in,out] stream NULL [−1,1]

 SFInt32 [in,out] channelCount 0 [0,∞)
 SFString [in,out] channelCountMode "max" ["max", "clamped-max", "explicit"]
 SFString [in,out] channelInterpretation "speakers" ["speakers", "discrete"]
 SFInt32 [in,out] numberOfInputs 0 [0,∞)
 SFInt32 [in,out] numberOfOutputs 0 [0,∞)
 # Mechanisms for parent-child input-output graph design remain under review
}

StreamAudioDestination is an audio destination representing a MediaStream with a single MediaStreamTrack whose
kind is "audio".

TODO confirm and describe attributes

16.4.198 StreamAudioSource
StreamAudioSource : X3DSoundSourceNode {
 SFString [in,out] description ""
 MFFloat [in,out] mediaStream NULL [−1,1]

 SFInt32 [in,out] channelCount 0 [0,∞)
 SFString [in,out] channelCountMode "max" ["max", "clamped-max", "explicit"]
 SFString [in,out] channelInterpretation "speakers" ["speakers", "discrete"]
 SFInt32 [in,out] numberOfInputs 0 [0,∞)
 SFInt32 [in,out] numberOfOutputs 0 [0,∞)
 # Mechanisms for parent-child input-output graph design remain under review
}

StreamAudioSource operates as an audio source whose media is received from a MediaStream obtained using the
WebRTC or Media Capture and Streams APIs. This media source might originate from a microphone or sound-
processing channed provided by a remote peer on a WebRTC call.

TODO confirm and describe attributes

16.4.19 WaveShaper
WaveShaper : X3DSoundProcessingNode {
 SFString [in,out] description ""
 MFFloat [in,out] curve [] [-1,-1]
 SFString [in,out] oversample "none" ["none", "2x", "4x"]

 SFInt32 [in,out] channelCount 0 [0,∞)
 SFString [in,out] channelCountMode "max" ["max", "clamped-max", "explicit"]
 SFString [in,out] channelInterpretation "speakers" ["speakers", "discrete"]
 SFInt32 [in,out] numberOfInputs 0 [0,∞)
 SFInt32 [in,out] numberOfOutputs 0 [0,∞)
 # Mechanisms for parent-child input-output graph design remain under review
}

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 16 Sound component

sound.html[8/1/2020 10:00:49 AM]

WaveShaper represents a nonlinear distorter that applies a wave-shaping distortion curve to the signal. Non-linear
waveshaping distortion is commonly used for both subtle non-linear warming, or more obvious distortion effects.
Arbitrary non-linear shaping curves may be specified.

The curve field is an Array of floats numbers describing the distortion to apply.

The oversample field is specifies what type of oversampling (if any) should be used when applying the shaping
curve. Allowed values follow. Note that for some applications, avoiding oversampling can produce a precise shaping
curve.

"none": the curve is applied directly to the input samples with no oversampling.
"2x": oversample two times to improve the quality of the processing by avoiding some aliasing.
"4x": oversample four times for highest quality of the processing.

 16.5 Support levels
The Sound component provides one level of support as specified in Table 16.2.

Table 16.2 — Sound component support levels

Level Prerequisites Nodes/Features Support

1 Core 1
Time 1

 X3DSoundSourceNode (abstract) n/a

 X3DSoundNode (abstract) n/a

 AudioClip
All fields
fully
supported.

 Sound
All fields
fully
supported.

2 Core 1
Time 1

 All level 1 Sound nodes
All fields
fully
supported.

 X3DSoundAnalysisNode, X3DSoundChannelNode,
X3DSoundDestinationNode, X3DSoundProcessingNode

All fields
fully
supported.

Analyser, AudioBufferSource, AudioBufferSource, AudioDestination,
BiquadFilter, ChannelMerger, ChannelSplitter, Convolver, Delay,
DynamicsCompressor, ListenerPoint, MicrophoneSource,
OscillatorSource, PeriodicWave, SpatialSound,
StreamAudioDestination, StreamAudioSource, WaveShaper

All fields
fully
supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 37 Rigid body physics component

rigidBodyPhysics.html[8/1/2020 10:00:53 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

37 Rigid body physics

 37.1 Introduction

37.1.1 Name

The name of this component is "RigidBodyPhysics". This name shall be used when
referring to this component in the COMPONENT statement (see 7.2.5.4 Component
statement).

37.1.2 Overview

This clause describes how to model rigid bodies and their interactions through the
application of basic physics principles to effect motion. Table 37.1 provides links to the
major topics in this clause.

 Table 37.1 — Topics

37.1 Introduction
37.1.1 Name
37.1.2 Overview

37.2 Concepts
37.2.1 Overview
37.2.2 Bodies

37.2.2.1 Event model evaluation
37.2.2.2 Transformation hierarchy

37.2.3 Joints
37.2.3.1 What a joint describes
37.2.3.2 Range of motion limits

37.2.4 Coordinate systems
37.2.4.1 Initial coordinate system
37.2.4.2 Breaking joint
37.2.4.3 Collision contact description

37.3 Abstract types
37.3.1 X3DNBodyCollidableNode

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 37 Rigid body physics component

rigidBodyPhysics.html[8/1/2020 10:00:53 AM]

37.3.2 X3DNBodyCollisionSpaceNode
37.3.3 X3DRigidJointNode

37.4 Node reference
37.4.1 BallJoint
37.4.2 CollidableOffset
37.4.3 CollidableShape
37.4.4 CollisionCollection
37.4.5 CollisionSensor
37.4.6 CollisionSpace
37.4.7 Contact
37.4.8 DoubleAxisHingeJoint
37.4.9 MotorJoint
37.4.10 RigidBody
37.4.11 RigidBodyCollection
37.4.12 SingleAxisHingeJoint
37.4.13 SliderJoint
37.4.14 UniversalJoint

37.5 Support levels

Table 37.1 — Topics
Table 37.2 — appliedParameters valid values
Table 37.3 — Rigid body physics component support levels

 37.2 Concepts

37.2.1 Overview

This component provides the ability to influence the visual output of the scene graph in
accordance to some of the laws of physics. Only the subset of the laws of physics
known as rigid body physics is supported. Rigid body physics models deal with objects
as solid, unchangeable sets of mass with a velocity. These bodies can be connected
together with the use of various forms of joints, that allow one body's motion to effect
another.

Rigid body physics evaluation requires the solving of many different factors in parallel,
typically through the use of ordinary differential equations. Because these equations are
heavily floating point based, their accuracy is highly dependent on both the
implementation of the solver and the computing hardware. Due to this non-precise
nature of the calculations, modelling rigid body physics requires a lot of care and
attention to detail. Small changes can very quickly lead to numerical instability resulting
in visual representations that may make the model look like it is exploding. Most of the
node definitions in this component include factors that can be modified to trade off
accuracy in visual output for the stability of the calculations. In many cases, the two are
inversely proportional. That is, a more accurate simulation has a far greater chance of
suffering numerical instability than a less accurate result. Intersections between bodies
and the way that they interact per frame can have significant effects on the application
visuals.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 37 Rigid body physics component

rigidBodyPhysics.html[8/1/2020 10:00:53 AM]

A consequence of this problem is that using physically accurate values for masses and
sizes in the physics model is not likely to produce the best results, or even lead to a
stable simulation. The physics modelling presented by this component is independent of
the visuals representation, allowing the user to create a stable physical model that has
no relationship to the visual model that is driven by the physics.

37.2.2 Integration with X3D

37.2.2.1 Event model evaluation

Evaluating the physics model within the constraints of the X3D event model requires
the ability to evaluate time in discreet time chunks. This is known as discreet event
simulation.

Evaluation of the physics model is performed once per frame. Since the user needs to
be able to modify the model on a frame-by-frame basis, this requires that the physics
model is evaluated after all possible user input has been received for that frame. Thus,
physics model evaluation is performed just after Step d in 4.4.8.3 Execution model.
After evaluating the physics model, the results are used to further modify the existing
scene graph immediately before rendering is performed.

Physics modelling libraries typically require fixed length time intervals between
iterations. A real-time 3D graphics environment typically varies the frame rates based
on:

a. the current content in view,
b. scripting, and
c. other interactions.

An implementation of this specification shall be responsible for keeping the physics
fixed time interval evaluations synchronized with the varying visual frame time
intervals.

Some nodes offer output events that describe output of the physics model, such as the
current separation between two bodies or the rate of separation between them. These
values are exposed as a set of sensors that can be used to track the output of the
physics model and report it at the start of the next frame, in accordance with the
standard sensor node model.

37.2.2.2 Transformation hierarchy

The nodes defined in this component are not part of the transformation hierarchy.
Instead, the nodes may be linked to parts of the scene graph that are part of the
transformation hierarchy in order to affect their motion. They may also be linked as part
of the n-body object collision-detection capabilities so that a coordinated system of
graphics and physics may be modelled.

37.2.3 Bodies

A body represents a section of mass in the system that can be effected by the physics

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 37 Rigid body physics component

rigidBodyPhysics.html[8/1/2020 10:00:53 AM]

model. A body is represented by the following properties:

a. mass,
b. density model,
c. position and orientation,
d. linear velocity,
e. angular velocity, and
f. various forces and torques applied.

A body is a standalone object within a collection. Bodies are influenced by joints that
connect this body to another within the collection. Bodies are not required to be
connected by a joint and may exist as a standalone entity. All bodies exist within the
world space of their collection. There is no concept of a transformation hierarchy of
bodies within bodies.

37.2.4 Joints

37.2.4.1 What a joint describes

A joint is used to connect two bodies together in a way that imposes a set of constraints
on the movement of the two bodies relative to one another. Many different joint types
are provided allowing the user to constrain the motions of the bodies according to the
desired physical properties.

37.2.4.2 Range of motion limits

Each of the joints has a range of motion through which they can travel. This range of
motion may be radial angles or linear distance. Typically these values are limited to a
single rotation in any one axis.

EXAMPLE 1 2π radians indicates full rotatability.

Each joint contains a set of fields that can be used to limit the range of motions to less
than full ability. These fields are termed stops.

A stop is defined by its value and a number of parameters to control the effects output
from the physics engine. Firstly, a stop may permit some amount of bouncing due to
the action of the joint hitting it. These same values are also used to perform internal
self-correction of objects that have interpenetrated due to the discrete time step
intervals that the evaluation of the physics model uses.

EXAMPLE 2 In the real world, a lot of stops have a rubber cushion on the end to absorb the impacts and help
return the joint to the central position.

37.2.5 Coordinate systems

37.2.5.1 Initial coordinate system

When the two bodies are initially placed in the scene, their initial positions define the
resting coordinate frames for the two bodies on that joint. Output values from those

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 37 Rigid body physics component

rigidBodyPhysics.html[8/1/2020 10:00:53 AM]

joints are then relative to this initial position.

The anchor position and axis values of joints are always specified in world coordinate
positions, regardless of whether the two joining bodies have been offset or not.

Mass is defined in kilograms. It is important to note that rigid body physics models, due
to inaccuracy in floating point calculations, cannot typically deal with real-world values.
Values provided should be defined in relative proportions rather than absolute values.
This will help the model stay stable over long calculation periods.

37.2.5.2 Breaking joints

Each joint node will have two output-only fields that indicate the calculated location of
the relative positions within their own frame of reference. By comparing the difference
between these two values, it is possible to determine if the joint has broken as a result
of the input from the last frame. If the joint broke, the difference between the two
values will be non-zero (although the author should also allow a small tolerance due to
the inaccuracy of floating point calculations).

37.2.5.3 Collision contact description

When a collision is found between two objects, it is described with the following details:

a. a unit vector describing the surface normal from body 1 to body 2 at the point of
contact,

b. a primary direction of motion for body 1 relative to body 2, and
c. a second direction that is perpendicular to both the normal and the primary

direction is implied for the purposes of providing various sets of coefficients.

The CollisionCollection node specifies a set of default coefficients to use for all contacts
unless overridden by geometry-specific information. These coefficients are generally
described using SFVec2f fields. The 2D vector describes the coefficients for the primary
direction for the first value and secondary direction for the second value.

 37.3 Abstract types

37.3.1 X3DNBodyCollidableNode
X3DNBodyCollidableNode : X3DChildNode, X3DBoundedObject {
 SFBool [in out] bboxDisplay FALSE
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFRotation [in,out] rotation 0 0 1 0 [0,1]
 SFVec3f [in,out] translation 0 0 0 (-∞,∞)
 SFBool [in out] visible TRUE
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or -1 -1 -1
}

The X3DNBodyCollidableNode abstract node type represents objects that act as the
interface between the rigid body physics, collision geometry proxy, and renderable
objects in the scene graph hierarchy.

The enabled field is used to specify whether a collidable object is eligible for collision-
detection interactions.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 37 Rigid body physics component

rigidBodyPhysics.html[8/1/2020 10:00:53 AM]

The translation and rotation fields define an offset from, and rotation about, the body's
center that the collidable node occupies. This can be used to place the collidable
geometry in a different location relative to the actual rigid body that has the physics
model being applied.

37.3.2 X3DNBodyCollisionSpaceNode
X3DNBodyCollisionSpaceNode : X3DNode, X3DBoundedObject {
 SFBool [in out] bboxDisplay FALSE
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [in out] visible TRUE
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or -1 -1 -1
}

The X3DNBodyCollisionSpaceNode abstract node type represents objects that act as a
self-contained spatial collection of objects that can interact through collision-detection
routines. Different types of spaces may be defined depending on spatial organization or
other optimization mechanisms.

The enabled field specifies whether the collision space is to be considered during
collision processing.

37.3.3 X3DRigidJointNode
X3DRigidJointNode : X3DNode {
 SFNode [in,out] body1 NULL [RigidBody]
 SFNode [in,out] body2 NULL [RigidBody]
 MFString [in,out] forceOutput "NONE" ["ALL","NONE",...]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

The X3DRigidJointNode abstract node type is the base type for all joint types.

The forceOutput field is used to control which output fields are to be generated for the
next frame. In physics models, the amount of data that can be generated per frame can
be quite extensive, particularly in complex models with a large number of joints. A
typical application will need only a few of them, if any at all. This field is used to control
which of those outputs the author requires to be generated. The values of the array are
to describe the names, exactly, of the output field(s) that are to be updated at the start
of the next frame. Two special values are defined: "ALL" and "NONE". If "ALL" is specified
anywhere in the array, all fields are to be updated. If "NONE" is specified, no updates are
performed. If the list of values is empty, it shall be treated as if "NONE" were specified.
Other values provided in addition to "NONE" shall be ignored.

Because computers are not guaranteed to be accurate in their mathematical
calculations and because of the nature of the discrete time steps in the evaluation
mechanisms, the behaviour of the system will not be 100% accurate.

EXAMPLE Objects may intersect that should not and joints may break that should not.

Every joint type will have a set of joint-specific fields that define a set of error
correction conditions. This error correction conditions provide guidance as to how to
automatically correct for internally calculated errors including such errors as object
interpenetration. In addition, these error correction conditions can be used to control
how quickly the errors should be corrected. Fast corrections may not always be
desirable for the appropriate visual output required.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 37 Rigid body physics component

rigidBodyPhysics.html[8/1/2020 10:00:53 AM]

 37.4 Node reference

37.4.1 BallJoint
BallJoint : X3DRigidJointNode {
 SFVec3f [in,out] anchorPoint 0 0 0
 SFNode [in,out] body1 NULL [RigidBody]
 SFNode [in,out] body2 NULL [RigidBody]
 MFString [in,out] forceOutput "NONE" ["ALL","NONE",...]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFVec3f [out] body1AnchorPoint
 SFVec3f [out] body2AnchorPoint
}

The BallJoint node represents an unconstrained joint between two bodies that pivot
about a common anchor point.

body1AnchorPoint and body2AnchorPoint represent the output that describes where the
anchorPoint is relative to the two bodies local coordinate reference frame. This can be
used to detect if the joint has caused a separation if the two values are not the same
for a given frame.

37.4.2 CollidableOffset
CollidableOffset : X3DNBodyCollidableNode {
 SFBool [in out] bboxDisplay FALSE
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFRotation [in,out] rotation 0 0 1 0 [0,1]
 SFVec3f [in,out] translation 0 0 0 (-∞,∞)
 SFBool [in out] visible TRUE
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or -1 -1 -1
 SFNode [] collidable NULL [X3DNBodyCollidableNode]
}

The CollidableOffset node is used to reposition a piece of geometry relative to the
center of the owning body while keeping it consistent within the geometry space.

The collidable field holds a reference to a single nested item of collidable scene graph. If
there are multiple transformation paths to this reference, the results are undefined.

37.4.3 CollidableShape
CollidableShape : X3DNBodyCollidableNode {
 SFBool [in out] bboxDisplay FALSE
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFRotation [in,out] rotation 0 0 1 0 [0,1]
 SFVec3f [in,out] translation 0 0 0 (-∞,∞)
 SFBool [in out] visible TRUE
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or -1 -1 -1
 SFNode [] shape NULL [Shape]
}

The CollidableShape node represents the glue between the collision-detection system,
the rigid body model, and the renderable scene graph. Its job is to take a single piece
of geometry wrapped in a Shape node and provide a way for the physics model body to
move the geometry. In addition, it allows the collision detection system to determine
the location of the geometry primitives that it uses for collision management. When
placed under a part of the transformation hierarchy, it can be used to visually represent
the movement of the object.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 37 Rigid body physics component

rigidBodyPhysics.html[8/1/2020 10:00:53 AM]

The shape field uses the geometry proxy for specifying which geometry best represents
the collidable object.

NOTE Since the shape node is still writable, it is strongly recommended that the author not dynamically change
the Shape’s geometry field as it may have large performance impacts due to optimizations used by the collision
system.

Not all geometry types are mappable to the collision node type.

EXAMPLE PointSet

If the containing shape node is given an explicit bounding box size, the geometry shall
be approximated using that shape for the purposes of collision detection. If there is no
bounding box, the results are implementation-dependent.

37.4.4 CollisionCollection
CollisionCollection : X3DChildNode {
 MFString [in,out] appliedParameters "BOUNCE"
 SFFloat [in,out] bounce 0 [0,1]
 MFNode [in,out] collidables NULL [X3DNBodyCollisionSpaceNode,
 X3DNBodyCollidableNode]
 SFBool [in,out] enabled TRUE
 SFVec2f [in,out] frictionCoefficients 0 0 [0,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFFloat [in,out] minBounceSpeed 0.1 [0,∞)
 SFVec2f [in,out] slipFactors 0 0 (-∞,∞)
 SFFloat [in,out] softnessConstantForceMix 0.0001 [0,1]
 SFFloat [in,out] softnessErrorCorrection 0.8 [0,1]
 SFVec2f [in,out] surfaceSpeed 0 0 (-∞,∞)
}

The CollisionCollection node holds a collection of objects in the collidables field that can
be managed as a single entity for resolution of inter-object collisions with other groups
of collidable objects. A group consists of both collidable objects as well as spaces that
may be collided against each other. A set of parameters are provided that specify
default values that will be assigned to all Contact nodes generated from the
CollisionSensor node. A user may then override the individual Contact node by inserting
a script between the output of the sensor and the input to the RigidBodyCollection node
if it is desired to process the contact stream.

The enabled field is used to control whether the collision-detection system for this
collection should be run at the end of this frame. A value of TRUE enables it while a value
of FALSE disables it. A CollisionSensor node watching this collection does not report any
outputs for this collection for this frame if it is not enabled.

The bounce field indicates how bouncy the surface contact is. A value of 0 indicates no
bounce at all while a value of 1 indicates maximum bounce.

The minBounceSpeed field indicates the minimum speed, in speed base units, that an
object shall have before an object will bounce. If the object is below this speed, it will
not bounce, effectively having an equivalent value for the bounce field of zero.

The surfaceSpeed field defines the speed in the two friction directions in speed base
units. This is used to indicate if the contact surface is moving independently of the
motion of the bodies.

EXAMPLE a conveyor belt.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 37 Rigid body physics component

rigidBodyPhysics.html[8/1/2020 10:00:53 AM]

The softnessConstantForceMix value applies a constant force value to make the colliding
surfaces appear to be somewhat soft.

The softnessErrorCorrection determines how much of the collision error should be fixed
in a set of evaluations. The value is limited to the range of [0,1]. A value of 0 specifies
no error correction while a value of 1 specifies that all errors should be corrected in a
single step.

The appliedParameters indicates globally which parameters are to be applied to the
collision outputs when passing information into the the rigid body physics system.
These parameters specify a series of defaults that apply to all contacts generated.
Individual contacts may override which values are applicable, if needed, by setting the
field of the same name in the contact itself. The following are valid values:

"BOUNCE": The bounce field value is used.
"USER_FRICTION": The system will normally calculate the friction direction vector that
is perpendicular to the contact normal. This setting indicates that the user-supplied
value in this contact should be used.
"FRICTION_COEFFICIENT-2": The frictionCoefficients field values are used.
"ERROR_REDUCTION": The softnessErrorCorrection field value in the contact evaluation
should be used.
"CONSTANT_FORCE": The softnessConstantForceMix field value in the contact evaluation
should be used.
"SPEED-1": The surfaceSpeed field value first component is used.
"SPEED-2": The surfaceSpeed field value second component is used.
"SLIP-1": The slipFactors field value first component is used.
"SLIP-2": The slipFactors field value second component is used.

37.4.5 CollisionSensor
CollisionSensor : X3DSensorNode {
 SFNode [in,out] collider NULL [CollisionCollection]
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFNode [out] intersections [X3DNBodyCollidableNode]
 MFNode [out] contacts [Contact]
 SFBool [out] isActive
}

The CollisionSensor node is used to send collision-detection information into the scene
graph for user processing. The collision-detection system does not require an instance
of this class to be in the scene in order for it to run or affect the physics model. This
class is used to report to the user contact information should the user require this
information for other purposes.

The collidables field specifies the nodes and spaces that are to be included in collision-
detection computations.

The contacts field is used to report contacts that were generated as a result of the
scene graph changes last frame. This field generates instances of the Contact node.

NOTE While it is possible to route from this field to the set_contacts field of the RigidBodyCollection node, it is
strongly advised that this not be done. The collision system will have already taken these into account internally
and processed them in the visual results from the last frame. Setting the values again to the RigidBodyCollection

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 37 Rigid body physics component

rigidBodyPhysics.html[8/1/2020 10:00:53 AM]

node will result in undefined behaviour.

The contacts field is only available when using the RigidBodyPhysics support level 2 and
above.

The CollisionSensor is active (isActive is TRUE) when contacts were located as a result of
the movement of the watched objects from last frame.

The intersections field is used to report the colliding geometry that was detected in this
last frame.

37.4.6 CollisionSpace
CollisionSpace : X3DNBodyCollisionSpaceNode {
 MFNode [in,out] collidables NULL [X3DNBodyCollisionSpaceNode, X3DNBodyCollidableNode]
 SFBool [in out] bboxDisplay FALSE
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [in,out] useGeometry FALSE
 SFBool [in out] visible TRUE
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or -1 -1 -1
}

The CollisionSpace node holds a collection of objects in the collidables field that can be
considered as a single entity for resolution of inter-object collisions with other groups of
collidable objects. A group consists of both collidable objects as well as nested
collections. This grouping allows creation of efficient collision detection scenarios by
grouping functional sets of objects together. Spaces may be collided against each other
to determine if the larger group of objects are anywhere near each other. If there is
some intersection between two spaces, or between a collidable space and a collidable
object, the system will traverse into the contained objects looking for finer resolution on
exactly which objects collided together.

The useGeometry field indicates whether the collision-detection code should check for
collisions down to the level of geometry or only make approximations using the bounds
of the geometry. Using the geometry will be more accurate but slower. In most cases,
just testing against the bounds of the object is sufficient.

37.4.7 Contact
Contact : X3DNode {
 MFString [in,out] appliedParameters "BOUNCE"
 SFNode [in,out] body1 NULL [RigidBody]
 SFNode [in,out] body2 NULL [RigidBody]
 SFFloat [in,out] bounce 0 [0,1]
 SFVec3f [in,out] contactNormal 0 1 0 (-∞,∞)
 SFFloat [in,out] depth 0 (-∞,∞)
 SFVec2f [in,out] frictionCoefficients 0 0 [0,∞)
 SFVec3f [in,out] frictionDirection 0 1 0 (-∞,∞)
 SFNode [in,out] geometry1 NULL [X3DNBodyCollidableNode]
 SFNode [in,out] geometry2 NULL [X3DNBodyCollidableNode]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFFloat [in,out] minbounceSpeed 0 [0,∞)
 SFVec3f [in,out] position 0 0 0 (-∞,∞)
 SFVec2f [in,out] slipCoefficients 0 0 (-∞,∞)
 SFFloat [in,out] softnessConstantForceMix 0.0001 [0,1]
 SFFloat [in,out] softnessErrorCorrection 0.8 [0,1]
 SFVec2f [in,out] surfaceSpeed 0 0 (-∞,∞)
}

The Contact node specifies information concerning a contact between collidable objects
and/or spaces.

The body1 and body2 fields specify two top-level nodes that should be evaluated in the

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 37 Rigid body physics component

rigidBodyPhysics.html[8/1/2020 10:00:53 AM]

physics model as a single set of interactions with respect to each other.

The geometry1 and geometry2 fields specify information about body1 and body2.

The position field indicates the exact location of the contact that was made between the
two objects.

The contactNormal field is a unit vector describing the normal between the two colliding
bodies.

The depth field indicates how deep the current intersection is along the normal vector.

The frictionDirection field is used to control the vector that describes which way friction
is to be applied to the contact location. If there is no friction, the direction should be set
to 0, 0, 0.

The bounce field indicates how bouncy the surface contact is. A value of 0 indicates no
bounce at all while a value of 1 indicates maximum bounce.

The minBounceSpeed field indicates the minimum speed, in speed base units, that an
object shall have before an object will bounce. If the object is below this speed, it will
not bounce, effectively having an equivalent value for the bounce field of zero.

The surfaceSpeed field defines the speed in the two friction directions in speed base
units. This is used to indicate whether the contact surface is moving independently of
the motion of the bodies.

EXAMPLE A conveyor belt mechanism may be stationary while its belt is moving. The object being placed on the
conveyor belt will not be affected by the motion of the belt until it is in contact with it.

The softnessConstantForceMix value applies a constant force value to make the colliding
surfaces appear to be somewhat soft.

The softnessErrorCorrection determines how much of the collision error should be fixed
in a set of evaluations. The value is limited to the range of [0,1] where 0 specifies no
error correction while a value of 1 specifies that all errors should be corrected in a
single step.

The appliedParameters indicates globally which parameters are to be applied to the
collision outputs when passing information into the the rigid body physics system.
These parameters specify a series of defaults that apply to all contacts generated.
Individual contacts may override which values are applicable, if needed, by setting the
field of the same name in the contact itself. The valid values are specified in Table 37.2:

Table 37.2 — appliedParameters valid values

Value Meaning

"BOUNCE" The bounce field value is used.

"USER_FRICTION"

The system will normally calculate the friction direction
vector that is perpendicular to the contact normal. This
setting indicates that the user-supplied value in this contact

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 37 Rigid body physics component

rigidBodyPhysics.html[8/1/2020 10:00:53 AM]

should be used.

"FRICTION_COEFFICIENT−2" The frictionCoefficients field values are used.

"ERROR_REDUCTION"
The softnessErrorCorrection field value in the contact
evaluation should be used.

"CONSTANT_FORCE"
The softnessConstantForceMix field value in the contact
evaluation should be used.

"SPEED-1" The surfaceSpeed field value first component is used.

"SPEED-2" The surfaceSpeed field value second component is used.

"SLIP-1" The slipFactors field value first component is used.

"SLIP-2" The slipFactors field value second component is used.

37.4.8 DoubleAxisHingeJoint
DoubleAxisHingeJoint : X3DRigidJointNode {
 SFVec3f [in,out] anchorPoint 0 0 0
 SFVec3f [in,out] axis1 0 0 0
 SFVec3f [in,out] axis2 0 0 0
 SFNode [in,out] body1 NULL [RigidBody]
 SFNode [in,out] body2 NULL [RigidBody]
 SFFloat [in,out] desiredAngularVelocity1 0 (-∞,∞)
 SFFloat [in,out] desiredAngularVelocity2 0 (-∞,∞)
 MFString [in,out] forceOutput "NONE" ["ALL","NONE",...]
 SFFloat [in,out] maxAngle1 π [-π,π]
 SFFloat [in,out] maxTorque1 0 (-∞,∞)
 SFFloat [in,out] maxTorque2 0 (-∞,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFFloat [in,out] minAngle1 -π [-π,π]
 SFFloat [in,out] stopBounce1 0 [0,1]
 SFFloat [in,out] stopConstantForceMix1 0.001 [0,∞)
 SFFloat [in,out] stopErrorCorrection1 0.8 [0,1]
 SFFloat [in,out] suspensionErrorCorrection 0.8 [0,1]
 SFFloat [in,out] suspensionForce 0 [0,∞)
 SFVec3f [out] body1AnchorPoint
 SFVec3f [out] body1Axis
 SFVec3f [out] body2AnchorPoint
 SFVec3f [out] body2Axis
 SFFloat [out] hinge1Angle
 SFFloat [out] hinge1AngleRate
 SFFloat [out] hinge2Angle
 SFFloat [out] hinge2AngleRate
}

The DoubleAxisHingeJoint node represents a joint that has two independent axes that
are located around a common anchor point. Axis 1 is specified relative to the first body
(specified by the body1 field) and axis 2 is specified relative to the second body
(specified by the body2 field). Axis 1 can have limits and a motor, axis 2 can only have
a motor.

The minAngle1 and maxAngle1 fields are used to control the maximum angles through
which the hinge is allowed to travel. A hinge may not travel more than π radians (or the
equivalent angle base units) in either direction from its initial position.

The stopBounce1 field is used to set how bouncy the minimum and maximum angle
stops are for axis 1. A value of zero means they are not bouncy while a value of 1
means maximum bounciness (full reflection of force arriving at the stop).

The stopErrorCorrection1 and suspensionErrorCorrection fields describe how quickly the

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 37 Rigid body physics component

rigidBodyPhysics.html[8/1/2020 10:00:53 AM]

system should resolve intersection errors due to floating point inaccuracies. This value
ranges between 0 and 1. A value of 0 means no correction at all while a value of 1
indicates that all errors should be corrected in a single step.

The stopConstantForceMix1 and suspensionForce fields can be used to apply damping to
the calculations by violating the normal constraints by applying a small, constant force
to those calculations. This allows joints and bodies to be a fraction springy, as well as
helping to eliminate numerical instability. The larger the value, the more soft each of
the constraints being evaluated. A value of zero indicates hard constraints so that
everything is exactly honoured. By combining the stopErrorCorrection1 and
stopConstantForceMix1 fields and/or the suspensionErrorCorrection and
suspensionForce fields, various effects, such as spring-driven or spongy connections,
can be emulated.

The maxTorque1 field defines the maximum amount of torque that the motor can apply
on axis 1 in order to achieve the desiredAngularVelocity1 value. Similarly, maxTorque2
controls the maximum amount of torque to achieve desiredAngularVelocity2 on axis 2.

The hingeXAngle output fields report the current relative angle between the two bodies
in angle base units and the hingeXAngleRate field describes the rate at which that angle
is currently changing in angular_rate angular velocity base units.

The body anchor point and body axis output fields report the current location of the
anchor point relative to the corresponding body. This can be used to determine if the
joint has broken.

37.4.9 MotorJoint

MotorJoint : X3DRigidJointNode { SFFloat [in,out] axis1Angle 0 [-π,π] SFFloat [in,out]
axis1Torque 0 (-∞,∞) SFFloat [in,out] axis2Angle 0 [-π,π] SFFloat [in,out] axis2Torque
0 (-∞,∞) SFFloat [in,out] axis3Angle 0 [-π,π] SFFloat [in,out] axis3Torque 0 (-∞,∞)
SFNode [in,out] body1 NULL [RigidBody] SFNode [in,out] body2 NULL [RigidBody]
SFInt32 [in,out] enabledAxes 1 [0,3] MFString [in,out] forceOutput "NONE"
["ALL","NONE",...] SFNode [in,out] metadata NULL [X3DMetadataObject] SFVec3f
[in,out] motor1Axis 0 0 0 SFVec3f [in,out] motor2Axis 0 0 0 SFVec3f [in,out]
motor3Axis 0 0 0 SFFloat [in,out] stop1Bounce 0 [0,1] SFFloat [in,out]
stop1ErrorCorrection 0.8 [0,1] SFFloat [in,out] stop2Bounce 0 [0,1] SFFloat [in,out]
stop2ErrorCorrection 0.8 [0,1] SFFloat [in,out] stop3Bounce 0 [0,1] SFFloat [in,out]
stop3ErrorCorrection 0.8 [0,1] SFFloat [out] motor1Angle SFFloat [out]
motor1AngleRate SFFloat [out] motor2Angle SFFloat [out] motor2AngleRate SFFloat
[out] motor3Angle SFFloat [out] motor3AngleRate SFBool [] autoCalc FALSE }

The MotorJoint node allows control of the relative angular velocities between the two
bodies (specified by the body1 and body2 fields) associated with a joint. This can be
especially useful with a BallJoint where there is no restriction on the angular degrees of
freedom.

The autoCalc field is used to control whether the user shall manually provide the
individual angle rotations each frame or if they are to be automatically calculated from
the motor’s implementation.

The motorAxis fields define the axis vector of the corresponding axis. If the value is 0,

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 37 Rigid body physics component

rigidBodyPhysics.html[8/1/2020 10:00:53 AM]

0, 0, the corresponding axis is disabled and the motor does not apply a force or torque
along that axis. The motorAxis1 field is anchored to the global frame. The motorAxis2
field is anchored to body1’s frame of reference, and the motorAxis3 field is anchored to
body2’s frame of reference.

The three axis angle fields provide angles (in angle base units) for this frame for the
corresponding motor axis when in user-calculated mode.

When the autoCalc field is set to FALSE, the enabledAxes field indicates how many axes
can currently be controlled and modified. If the value is zero, the motor is effectively
disabled. If the value is 1, only axis1 is enabled, a value of 2 has axis 1 and axis 2
enabled and a value of 3 has all axes enabled.

The motor angle output fields provide the calculated angle in angle base units for this
motor joint from the last frame. The motor angle rate output fields describe the rate, in
angular_rate angular velocity base units, that the motor is turning.

The stop bounce fields describe how much the joint should bounce the body back on the
corresponding axis if the joint limit has been reached or exceeded. A value of zero
indicates no bounce at all, and a value of one says that it should bounce with velocity
equal and opposite to the collision velocity of the contact.

The stop error correction fields describe the amount of error correction to be performed
in a time step when the joint reaches the limit on the corresponding axis. A value of
zero means no error correction is to be performed and a value of one means all error
should be corrected in a single step.

37.4.10 RigidBody
RigidBody : X3DNode {
 SFFloat [in,out] angularDampingFactor 0.001 [0,1]
 SFVec3f [in,out] angularVelocity 0 0 0 (-∞,∞)
 SFBool [in,out] autoDamp FALSE
 SFBool [in,out] autoDisable FALSE
 SFVec3f [in,out] centerOfMass 0 0 0 (-∞,∞)
 SFFloat [in,out] disableAngularSpeed 0 [0,∞)
 SFFloat [in,out] disableLinearSpeed 0 [0,∞)
 SFFloat [in,out] disableTime 0 [0,∞)
 SFTime [in,out] disableTime 0 [0,∞)
 SFBool [in,out] enabled TRUE
 SFVec3f [in,out] finiteRotationAxis 0 0 0 [-1,1]
 SFBool [in,out] fixed FALSE
 MFVec3f [in,out] forces []
 MFNode [in,out] geometry [] [X3DNBodyCollidableNode]
 SFMatrix3f [in,out] inertia 1 0 0
 0 1 0
 0 0 1
 SFFloat [in,out] linearDampingFactor 0.001 [0,1]
 SFVec3f [in,out] linearVelocity 0 0 0 (-∞,∞)
 SFFloat [in,out] mass 1 (0,∞)
 SFNode [in,out] massDensityModel NULL [Sphere, Box, Cone]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFRotation [in,out] orientation 0 0 1 0 [0,1]
 SFVec3f [in,out] position 0 0 0 (-∞,∞)
 MFVec3f [in,out] torques []
 SFBool [in,out] useFiniteRotation FALSE
 SFBool [in,out] useGlobalGravity TRUE
}

The RigidBody node describes a body and its properties that can be affected by the
physics model. A body is modelled as a collection of shapes that describe mass
distribution rather than renderable geometry. Bodies are connected together using
Joints and are represented by geometry.

The geometry field is used to connect the body modelled by the physics engine

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 37 Rigid body physics component

rigidBodyPhysics.html[8/1/2020 10:00:53 AM]

implementation to the real geometry of the scene through the use of collidable nodes.
This allows the geometry to be connected directly to the physics model as well as
collision detection. Collidable nodes have their location set to the same location as the
body instance in which they are located. Their position and location are not relative to
this object, unless otherwise defined.

The massDensityModel field is used to describe the geometry type and dimensions used
to calculate the mass density in the physics model. This geometry has no renderable
property, other than for defining the model of the mass density. It is not rendered, nor
modified by the physics model.

The finiteRotationAxis field specifies a vector around which the object rotates.

The useFiniteRotation field is used to influence the way the body's rotation is calculated.
In very fast rotating objects, such as a wheel of a car, an infinitely small time step can
cause the modelling to explode. The default value is to use the faster infinite mode.
Setting the field value to TRUE uses the finite calculation model. Using the finite model is
more costly to compute but will be more accurate for high rotation speed bodies.

The useGlobalGravity field is used to indicate whether this particular body should be
influenced by the containing RigidBodyCollection's gravity setting. A value of TRUE
indicates that the gravity is used, a value of FALSE indicates that it is not used. This only
applies to this body instance. Contained sub-bodies shall not be affected by this setting.

The inertia field represents a 3x2 inertia tensor matrix. If the set values are less than
six items, the results are implementation dependent. If the value set is greater than six
values, only the first six values of the array are used.

The fixed field is used to indicate that this body does not move. Any calculations
involving collisions with this body should take into account that this body does not
move. This is useful for representing objects such as the ground, walls etc that can be
collided with, have an effect on other objects, but are not capable of moving
themselves.

The mass field indicates the mass of the body in mass base units. All bodies shall have
a non-zero mass, with the default value of 1 mass base unit.

The damping factor fields allow the user to instruct the implementation to automatically
damp the motion of the body over time. The value of the field is used to take a multiple
of the value calculated in the last frame and apply it in opposition to the current motion
for this frame. Damping is useful to provide an appearance of frictional forces and also
to prevent the body from exploding due to numerical instability of the physics model
calculations. Damping is proportional to the current velocity and/or rotation of the
object. The application of damping is controlled through the use of the autoDamp field.
When the value is FALSE, no damping is applied. When the value is TRUE, rotational and
translational damping is calculated and applied.

EXAMPLE The body is calculated in the previous frame to have a velocity of (0 1 0). A damping factor of 0.01 is
active. In this next simulation time step, a force of 0.01 × (0 1 0) × -1 is applied to the object.

The torques and forces fields define zero or more sets of torque and force values that
are applied to the object every frame. These are continuously applied until reset to zero

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 37 Rigid body physics component

rigidBodyPhysics.html[8/1/2020 10:00:53 AM]

by the user.

The velocity fields are used to provide a constant velocity value to the object every
frame. If both forces and velocity are defined, the velocity is used only on the first
frame that the node is active, and then the forces are applied. The velocity fields then
report the changed values as a result of the application of the physics model in each
frame. Setting a new value to the appropriate field will reset the body's velocity for the
next frame. Caution should be used in doing this as the underlying physics models may
assume some amount of caching between time step evaluations and instantaneous
velocity changes may lead to numerical instability.

The position and orientation fields are used to set the initial conditions of this body's
location in world space. After the initial conditions have been set, these fields are used
to report the current information based on the most recent physics model evaluation.
Setting new values will cause the objects to be moved to the new location and
orientation for the start of the next evaluation cycle. Care should be used in manually
changing the position and orientation as the underlying physics models may cache
information between time step evaluations and sudden instantaneous changes may lead
to numerical instability.

The disable fields define conditions for when the body ceases to considered as part of
the rigid body calculations and should be considered as at rest. Due to the numerical
instability of physics models, even bodies initially declared to be at rest may gain some
amount of movement, even when not effected by an external forces. These values
define tolerances for which the physics model should start to ignore this object in any
calculation, thus resulting in them being actually at rest and not subject to these
instability conditions. Once any one of these values is achieved, the body is considered
as being at rest unless acted upon by an external force (e. g., collision or action of
connected joint). By default, this automatic disabling is turned off. It may be enabled
by setting the autoDisable field to TRUE.

The enabled field controls whether the information in this node is submitted to the
physics engine for processing. If the enabled field is set TRUE, the node is submitted to
the physics engine. If the enabled field is set FALSE, the node is not submitted to the
physics engine for processing.

37.4.11 RigidBodyCollection
RigidBodyCollection : X3DChildNode {
 MFNode [in] set_contacts [Contact]
 SFBool [in,out] autoDisable FALSE
 MFNode [in,out] bodies [] [RigidBody]
 SFFloat [in,out] constantForceMix 0.0001 [0,∞)
 SFFloat [in,out] contactSurfaceThickness 0 [0,∞)
 SFFloat [in,out] disableAngularSpeed 0 [0,∞)
 SFFloat [in,out] disableLinearSpeed 0 [0,∞)
 SFFloat [in,out] disableTime 0 [0,∞)
 SFTime [in,out] disableTime 0 [0,∞)
 SFBool [in,out] enabled TRUE
 SFFloat [in,out] errorCorrection 0.8 [0,1]
 SFVec3f [in,out] gravity 0 -9.8 0
 SFInt32 [in,out] iterations 10 [0,∞)
 MFNode [in,out] joints [] [X3DRigidJointNode]
 SFFloat [in,out] maxCorrectionSpeed -1 [0,∞) or -1
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [in,out] preferAccuracy FALSE
 SFNode [] collider NULL [CollisionCollection]
}

The RigidBodyCollection node represents a system of bodies that will interact within a
single physics model. The collection is not a renderable part of the scene graph nor are

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 37 Rigid body physics component

rigidBodyPhysics.html[8/1/2020 10:00:53 AM]

its children as a typical model may need to represent the geometry for physics
separately, and in less detail, than those needed for visuals.

The bodies field contains a collection of the top-level nodes that comprise a set of
bodies that should be evaluated as a single set of interactions.

The joints field is used to register all the joints between the bodies contained in this
collection. If a joint is connected between bodies in two different collections, the result
is implementation-dependent. If a joint instance is registered with more than one
collection, the results are implementation dependent. Joints not registered with any
collection are not evaluated.

The enabled field is used to control whether the physics model for this collection should
be run this frame.

The contactSurfaceThickness field represents how far bodies may interpenetrate after a
collision. This allows simulation of softer bodies that may deform somewhat during
collision. The default value is zero.

NOTE Since a value of 0 may cause jittering due to floating point inaccuracy, a typically small value of 0.001
length base units may be useful.

The gravity field indicates direction and strength (in acceleration base units) of the local
gravity vector for this collection of bodies. The default gravity is standard earth gravity
of 9.8 meters/second2 downwards.

The set_contacts input field is used to provide per-frame sets of information about
contacts between bodies in this frame. These contacts are then used to modify the
location of the bodies within the scene graph when the physics model is evaluated at
the end of the frame. For efficiency, a user may reuse instances of the Contact node for
each frame rather than allocating a new instance per frame. A browser implementation
shall not make assumptions about the same object instance having the same values
each frame.

The preferAccuracy field is used to provide a performance hint to the underlying
evaluation about whether the user prefers to have very accurate models or fast models.
Accuracy comes at a large penalty in both speed and memory usage, but may not be
needed most of the time. The default setting is to optimize for speed rather than
accuracy.

The iterations field is used to control how many iterations over the collections of joints
and bodies are to be performed each time the model is evaluated. Rigid body physics is
a process of iterative refinement in order to maintain reasonable performance. As the
number of iterations grow, the more stable the final results are at the cost of increasing
evaluation time. Since maintaining real-time performance is a trade off between
accuracy and frame rate, this setting allows the user to control that trade off to a
limited extent.

The errorCorrection field describes how quickly the system should resolve intersection
errors due to floating point inaccuracies. This value ranges between 0 and 1. A value of
0 means no correction at all while a value of 1 indicates that all errors should be
corrected in a single step.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 37 Rigid body physics component

rigidBodyPhysics.html[8/1/2020 10:00:53 AM]

The constantForceMix field can be used to apply damping to the calculations by
violating the normal constraints by applying a small, constant force to those
calculations. This allows joints and bodies to be a fraction springy, as well as helping to
eliminate numerical instability. The larger the value, the more soft each of the
constraints being evaluated. A value of zero indicates hard constraints so that
everything is exactly honoured. By combining the errorCorrection and constantForceMix
fields, various effects, such as spring-driven or spongy connections, can be emulated.

The collider field associates a collision collection with this rigid body collection allowing
seamless updates and integration without the need to use the X3D event model.

The disable fields define conditions for when the body ceases to considered as part of
the rigid body calculations and should be considered as at rest. Due to the numerical
instability of physics models, even bodies initially declared to be at rest may gain some
amount of movement, even when not effected by an external forces. These values
define tolerances for which the physics model should start to ignore this object in any
calculation, thus resulting in them being actually at rest and not subject to these
instability conditions. Once any one of these values is achieved, the body is considered
as being at rest, unless acted upon by an external force (e. g., collision or action of
connected joint). By default, this automatic disabling is turned off. It may be enabled
by setting the autoDisable field to TRUE.

37.4.12 SingleAxisHingeJoint
SingleAxisHingeJoint : X3DRigidJointNode {
 SFVec3f [in,out] anchorPoint 0 0 0
 SFVec3f [in,out] axis 0 0 0
 SFNode [in,out] body1 NULL [RigidBody]
 SFNode [in,out] body2 NULL [RigidBody]
 MFString [in,out] forceOutput "NONE" ["ALL","NONE",...]
 SFFloat [in,out] maxAngle π
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFFloat [in,out] minAngle -π
 SFFloat [in,out] stopBounce 0 [0,1]
 SFFloat [in,out] stopErrorCorrection 0.8 [0,1]
 SFFloat [out] angle
 SFFloat [out] angleRate
 SFVec3f [out] body1AnchorPoint
 SFVec3f [out] body2AnchorPoint
}

This node represents a joint with a single axis about which to rotate. As the name
suggests, this is a joint that works like a traditional door hinge. The axis of the hinge is
defined to be along the unit vector described in the axis field and centered on the
anchorPoint described in world coordinates. The objects on each side of the hinge are
specified by the body1 and body2 fields.

The minAngle and maxAngle fields are used to control the maximum angles through
which the hinge is allowed to travel. A hinge may not travel more than π radians (or the
equivalent angle base units) in either direction from its initial position.

The stopBounce field describes how much the joint should bounce the body back if the
joint limit has been reached or exceeded. A value of zero indicates no bounce at all, and
a value of one says that it should bounce with velocity equal and opposite to the
collision velocity of the contact.

The stopErrorCorrection field describes the amount of error correction to be performed
in a time step when the joint reaches the limit. A value of zero means no error

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 37 Rigid body physics component

rigidBodyPhysics.html[8/1/2020 10:00:53 AM]

correction is to be performed and a value of one means all error should be corrected in
a single step.

The angle output field reports the current relative angle between the two bodies in
angle base units and the angleRate field describes the rate at which that angle is
currently changing in angular_rate angular velocity base units.

The body anchor point output fields report the current location of the anchor point
relative to the corresponding body. This can be used to determine if the joint has
broken.

37.4.13 SliderJoint
SliderJoint : X3DRigidJointNode {
 SFVec3f [in,out] axis 0 1 0
 SFNode [in,out] body1 NULL [RigidBody]
 SFNode [in,out] body2 NULL [RigidBody]
 MFString [in,out] forceOutput "NONE" ["ALL","NONE",...]
 SFFloat [in,out] maxSeparation 1 [0,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFFloat [in,out] minSeparation 0 [0,∞)
 SFFloat [in,out] sliderForce 0 [-∞,∞)
 SFFloat [in,out] stopBounce 0 [0,1]
 SFFloat [in,out] stopErrorCorrection 1 [0,1]
 SFFloat [out] separation
 SFFloat [out] separationRate
}

The SliderJoint node represents a joint where all movement between the bodies
specified by the body1 and body2 fields is constrained to a single dimension along a
user-defined axis.

The axis field indicates which axis along which the two bodies will act. The value should
represent a normalized vector.

The sliderForce field value is used to apply a force (specified in force base units) along
the axis of the slider in equal and opposite directions to the two bodies. A positive value
applies a force such that the two bodies accelerate away from each other while a
negative value applies a force such that the two bodies accelerate toward each other.

If minSeparation is greater than maxSeparation, the stops become ineffective as if the
object has no stops at all.

The separation output field is used to indicate the final separation of the two bodies.

The separationRate output field is used to indicate the change in separation over time
since the last update.

The stopBounce field describes how much the joint should bounce the body back if the
joint limit has been reached or exceeded. A value of zero indicates no bounce at all, and
a value of one indicates that it should bounce with velocity equal and opposite to the
collision velocity of the contact.

The stopErrorCorrection field describes the amount of error correction to be performed
in a time step when the joint reaches the limit. A value of zero means no error
correction is to be performed and a value of one means all error should be corrected in
a single step.

37.4.14 UniversalJoint

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 37 Rigid body physics component

rigidBodyPhysics.html[8/1/2020 10:00:53 AM]

UniversalJoint : X3DRigidJointNode {
 SFVec3f [in,out] anchorPoint 0 0 0
 SFVec3f [in,out] axis1 0 0 0
 SFVec3f [in,out] axis2 0 0 0
 SFNode [in,out] body1 NULL [RigidBody]
 SFNode [in,out] body2 NULL [RigidBody]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFString [in,out] forceOutput "NONE" ["ALL","NONE",...]
 SFFloat [in,out] stopBounce1 0 [0,1]
 SFFloat [in,out] stop1ErrorCorrection 0.8 [0,1]
 SFFloat [in,out] stop2Bounce 0 [0,1]
 SFFloat [in,out] stop2ErrorCorrection 0.8 [0,1]
 SFVec3f [out] body1AnchorPoint
 SFVec3f [out] body1Axis
 SFVec3f [out] body2AnchorPoint
 SFVec3f [out] body2Axis
}

A universal joint is like a BallJoint that constrains an extra degree of rotational freedom.
Given the axis specified by the axis1 field on the body specified by the body1 field, and
the axis specified by the axis2 field on body2 that is perpendicular to axis1, the
UniversalJoint node keeps the axes perpendicular to each other. Thus, rotation of the
two bodies about the direction perpendicular to the two axes will be equal.

The vectors specified by the axis1 and axis2 fields shall be perpendicular. If not, the
interactions are undefined.

The stop bounce fields describe how much the joint should bounce the body back on the
corresponding axis if the joint limit has been reached or exceeded. A value of zero
indicates no bounce at all, and a value of one indicates that it should bounce with
velocity equal and opposite to the collision velocity of the contact.

The stop error correction fields describe the amount of error correction to be performed
in a time step when the joint reaches the limit on the corresponding axis. A value of
zero means no error correction is to be performed and a value of one means all error
should be corrected in a single step.

The body anchor point and body axis output fields report the current location of the
anchor point relative to the corresponding body. This can be used to determine if the
joint has broken.

 37.5 Support levels
The Rigid Body Physics component defines two levels of support as specified in Table
37.3.

Table 37.3 — Rigid body physics component support levels

Level Prerequisites Nodes/Features Support

1

Core 1
Grouping 1
Shape 1
Geometry3D 1

X3DNBodyCollidableNode n/a

X3DNBodyCollisionSpaceNode n/a

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 37 Rigid body physics component

rigidBodyPhysics.html[8/1/2020 10:00:53 AM]

CollidableOffset All fields fully
supported.

CollidableShape All fields fully
supported.

CollisionCollection All fields fully
supported.

CollisionSensor
All fields fully
supported except
contacts_changed.

CollisionSpace All fields fully
supported.

2

Core 1
Grouping 1
Shape 1
Geometry3D 1

X3DRigidJointNode n/a

BallJoint All fields fully
supported.

CollisionSensor All fields fully
supported.

Contact All fields fully
supported.

DoubleAxisHingeJoint All fields fully
supported.

MotorJoint All fields fully
supported.

RigidBody All fields fully
supported.

RigidBodyCollection All fields fully
supported.

SingleAxisHingeJoint All fields fully
supported.

SliderJoint All fields fully
supported.

UniversalJoint All fields fully
supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 37 Rigid body physics component

rigidBodyPhysics.html[8/1/2020 10:00:53 AM]

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Profile index

profileIndex.html[8/1/2020 10:00:55 AM]

Extensible 3D (X3D)
Part 1: Architecture and bases

Profile index

 General
This index lists the profiles in alphabetical order.

Profile Annex

CADInterchange H

Core A

Full F

Immersive E

Interactive C

Interchange B

MedicalInterchange L

MPEG-4 interactive D

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 17 Lighting component

lighting.html[8/1/2020 10:00:56 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

17 Lighting component

 17.1 Introduction

17.1.1 Name

The name of this component is "Lighting". This name shall be used when referring to
this component in the COMPONENT statement (see 7.2.5.4 Component statement).

17.1.2 Overview

This clause describes the Lighting component of this part of ISO/IEC 19775. This
includes how light sources are defined and positioned as well as how lights effect the
rendered image. Table 17.1 provides links to the major topics in this clause.

 Table 17.1 — Topics

17.1 Introduction
17.1.1 Name
17.1.2 Overview

17.2 Concepts
17.2.1 Light source semantics

17.2.1.1 Overview
17.2.1.2 Scoping of lights

17.2.2 Lighting model
17.2.2.1 Introduction
17.2.2.2 Lighting 'off'
17.2.2.3 Lighting 'on'
17.2.2.4 Lighting equations
17.2.2.5 References
17.2.2.1 Introduction
17.2.2.2 Texture sampling
17.2.2.3 Common definitions for all lighting models
17.2.2.4 Unlit lighting model

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 17 Lighting component

lighting.html[8/1/2020 10:00:56 AM]

17.2.2.5 Phong lighting model
17.2.2.6 Physical lighting model
17.2.2.7 References
17.2.2.8 Gouraud shading

17.3 Abstract types
17.3.1 X3DLightNode

17.4 Node reference
17.4.1 DirectionalLight
17.4.2 PointLight
17.4.3 SpotLight

17.5 Support levels

Figure 17.1 — SpotLight node

Table 17.1 — Topics
Table 17.2 — Unlit colour and alpha mapping
Table 17.3 — Lit colour and alpha mapping
Table 17.4 — Calculation of the spotlight factor
Table 17.5 — Calculation of the fog interpolant
Table 17.6 — Lighting component support levels

 17.2 Concepts

 17.2.1 Light source semantics

17.2.1.1 Overview

The following node types are light source nodes:

DirectionalLight
PointLight
SpotLight

PointLight and SpotLight illuminate all objects in the world that fall within their volume
of lighting influence regardless of location within the transformation hierarchy (by
default, when their global field is TRUE). PointLight defines this volume of influence as a
sphere centred at the light (defined by a radius). SpotLight defines the volume of
influence as a solid angle defined by a radius and a cut-off angle. DirectionalLight nodes
illuminate only the objects descended from the light's parent grouping node, including
any descendent children of the parent grouping nodes (by default, when their global
field is FALSE).

Shape nodes are illuminated by the sum of all of the lights in the world that affect
them. This includes the contribution of both the direct and ambient illumination from
light sources. Ambient illumination results from the scattering and reflection of light
originally emitted directly by light sources. The amount of ambient light is associated
with the individual lights in the scene. This is a gross approximation to how ambient
reflection actually occurs in nature.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 17 Lighting component

lighting.html[8/1/2020 10:00:56 AM]

Any node used as a source of illumination is derived from X3DLightNode. All light
sources contain an intensity, a color, and an ambientIntensity field. The intensity field
specifies the brightness of the direct emission from the light, and the ambientIntensity
specifies the intensity of the ambient emission from the light. Light intensity may range
from 0.0 (no light emission) to 1.0 (full intensity)infinity. The color field specifies the
spectral colour properties of both the direct and ambient light emission as an RGB
value. The on field specifies whether the light is enabled or disabled. If the value is
FALSE, the light is disabled and will not affect any nodes in the scene. If the value is TRUE,
the light will affect other nodes according to the 17.2.1.2 Scoping of lights.

In the physical lighting model (see 17.2.2.6 Physical lighting model) the intensity value
should correspond to:

luminous intensity in candela (lm/sr) in case of PointLight and SpotLight.

illuminance in lux (lm/m2) in case of DirectionalLight.

In the physical lighting model, the ambientIntensity value is unused. Future
specification versions may introduce a use for it, therefore we recommend leaving it at
0 (default) in case of physical rendering, to avoid future changes.

In case of the unlit lighting model all lights are ignored. See the 17.2.2.4 Unlit lighting
model.

 17.2.1.2 Scoping of lights

Each light type defines a global field that determines whether the light is global or
scoped. Global lights illuminate all objects that fall within their volume of lighting
influence. Scoped lights only illuminate objects that are in the same transformation
hierarchy as the light; i.e., only the children and descendants of its enclosing parent
group are illuminated. This allows the creation of realistic effects such as lights that
illuminate a single room.

 17.2.2 Lighting model

17.2.2.1 Introduction

The X3D lighting model provides detailed equations that specify the colours to apply to
each geometric object. For each object, the values of the Material, color, and/or texture
currently being applied to the object are combined with the lights illuminating the
object and the currently bound X3DFogObject (if specified). These equations are
designed to simulate the physical properties of light striking a surface.

If a programmable shader is defined for an Appearance node, the lighting model shall
be disabled and replaced by the functionality implemented by the shader program. See
31 Programmable shaders component for more information.

 17.2.2.2 Lighting 'off'

A Shape node is unlit if either of the following is true:

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 17 Lighting component

lighting.html[8/1/2020 10:00:56 AM]

a. The shape's appearance field is NULL (default).
b. The material field in the Appearance node is NULL (default).

NOTE Geometry nodes that represent lines or points do not support lighting.

If the shape is unlit, the colour (Irgb) and alpha (A, 1−transparency) of the shape at
each point on the shape's geometry is specified in Table 17.2.

 Table 17.2 — Unlit colour and alpha mapping

Texture type Colour per-vertex
or per-face Colour NULL

No texture
Irgb= ICrgb

A = 1
Irgb= (1, 1, 1)
A = 1

Intensity
(one-component)

Irgb= IT × ICrgb

A = 1
Irgb = (IT,IT,IT)
A = 1

Intensity+Alpha
(two-component)

Irgb= I T × ICrgb

A = AT

Irgb= (IT,IT,IT)
A = AT

RGB
(three-component)

Irgb= ITrgb

A = 1
Irgb= ITrgb

A = 1

RGBA
(four-component)

Irgb= ITrgb

A = AT
Irgb= ITrgb A = AT

where:

AT = normalized [0, 1] alpha value from 2 or 4 component texture image
ICrgb = interpolated per-vertex colour, or per-face colour, from Color node
IT = normalized [0, 1] intensity from 1 or 2 component texture image
ITrgb= colour from 3-4 component texture image

 17.2.2.3 Lighting 'on'

If the Shape node is lit (i.e., a Material and an Appearance node are specified for the
Shape), the Material and Texture nodes determine the diffuse colour for the lighting
equation as specified in Table 17.3.

The Material's diffuseColor field modulates the color in the texture. Hence, a
diffuseColor of white will result in the pure color of the texture, while a diffuseColor of
black will result in a black diffuse factor regardless of the texture.

The Material's transparency field modulates the alpha in the texture. Hence, a
transparency of 0 will result in an alpha equal to that of the texture. A transparency of
1 will result in an alpha of 0 regardless of the value in the texture.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 17 Lighting component

lighting.html[8/1/2020 10:00:56 AM]

 Table 17.3 — Lit colour and alpha mapping

Texture type Colour per-vertex
 or per-face Color node NULL

No texture
ODrgb = ICrgb

A = 1-TM

ODrgb = IDrgb

A = 1-TM

Intensity texture
(one-component)

ODrgb = IT × ICrgb

A = 1-TM

ODrgb = IT × IDrgb

A = 1-TM

Intensity+Alpha texture
(two-component)

ODrgb = IT × ICrgb

A = AT

ODrgb = IT × IDrgb

A = AT

RGB texture
(three-component)

ODrgb = ITrgb

A = 1-TM

ODrgb = ITrgb

A = 1-TM

RGBA texture
(four-component)

ODrgb = ITrgb

A = AT

ODrgb = ITrgb

A = AT

where:

IDrgb = material diffuseColor
ODrgb = diffuse factor, used in lighting equations below
TM = material transparency

All other terms are as defined in 17.2.2.2 Lighting off.

 17.2.2.4 Lighting equations

An ideal X3D implementation will evaluate the following lighting equation at each point
on a lit surface. RGB intensities at each point on a geometry (Irgb) are given by:

Irgb = IFrgb × (1 -f0)
 + f0 × (OE rgb + SUM(oni × attenuationi × spoti × ILrgb

 × (ambienti + diffusei + specular i)))

where:

attenuationi = 1 / max(c1 + c2 × dL + c3 × dL
² , 1)

ambienti = Iia × ODrgb × Oa

diffusei = Ii × ODrgb × (N · L)
specular i = Ii × OSrgb × (N · ((L + V) / |L + V|))shininess × 128

and:

· = modified vector dot product:

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 17 Lighting component

lighting.html[8/1/2020 10:00:56 AM]

 if dot product < 0, then 0.0, otherwise, dot product
c1 , c2, c 3 = light i attenuation
dV = distance from point on geometry to viewer's position, in coordinate system of
current fog node
dL = distance from light to point on geometry, in light's coordinate system
f0 = fog interpolant, see Table 17.5 for calculation
IFrgb = currently bound fog's color
I Lrgb = light i color
Ii = light i intensity
Iia = light i ambientIntensity
L = (PointLight/SpotLight) normalized vector from point on geometry to light source i
position
L = (DirectionalLight) -direction of light source i
N = normalized normal vector at this point on geometry (interpolated from vertex
normals specified in a node derived from X3DNormalNode or calculated by browser)
Oa = X3DMaterialNode ambientIntensity
ODrgb = diffuse colour, from a node derived from X3DMaterialNode, a node derived
from X3DColorNode, and/or a texture node
OErgb = X3DMaterialNode emissiveColor
OSrgb = X3DMaterialNode specularColor
on i = 1, if light source i affects this point on the geometry,

 0, if light source i does not affect this geometry. The following conditions indicate
that light source i does not affect this geometry:

 a. if the geometry is farther away than radius for PointLight or SpotLight;
 b. if the geometry is outside the enclosing X3DGroupingNode; and/or
 c. if the on field is FALSE.

shininess = X3DMaterialNode shininess
spotAngle = arccosine(-L · spotDiri)
spot BW = SpotLight i beamWidth
spot CO = SpotLight i cutOffAngle
spot i = spotlight factor, see Table 17.4 for calculation
spotDiri = normalized SpotLight i direction
SUM: sum over all light sources i
V = normalized vector from point on geometry to viewer's position

 Table 17.4 — Calculation of the spotlight factor

Condition (in order) spoti =

lighti is PointLight or DirectionalLight 1

spotAngle ≥ spotCO 0

spotAngle ≤ spotBW 1

spotBW < spotAngle < spot CO (spotAngle - spotCO) / (spotBW - spotCO)

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 17 Lighting component

lighting.html[8/1/2020 10:00:56 AM]

 Table 17.5 — Calculation of the fog interpolant

Condition f0 =

no fog 1

fogType "LINEAR", dV < fogVisibility (fogVisibility-dV) / fogVisibility

fogType "LINEAR", dV > fogVisibility 0

fogType "EXPONENTIAL", dV < fogVisibility exp(-dV / (fogVisibility-dV))

fogType "EXPONENTIAL", dV > fogVisibility 0

 17.2.2.5 References

The X3D lighting equations are based on the simple illumination equations given in
[FOLEY] and [OPENGL].

17.2.2.1 Introduction

The X3D lighting model provides detailed equations that specify the colours to apply to
each geometric object. For each object, the values of the material, color, and/or texture
currently being applied to the object are combined with the lights illuminating the
object and the currently bound X3DFogObject (if specified). These equations are
designed to simulate the physical properties of light striking a surface.

If a programmable shader is defined for an Appearance node, the lighting model shall
be disabled and replaced by the functionality implemented by the shader program. See
31 Programmable shaders component for more information.

Backward compatibility note: The lighting equations in X3D 4.0 are backward
compatible with X3D 3.3. If you take a combination of X3D 3.3 material and light
nodes, and simply use them in X3D 4.0 (leaving the new X3D 4.0 fields at their default
values) then the rendering result will be equivalent. The only exception to this
statement is differentiating between grayscale and RGB textures, which is discussed in
section below in 17.2.2.2 Texture sampling.

 17.2.2.2 Texture sampling

When sampling any texture, the grayscale texture is exactly equivalent to using an RGB
texture with all 3 components (red, green, blue) equal.

When sampling any texture, the texture without an alpha channel is exactly equivalent
to using a texture with an alpha channel filled with 1 (indicating opaque).

These rules make treatment of the textures simple, and consistent with other 3D
authoring software. They are also consistent with how the graphic APIs and GPU

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 17 Lighting component

lighting.html[8/1/2020 10:00:56 AM]

shaders query the textures.

The browsers are encouraged to optimize loading of the textures, to not load all
textures as 4 channels (RGBA) to the GPU. Intensity texture can be loaded as just 1
channel, intensity + alpha is only 2 channels, RGB texture without alpha is 3 channels.
Optimizing this loading is useful to keep GPU memory usage low, and to keep texture
loading time smaller. However, this is just an optimization. Performing it is optional,
and the rendering result should be the same as if all textures were loaded as full RGBA
textures.

Backward compatibility note: In X3D version 3, the treatment of grayscale and RGB
textures was not consistent. In some cases (using ImageTexture node, but not inside
MultiTexture) grayscale texture resulted in a different rendering result than the
equivalent RGB texture (with all red, green, blue components equal). As this was
inconsistent (within X3D, and with other software and model formats), uneasy to
implement (browsers needed to investigate the image header), needlessly limiting to
authors, and the implementation was inconsistent across the existing browsers — in
X3D 4.0 it was streamlined.

 17.2.2.3 Common definitions for all lighting models

The declarations and definitions below are presented using a pseudo-code similar to the
usual shading language code.

The function declarations look like this: functionName(typeOfParameter1
parameter1, typeOfParameter2 parameter2, ...). Type names are underlined.

The types can be X3D nodes, scalars (float), vectors with 2, 3 or 4 components
(vector2, vector3, vector4), universal type (vectorAny which can represent any
vector or scalar).

In function definitions, we often extract vector components with syntax like:
thisVector.rgb (converts vector4 to vector3, discarding alpha channel) or
thisVector.a (converts vector4 to float, extracting alpha channel value).

The symbol × performs a component-wise multiplication of vectors.

The symbol · is a modified vector dot product that always returns value >= 0,
defined like this:

x · y = max(0.0, dotProduct(x, y))

The mixTexture(vector4 color, X3DTextureNode texture) function, used in the equations
below, takes care of mixing an RGBA color with the RGBA value sampled from the
texture at the given shape point.

If the texture is NULL, then this function just returns unmodified color.

Otherwise, if the texture is not a MultiTexture, then

mixTexture(color, texture) = color × textureSample(texture)

The textureSample(texture) is a function sampling the texture (recovering a single

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 17 Lighting component

lighting.html[8/1/2020 10:00:56 AM]

color from an array of pixels), with the correct texture coordinates and
transformation.

In effect the color modulates the color from the texture.

color.rgb = white = (1, 1, 1) will result in the pure color of the texture,
color.rgb = black = (0, 0, 0) will result in a black output, regardless of the
texture.

The alpha (opacity) values are multiplied too, hence:

color.a equal 1 (transparency equal 0) will result in an alpha equal to that of
the texture,
color.a equal 0 (transparency equal 1) will result in an alpha of 0 regardless
of the value in the texture.

Otherwise, if the texture is a MultiTexture, then the mixTexture modifies this color
following the MultiTexture mode specification. This is only possible when the
MultiTexture is provided in the Appearance.texture field. See 12.2.5 Coexistence of
textures specified in material nodes with the "Appearance.texture" field for details
when multi-texturing is used.

The lerp(float factor, vectorAny x, vectorAny y) function performs a standard linear
interpolation, applicable to scalars or vectors of any dimension:

lerp(factor, x, y) = x * (1 - factor) + y * factor = x + (y - x) * factor

The occlusion(vector4 color) function, used in the equations below for Phong and
physical lighting model, is used to apply the occlusionTexture effect that can be
specified in these nodes.

If the occlusionTexture was not provided (left NULL) then this function just returns
unmodified color.

If the occlusionTexture was provided, then

occlusion(color) = lerp(occlusionStrength, color, color *
textureSample(occlusionTexture).r)

In effect, the occlusionTexture multiplies the input color when occlusionStrength is
1.0. the occlusionTexture has no effect when when occlusionStrength is 0.0.
Values in-between of occlusionStrength allow to smoothly interpolate between
these two states.

The applyColorPerVertex(vector4 color) is used to change the color in case geometry
uses Color or ColorRGBA nodes. All the lighting models use this function, although it
affects a different parameter: emissiveParameter in case of unlit model,
diffuseParameter in case of Phong model, and baseParameter in case of physical model.
The function returns:

The interpolated per-vertex colour, or per-face colour, from the Color node, if the
Color node is provided in the geometry color field.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 17 Lighting component

lighting.html[8/1/2020 10:00:56 AM]

Resulting rgb is derived from the values in the Color node.

Resulting a (alpha component) is taken from input color.a in this case.

Otherwise, the interpolated per-vertex colour, or per-face colour, from the
ColorRGBA node, if the ColorRGBA node is provided in the geometry color field.

Resulting rgba vector is derived from the values in the ColorRGBA node.

Otherwise (if the geometry color field is empty) then it returns unmodified color.

The future X3D versions may introduce an option for Color and ColorRGBA to multiply
the input color, instead of replacing it.

Moreover we define the following vectors:

N = normalized normal vector at this point on geometry. This vector is interpolated
from vertex normals specified in a node derived from X3DNormalNode or
calculated by the browser. It is modified by the normalTexture providing normals
in the tangent space (see X3DOneSidedMaterialNode definition).

V = normalized vector from point on geometry to viewer's position.

The following definitions are specific to a light source i, which is indicated by a subscript
in this text:

Li is, conceptually, direction to the light i. It is precisely defined like this:

Li = (PointLight/SpotLight) normalized vector from point on geometry to light
source i position

Li = (DirectionalLight) negated and normalized direction of light source i

attenuationi = 1 / max(c1 + c2 × lightDistance + c3 × lightDistance² , 1)

where

c1, c2, c3 are the values from light i attenuation field.

lightDistance is the distance from light to point on geometry, in light's coordinate
system.

oni = 1, if light source i affects this point on the geometry or 0 if it doesn't.

The following conditions indicate that light source i does not affect this geometry:

1. if the geometry is farther away than radius for PointLight or SpotLight
2. if the geometry is outside the enclosing X3DGroupingNode in case of lights

with global = FALSE
3. if the lightSource.on field is FALSE.

spoti is the spotlight factor. It calculates intensity within the SpotLight cone. Table

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 17 Lighting component

lighting.html[8/1/2020 10:00:56 AM]

17.4 specifies how it is calculated. It relies on the following terms:

spotDirectioni = normalized SpotLight i direction field.

spotAngle = arcCosine(-L · spotDirectioni)

 Table 17.4 — Calculation of the spotlight factor

summary=""

Condition (in order) spoti =

lighti is PointLight or DirectionalLight 1

spotAngle ≥ SpotLight.cutOffAngle 0

spotAngle ≤ SpotLight.beamWidth 1

SpotLight.beamWidth
 < spotAngle < lightSource.cutOffAngle

(spotAngle - SpotLight.cutOffAngle) /
(SpotLight.beamWidth -
SpotLight.cutOffAngle)

The applyFog(vector4 color) is used to change the color using the fog. Is it used by all
lighting models, as the last operation performed on the color. The definition is:

applyFog(color) = lerp(fogInterpolant(fogDistance), fogColor, color)

where:

fogInterpolant is the fog interpolant, see Table 17.5 for calculation.

fogDistance is the distance from point on geometry to viewer's position, in
coordinate system of current fog node.

fogColor is the currently bound fog's color.

 Table 17.5 — Calculation of the fogInterpolant(FogDistance) function:

Condition fogInterpolant(fogDistance)
=

no fog 1

fogType "LINEAR", fogDistance <
fogVisibility

(fogVisibility - fogDistance) /
fogVisibility

fogType "LINEAR", fogDistance >
fogVisibility 0

fogType "EXPONENTIAL", fogDistance <
fogVisibility

exp(-FogDistance / (fogVisibility -
fogDistance))

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 17 Lighting component

lighting.html[8/1/2020 10:00:56 AM]

fogType "EXPONENTIAL", fogDistance >
fogVisibility 0

 17.2.2.4 Unlit lighting model

A Shape node is unlit if either of the following is true:

1. The shape's appearance field is NULL (default).

2. The material field in the Appearance node is NULL (default).

3. The material field in the Appearance node contains a node of type UnlitMaterial.

In the first two cases above, the rendering is exactly equivalent as if the Appearance
node was provided (not NULL), and the material field inside contained an UnlitMaterial
with all the fields at their default. Effectively, it means a white untextured unlit material
is the default.

NOTE Geometry nodes that represent lines or points do not support lighting if the normal vectors for them are not
provided.

If the shape is unlit, the RGBA color of the shape at each point on the shape's geometry
is calculated using this equation:

fragmentColor = applyFog(mixTexture(applyColorPerVertex(emissiveParameter),
emissiveTextureParameter))

where:

emissiveParameter.rgb (RGB channels) are taken from UnlitMaterial.emissiveColor.

emissiveParameter.a (alpha channel) is taken from 1 - UnlitMaterial.transparency.

emissiveTextureParameter is equal to:

emissiveTexture of the UnlitMaterial node, if it is not NULL.

Otherwise, Appearance.texture, if the UnlitMaterial has emissiveTexture equal
NULL, but Appearance.texture is not NULL. See 12.2.5 Coexistence of textures
specified in material nodes with the "Appearance.texture" field.

Otherwise (if both the UnlitMaterial.emissiveTexture and Appearance.texture
are NULL) then emissiveTextureParameter is NULL. In other words, the
mixTexture(...) function used above simply returns the unmodified
applyColorPerVertex(emissiveParameter).

 17.2.2.5 Phong lighting model

The Shape node is lit with a Phong lighting model if the Appearance node is specified for
the Shape, and the material field contains a Material node.

Note: This node is simply called Material for historical reasons. Conceptually, you should

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 17 Lighting component

lighting.html[8/1/2020 10:00:56 AM]

think about it now as a PhongMaterial.

The rendered fragment (pixel) color is determined by these equations:

fragmentColor = applyFog(emissiveParameter +
occlusion(sumOverAllLights(lightContributioni)))

lightContributioni = oni × attenuationi × spoti × (ambienti + diffusei + speculari)

An ideal X3D implementation will evaluate the following lighting equation at each point
on a lit surface. The means that we advise using Phong shading and assume it when
writing equations below. For implementations that perform Gouraud shading see
17.2.2.8 Gouraud shading section.

The meaning of all the terms is explained below.

Material parameters

First, the parameters whose value doesn't depend on the light source:

The material diffuseParameter is calculated as follows:

diffuseParameter = mixTexture(applyColorPerVertex(diffuseParameter),
diffuseTextureParameter)

where:

diffuseParameter.a (RGB channels) is taken from Material.diffuseColor.

diffuseParameter.a (alpha channel) is taken from 1 - Material.transparency.

diffuseTextureParameter is equal to:

diffuseTexture of the Material node, if it is not NULL.

Otherwise, Appearance.texture, if the Material has diffuseTexture equal NULL,
but Appearance.texture is not NULL. See 12.2.5 Coexistence of textures
specified in material nodes with the "Appearance.texture" field.

Otherwise (if both the Material.diffuseTexture and Appearance.texture are
NULL) then diffuseTextureParameter is NULL. In other words, the
mixTexture(...) function used above simply returns the unmodified
applyColorPerVertex(diffuseParameter).

The remaining parameters are defined below:

ambientParameter = ambientIntensity × diffuseColor ×
textureSample(ambientTexture).rgb

emissiveParameter = emissiveColor × textureSample(emissiveTexture).rgb

specularParameter = specularColor × textureSample(specularTexture).rgb

shininessParameter = shininess × textureSample(shininessTexture).a × 128

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 17 Lighting component

lighting.html[8/1/2020 10:00:56 AM]

In the above equations, if the given texture is NULL then behave as if the
textureSample(texture) returned a white opaque value (1, 1, 1, 1).

Light parameters

Now we can define terms that depend on the light source:

ambienti = lightSource.ambientIntensity × ambientParameter

diffusei = lightSource.intensity × diffuseParameter × (N · L)

speculari = lightSource.intensity × specularParameter × (N · ((L + V) / |L +
V|))shininessParameter

 17.2.2.6 Physical lighting model

The Shape node is lit with a Physical lighting model if the Appearance node are specified
for the Shape, and the material field contains a PhysicalMaterial node. We perform in
this case a physically-based rendering.

The rendered fragment (pixel) color is determined by these equations:

fragmentColor = applyFog(emissiveParameter +
occlusion(sumOverAllLights(lightContributioni)))

lightContributioni = oni × attenuationi × spoti × physicalLightContributioni

The input values used by the physical lighting equation are as follows:

baseParameter = mixTexture(applyColorPerVertex(baseParameter),
baseTextureParameter)

where:

baseParameter.a (RGB channels) is taken from PhysicalMaterial.baseColor.

baseParameter.a (alpha channel) is taken from 1 - PhysicalMaterial.transparency.

baseTextureParameter is equal to:

baseTexture of the PhysicalMaterial node, if it is not NULL.

Otherwise, Appearance.texture, if the PhysicalMaterial has baseTexture equal
NULL, but Appearance.texture is not NULL. See 12.2.5 Coexistence of textures
specified in material nodes with the "Appearance.texture" field.

Otherwise (if both the PhysicalMaterial.baseTexture and Appearance.texture
are NULL) then baseTextureParameter is NULL. In other words, the
mixTexture(...) function used above simply returns the unmodified
applyColorPerVertex(baseParameter).

metallicParameter = PhysicalMaterial.metallic ×

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 17 Lighting component

lighting.html[8/1/2020 10:00:56 AM]

textureSample(PhysicalMaterial.metallicRoughnessTexture).b

roughnessParameter = PhysicalMaterial.roughness ×
textureSample(PhysicalMaterial.metallicRoughnessTexture).g

If the metallicRoughnessTexture is NULL, then metallicParameter and
roughnessParameter are just equal to (respectively) metallic and roughness values
given by the PhysicalMaterial node.

Using the baseParameter, metallicParameter and roughnessParameter, the physical
lighting model performs the exact same computations as the recommended glTF
lighting model, to calculate physicalLightContributioni value. See glTF 2.0 specification
section about lighting equations and glTF-Sample-Viewer implementation of it. Future
revisions of this draft will contain the final recommended equations.

 17.2.2.7 References

The Phong lighting equations are based on the simple illumination equations given in
[FOLEY] and [OPENGL].

The physical lighting equations are based on the glTF 2.0 specification.

 17.2.2.8 Gouraud shading

An ideal X3D implementation will evaluate the lighting equation at each point on a lit
surface. The lighting equations in previous sections assume that you use Phong shading
(not to be confused with Phong lighting model). In case of Phong shading, lighting is
calculated at each fragment (pixel of the screen).

However, some implementations perform Gouraud shading, either by default, or as an
option for the user (for efficiency), or as a fallback for an older GPUs. In such case, the
lighting equations given above cannot be reproduced precisely. In Gouraud shading,
you calculate lighting per-vertex, which means that it doesn't make sense to use
texture information to modify material parameters.

In case when Gouraud shading is used we recommend this algorithm:

The vertex shader calculates lighting equations, ignoring any texture information
(as if all the textures were NULL).

The fragment shader multiplies the resulting interpolated color by the main
texture. The main texture is:

Material.diffuseTexture, if Phong Material node is used.
UnlitMaterial.emissiveTexture, if UnlitMaterial node is used.
PhysicalMaterial.baseTexture, if PhysicalMaterial node is used.

If the given texture is NULL, then use the Appearance.texture. If the
Appearance.texture is also NULL, no texture is used.

All channels (RGB and alpha) are affected by the main texture.

https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#appendix-b-brdf-implementation
https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#appendix-b-brdf-implementation
https://github.com/KhronosGroup/glTF-Sample-Viewer/blob/master/src/shaders/
https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#appendix-b-brdf-implementation

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 17 Lighting component

lighting.html[8/1/2020 10:00:56 AM]

This method of determining the main texture is deliberately 100% consistent with:

1. The way how the Appearance.texture cooperates with textures inside the
materials, following section 12.2.5 Coexistence of textures specified in
material nodes with the "Appearance.texture" field. Appearance.texture may
be used in place of Material.diffuseTexture, or UnlitMaterial.emissiveTexture,
or PhysicalMaterial.baseTexture.

2. The determination which texture contains the alpha channel that is multiplied
by material transparency. We take it from alpha channel of
Material.diffuseTexture, or UnlitMaterial.emissiveTexture, or
PhysicalMaterial.baseTexture.

This recommendation tries to preserve the intended look as much as possible in
Gouraud shading.

Note: This recommendation actually doesn't change anything in case of UnlitMaterial.
And this is correct, Gouraud shading actually doesn't change how the UnlitMaterial can
be implemented.

Note: When using PhysicalMaterial on older hardware, some implementations may fall
back to the Phong lighting model. If this is necessary, we recommend using
PhysicalMaterial.baseColor as the Phong diffuse factor, and
PhysicalMaterial.baseTexture as the texture to multiply the resulting color.

 17.3 Abstract types

 17.3.1 X3DLightNode
X3DLightNode : X3DChildNode {
 SFFloat [in,out] ambientIntensity 0 [0,1]
 SFColor [in,out] color 1 1 1 [0,1]
 SFBool [in,out] global FALSE
 SFFloat [in,out] intensity 1 [0,1]
 SFFloat [in,out] intensity 1 [0,∞]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [in,out] on TRUE
}

The X3DLightNode abstract node type is the base type from which all node types that
serve as light sources are derived. A description of the ambientIntensity, color,
intensity, and on fields is in 17.2.1 Light source semantics. A description of the global
field is in 17.2.1.2 Scoping of lights.

 17.4 Node reference

 17.4.1 DirectionalLight
DirectionalLight : X3DLightNode {
 SFFloat [in,out] ambientIntensity 0 [0,1]
 SFColor [in,out] color 1 1 1 [0,1]
 SFVec3f [in,out] direction 0 0 -1 (-∞,∞)
 SFBool [in,out] global FALSE
 SFFloat [in,out] intensity 1 [0,1]
 SFFloat [in,out] intensity 1 [0,∞]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [in,out] on TRUE
}

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 17 Lighting component

lighting.html[8/1/2020 10:00:56 AM]

The DirectionalLight node defines a directional light source that illuminates along rays
parallel to a given 3-dimensional vector. A description of the ambientIntensity, color,
intensity, and on fields is in 17.2.1 Light source semantics. A description of the global
field is in 17.2.1.2 Scoping of lights.

The direction field specifies the direction vector of the illumination emanating from the
light source in the local coordinate system. Light is emitted along parallel rays from an
infinite distance away. A directional light source illuminates only the objects in its
enclosing parent group. The light may illuminate everything within this coordinate
system, including all children and descendants of its parent group. The accumulated
transformations of the parent nodes affect the light.

DirectionalLight nodes do not attenuate with distance. A precise description of X3D's
lighting equations is contained in 17.2.2 Lighting model.

 17.4.2 PointLight
PointLight : X3DLightNode {
 SFFloat [in,out] ambientIntensity 0 [0,1]
 SFVec3f [in,out] attenuation 1 0 0 [0,∞)
 SFColor [in,out] color 1 1 1 [0,1]
 SFBool [in,out] global TRUE
 SFFloat [in,out] intensity 1 [0,1]
 SFFloat [in,out] intensity 1 [0,∞]
 SFVec3f [in,out] location 0 0 0 (-∞,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [in,out] on TRUE
 SFFloat [in,out] radius 100 [0,∞)
}

The PointLight node specifies a point light source at a 3D location in the local coordinate
system. A point light source emits light equally in all directions; that is, it is
omnidirectional. PointLight nodes are specified in the local coordinate system and are
affected by ancestor transformations. A description of the global field is in 17.2.1.2
Scoping of lights.

Subclause 17.2.1 Light source semantics, contains a detailed description of the
ambientIntensity, color, and intensity fields.

A PointLight node illuminates geometry within radius length base units of its location.
Both radius and location are affected by ancestors' transformations (scales affect radius
and transformations affect location). The radius field shall be greater than or equal to
zero.

PointLight node's illumination falls off with distance as specified by three attenuation
coefficients. The attenuation factor is:

1/max(attenuation[0] + attenuation[1] × r + attenuation[2] × r2, 1)

where r is the distance from the light to the surface being illuminated. The default is no
attenuation. An attenuation value of (0, 0, 0) is identical to (1, 0, 0). Attenuation values
shall be greater than or equal to zero. A detailed description of X3D's lighting equations
is contained in 17.2.2 Lighting model.

 17.4.3 SpotLight
SpotLight : X3DLightNode {
 SFFloat [in,out] ambientIntensity 0 [0,1]
 SFVec3f [in,out] attenuation 1 0 0 [0,∞)

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 17 Lighting component

lighting.html[8/1/2020 10:00:56 AM]

 SFFloat [in,out] beamWidth π/4 (0,π/2]
 SFColor [in,out] color 1 1 1 [0,1]
 SFFloat [in,out] cutOffAngle π/2 (0,π/2]
 SFVec3f [in,out] direction 0 0 -1 (-∞,∞)
 SFBool [in,out] global TRUE
 SFFloat [in,out] intensity 1 [0,1]
 SFFloat [in,out] intensity 1 [0,∞]
 SFVec3f [in,out] location 0 0 0 (-∞,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [in,out] on TRUE
 SFFloat [in,out] radius 100 [0,∞)
}

The SpotLight node defines a light source that emits light from a specific point along a
specific direction vector and constrained within a solid angle. Spotlights may illuminate
geometry nodes that respond to light sources and intersect the solid angle defined by
the SpotLight. Spotlight nodes are specified in the local coordinate system and are
affected by ancestors' transformations. A description of the global field is in 17.2.1.2
Scoping of lights.

A detailed description of ambientIntensity, color, intensity, and the lighting equations of
X3D is provided in 17.2.1 Light source semantics. More information on lighting concepts
can be found in 17.2.2 Lighting model, including a detailed description of the X3D
lighting equations.

The location field specifies a translation offset of the centre point of the light source
from the light's local coordinate system origin. This point is the apex of the solid angle
which bounds light emission from the given light source. The direction field specifies the
direction vector of the light's central axis defined in the local coordinate system.

The on field specifies whether the light source emits light. If on is TRUE, the light source
is emitting light and may illuminate geometry in the scene. If on is FALSE, the light
source does not emit light and does not illuminate any geometry.

The radius field specifies the radial extent of the solid angle and the maximum distance
from location that may be illuminated by the light source. The light source does not
emit light outside this radius. The radius shall be greater than or equal to zero.

Both radius and location are affected by ancestors' transformations (scales affect radius
and transformations affect location).

The cutOffAngle field specifies the outer bound of the solid angle. The light source does
not emit light outside of this solid angle. The beamWidth field specifies an inner solid
angle in which the light source emits light at uniform full intensity. The light source's
emission intensity drops off from the inner solid angle (beamWidth) to the outer solid
angle (cutOffAngle) as described in the following equations:

 angle = the angle between the Spotlight's direction vector
 and the vector from the Spotlight location to the point
 to be illuminated

 if (angle ≥ cutOffAngle):
 multiplier = 0
 else if (angle ≤ beamWidth):
 multiplier = 1
 else:
 multiplier = (angle - cutOffAngle) / (beamWidth - cutOffAngle)
 intensity(angle) = SpotLight.intensity × multiplier

If the beamWidth is greater than the cutOffAngle, beamWidth is defined to be equal to
the cutOffAngle and the light source emits full intensity within the entire solid angle
defined by cutOffAngle. Both beamWidth and cutOffAngle shall be greater than 0.0 and
less than or equal to π/2. Figure 17.1 depicts the beamWidth, cutOffAngle, direction,

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 17 Lighting component

lighting.html[8/1/2020 10:00:56 AM]

location, and radius fields of the SpotLight node.

Figure 17.1 — SpotLight node

SpotLight illumination falls off with distance as specified by three attenuation
coefficients. The attenuation factor is:

1/max(attenuation[0] + attenuation[1] × r + attenuation[2] × r2 , 1)

where r is the distance from the light to the surface being illuminated. The default is no
attenuation. An attenuation value of (0, 0, 0) is identical to (1, 0, 0). Attenuation values
shall be greater than or equal to zero. A detailed description of X3D's lighting equations
is contained in 17.2.2 Lighting model.

 17.5 Support levels
The Lighting component provides three levels of support as specified in Table 17.6.

 Table 17.6 — Lighting component support levels

Level Prerequisites Nodes/Features Support

1 Core 1
Shape 1

X3DLightNode
(abstract) n/a

DirectionalLight Not scoped by parent Group
or Transform.

2 Core 1
Shape 1

All Level 1 Lighting All fields as supported in

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 17 Lighting component

lighting.html[8/1/2020 10:00:56 AM]

nodes Level 1.

PointLight radius optionally supported.
Linear attenuation.

SpotLight

beamWidth optionally
supported. radius optionally
supported. Linear
attenuation.

3 Core 1
Shape 1

All Level 2 Lighting
nodes All fields fully supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 38 Picking component

picking.html[8/1/2020 10:01:00 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

38 Picking component

 38.1 Introduction

38.1.1 Name

The name of this component is "Picking". This name shall be used when referring to this
component in the COMPONENT statement (see 7.2.5.4 Component statement).

38.1.2 Overview

This component provides the ability to test for arbitrary object collision in a somewhat
limited form. In traditional 3D graphics terminology, this is termed picking. The
intention is not to support full n-body object collision, but to provide an extended set of
basic capabilities to provide some limited custom interactions, such as terrain following.
Table 38.1 provides links to the major topics in this clause.

 Table 38.1 — Topics

38.1 Introduction
38.1.1 Name
38.1.2 Overview

38.2 Concepts
38.2.1 Overview
38.2.2 Event model interaction
38.2.3 Transformation Hierarchy

38.3 Abstract types
38.3.1 X3DPickableObject
38.3.2 X3DPickSensorNode

38.4 Node reference
38.4.1 LinePickSensor
38.4.2 PickableGroup
38.4.3 PointPickSensor
38.4.4 PrimitivePickSensor
38.4.5 VolumePickSensor

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 38 Picking component

picking.html[8/1/2020 10:01:00 AM]

38.5 Support levels
Figure 38.1 — Illustration of the different conditions of intersections of
lines and coplanar polygons
Table 38.1 — Topics
Table 38.2 — Picking component support levels

 38.2 Concepts

38.2.1 Overview

This component provides a means of testing for object intersection that permits a
greater degree of programmable interaction of content. Various types of geometrical
elements may be used to test for intersection between the renderable scene graph and
the nodes provided by this component. When one or more intersections are found, the
results are reported using the sensor model of this International Standard and are then
available for further processing by the event model.

Intersection testing consists of two parts: an object representing the type of
intersection to be created and a scene graph tree to be tested. The intersecting object
is represented by nodes that extend the X3DPickSensorNode abstract type. Instances of
X3DPickableObject mark a scene graph subtree as a target for testing.

38.2.2 Event model interaction

Picking is performed between rendered frames of the event model. A user sets up the
picking request in one frame by placing, in the desired location, a node derived from
X3DPickSensorNode. Such a node is termed a pick sensor. At the start of the next
frame any intersections are reported from the pick sensor.

Picking notification is performed at the start of the frame for all enabled pick sensors
when all other sensors are processed (see 4.4.8.3 Execution model step b). Disabled
pick sensors do not need to be evaluated. This allows the user to manipulate geometry
and have the pick results returned at the start of the frame, thus ensuring a fixed,
known state at all times.

38.2.3 Transformation Hierarchy

Testing for intersection tests is a global action within each execution context. pick
sensors may report intersections with contained contexts, but only to the wrapper and
not the contents of that context.

EXAMPLE Picking against a scene that contains an Inline node will return the Inline node as the picked geometry
rather than a node from the contents of the geometry.

A pick sensor is located at the desired position and orientation in the scene graph using
the transformation hierarchy. The pick sensor is effected by translation, orientation and
scale operations. If a non-uniform scale is applied to the pick sensor, the results are
dependent on the selected component level.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 38 Picking component

picking.html[8/1/2020 10:01:00 AM]

The picked objects are those that have been given to that specific pick sensor instance
in its pickTarget field. All transformations above those picked objects are applied to the
picking process. Picking is performed in world coordinate space after transformations
have been applied to both the pick sensor and the target nodes.

Sections of the scene graph contained by a X3DPickableObject are used for additional
filtering of the picking operations. The pickable object has a set of flags defined in the
objectType field that can be used to classify sections of the scene graph so that picking
will only report intersections in those classifications.

EXAMPLE A pickable object classifies itself as a "WATER" object and the pick sensor
declares that it is picking for "GROUND" objects. Even though the pick sensor intersects
with the picking object, no result is returned because the pickable object and the pick
sensor do not have the same object type category.

When reporting results requires specific geometry intersection points, the results are
reported in the local coordinate space of the pick sensor.

 38.3 Abstract types

38.3.1 X3DPickableObject
X3DPickableObject {
 MFString [in,out] objectType "ALL" ["ALL","NONE","TERRAIN",...]
 SFBool [in,out] pickable TRUE
}

The X3DPickableObject abstract object typeinterface marks a node as being capable of
having customized picking performed on its contents or children.

The pickable field is used to independently control whether picking may be performed
on this node or its children. Setting the value to FALSE will remove the children from the
list of potential matches for picking. This only affects children that are accessed through
the transformation hierarchy of the parent. If one or more of the children of this
instance is accessible through another transformation hierarchy through DEF/USE that
still has picking enabled, they shall still be pickable through that path only. Object
picking according to the pickable field occurs even if the object is not rendered visibly.

The objectType field specifies a label that is used in the picking process. Each string
specified is treated as an independent label that needs to be matched against the same
type in one of the pick sensor instances.

EXAMPLE Labeling a group with the value "WATER" and then attempting to intersect a pick sensor with objectType
"GROUND" would fail as the types are not matching.

The special object type "ALL" means that it is available for picking regardless of the type
specified by the pick sensor. The special value "NONE" overrides the presence of any
other string values in this objectType field, thereby disabling picking for this node. The
presence of the "ALL" special value indicates that all objectTypes defined within the
scope defined by the construct derived from X3DPickableObject are eligible. If both
"NONE" and "ALL" are specified, the special value "NONE" applies. The user may define
any value for objectType.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 38 Picking component

picking.html[8/1/2020 10:01:00 AM]

38.3.2 X3DPickSensorNode
X3DPickSensorNode : X3DSensorNode {
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFString [in,out] matchCriterion "MATCH_ANY" ["MATCH_ANY"|"MATCH_EVERY"|
 "MATCH_ONLY_ONE"]
 MFString [in,out] objectType "ALL" ["ALL","NONE","TERRAIN",...]
 SFNode [in,out] pickingGeometry NULL [X3DGeometryNode]
 MFNode [in,out] pickTarget [] [X3DGroupingNode|X3DShapeNode|Inline]
 MFNode [out] pickedGeometry
 SFBool [out] isActive
 SFString [] intersectionType "BOUNDS" ["GEOMETRY"|"BOUNDS"|...]
 SFString [] sortOrder "CLOSEST" ["ANY"|"CLOSEST"|"ALL"|"ALL_SORTED"]
}

The X3DPickSensorNode abstract node type is the base node type that represents the
lowest common denominator of picking capabilities. An X3DPickSensorNode is a type of
X3DSensorNode. The field isActive is TRUE whenever there is a picked item available. If
the intersecting object is not picked by the picking geometry, the pick sensor is not
active.

The intersectionType field specifies the precision of the collision computation. When
testing intersections, "BOUNDS" indicates that the pickingGeometry is intersected with
the bounding box of the pickable object, whereas "GEOMETRY" indicates that the
pickingGeometry is intersected with the geometry of the pickable object. The
intersectionType constants may be extended by the individual concrete node to provide
additional options.

EXAMPLE 1 An intersectionType may be used to specify the specific algorithm used for the detection.

The objectType field lists the types of object that are to be tested for intersections. The
special value "NONE" overrides the presence of any other string values in this
objectType field, thereby disabling picking for this node. The presence of the "ALL"
special value indicates that all objectTypes are potential pick targets. If both "NONE"
and "ALL" are specified, the value "NONE" applies. An arbitrary label (such as
"TERRAIN") may be specified here as well as the predefined types. Such a label
indicates that only pickable objects with an identical label may be picked.

The matchCriterion field defines whether the X3DPickSensorNode pick matches one or
more objectType value(s), as follows:

"MATCH_ANY" means that any match of objectType values is acceptable.
 "MATCH_EVERY" means that every objectType value in the X3DPickSensorNode
shall match an objectType value in the X3DPickableObject.
"MATCH_ONLY_ONE" means that one and only one objectType value can match.

The pickingGeometry field specifies the exact coordinates of the geometry that will be
performing the intersection testing. The acceptable range of node types and how they
are to be interpreted shall be defined by the individual concrete nodes.

The pickTarget field specifies the list of nodes against which the picking operation
should be performed. All nodes declared in this field and their descendents shall be
evaluated for intersections based on the specific sensor definition. If a descendent of
the nodes declared in this field includes another X3DPickSensorNode instance, the
children of the descendent X3DPickSensorNode's pickTarget field are not considered for
picking.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 38 Picking component

picking.html[8/1/2020 10:01:00 AM]

The pickedGeometry field communicates the node or nodes that have been found to
intersect with the picking geometry from the last time this node performed a picking
operation. The values provided shall be dependent on the setting of the sortOrder field.

The values of the sortOrder has four predefined values.

a. "ANY" Any single object that satisfies the picking conditions for this pick sensor.
Consistency of results is not guaranteed.

b. "ALL" Every object that satisfies the picking conditions for this pick sensor shall be
returned.

c. "ALL_SORTED" Every object that satisfies the picking conditions for this pick sensor
shall be returned with the order of the output fields provided in a distance-sorted
order from closest to farthest away. The exact algorithm for sorting is defined by
the individual node definitions.

d. "CLOSEST" The closest object by distance that satisfies the conditions of this pick
sensor. The exact algorithm for distance determination shall be defined by the
individual node definitions.

Browser implementations may define additional values and algorithms beyond these
four required values.

 38.4 Node reference

38.4.1 LinePickSensor
LinePickSensor : X3DPickSensorNode {
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFString [in,out] objectType "ALL" ["ALL","NONE","TERRAIN",...]
 SFNode [in,out] pickingGeometry NULL [IndexedLineSet|LineSet]
 MFNode [in,out] pickTarget [] [X3DGroupingNode|X3DShapeNode|Inline]
 SFBool [out] isActive
 MFNode [out] pickedGeometry
 MFVec3f [out] pickedNormal
 MFVec3f [out] pickedPoint
 MFVec3f [out] pickedTextureCoordinate
 SFString [] intersectionType "BOUNDS" ["GEOMETRY"|"BOUNDS"|...]
 SFString [] sortOrder "CLOSEST" ["ANY"|"CLOSEST"|"ALL"|"ALL_SORTED"]
}

The LinePickSensor node picks one or more line segments as the test object with which
to pick. As a line intersect generates a known point in space, normal, geometry and
texCoord information can be returned that is useful.

Line picking, for sort order determination is based on the pair of coordinates that
defines the line segment. The first declared vertex of the segment is defined to be the
start of the line to which the intersection points are closest.

When the picking line segment intersects a coplanar polygon and one vertex lies outside
the polygon, the intersection point(s) will be those on the edge(s) of the polygon (see
Figure 38.1 (a)). If the entire segment lies entirely within the polygon then the
intersection point shall be defined to be the start point of the segment. For concave
polygons where both ends of the segment lie in the polygon but the line exits the
polygon for some portion (see Figure 38.1 (b)), the intersection points are the
intersecting edges of the polygon, where sort order is defined as in the previous
paragraph.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 38 Picking component

picking.html[8/1/2020 10:01:00 AM]

Figure 38.1 — Illustration of the different conditions of intersections of lines
and coplanar polygons. (a) One end point contained in the polygon and one

external. (b)Both end points internal to the polygon. Point A is the start point
of the line and the numbers indicate the sort order that shall be returned.

Picked texture coordinates are in three dimensions. If the target object has multiple
textures defined, only the texture coordinates for the first texture are returned. All
other textures are ignored. If the target texture coordinate has two dimensions, the
third coordinate (z component of an SFVec3f) shall be zero.

38.4.2 PickableGroup
PickableGroup : X3DGroupingNode, X3DPickableObject {
 MFNode [in] addChildren
 MFNode [in] removeChildren
 MFNode [in,out] children [] [X3DChildNode]
 SFBool [in out] bboxDisplay FALSE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFString [in,out] objectType "ALL" ["ALL","NONE","TERRAIN",...]
 SFBool [in,out] pickable TRUE
 SFBool [in out] visible TRUE
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or -1 -1 -1
}

A PickableGroup node is an X3DGroupingNode that contains children that are marked as
being of a given classification of picking types, as well as the ability to enable or disable
picking of the children.

For field definitions, see 38.3.1 X3DPickableObject and 10.3.2 X3DGroupingNode.

38.4.3 PointPickSensor
PointPickSensor : X3DPickSensorNode {
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFString [in,out] objectType "ALL" ["ALL","NONE","TERRAIN",...]
 SFNode [in,out] pickingGeometry NULL [PointSet]
 MFNode [in,out] pickTarget [] [X3DGroupingNode|X3DShapeNode|Inline]
 SFBool [out] isActive
 MFNode [out] pickedGeometry
 MFVec3f [out] pickedPoint
 SFString [] intersectionType "BOUNDS" ["GEOMETRY"|"BOUNDS"|...]
 SFString [] sortOrder "CLOSEST" ["CLOSEST"|"ALL"|"ALL_SORTED"]
}

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 38 Picking component

picking.html[8/1/2020 10:01:00 AM]

The PointPickSensor node tests one or more points in space as lying inside the provided
target geometry. For each of the picked points intersecting the geometry, the point
coordinate is returned as an element in the pickedPoint field, and the corresponding
geometry node (inside which each intersection point lies) is returned as an element of
the pickedGeometry field. For each point that lies inside the geometry, the point
coordinate is returned in the pickedGeometry field with the corresponding geometry
inside which the point lies.

Because points represent an infinitely small location in space, the "CLOSEST" and
"ALL_SORTED" sort orders are defined to mean "ANY" and "ALL" respectively.

38.4.4 PrimitivePickSensor
PrimitivePickSensor : X3DPickSensorNode {
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFString [in,out] objectType "ALL" ["ALL","NONE","TERRAIN",...]
 SFNode [in,out] pickingGeometry NULL [Cone|Cylinder|Sphere|Box]
 MFNode [in,out] pickTarget [] [X3DGroupingNode|X3DShapeNode|Inline]
 SFBool [out] isActive
 MFNode [out] pickedGeometry
 SFString [] intersectionType "BOUNDS" ["GEOMETRY"|"BOUNDS"|...]
 SFString [] sortOrder "CLOSEST" ["ANY"|"CLOSEST"|"ALL"|"ALL_SORTED"]
}

The PrimitivePickSensor node picks against the target geometry using one of the basic
primitive object types specified in the pickingGeometry field.

Boolean fields used to control visibility of subsections of a primitive are ignored when
evaluating the picking routines.

EXAMPLE A cylinder missing the end caps is still treated as an enclosed cylinder.

Sorting is defined based on the primitive type as follows:

a. For Cone, the closest picked primitive is defined to be that closest to the vertex
point.

b. For Cylinder, Box, and Sphere, the closest picked primitive is defined to be that
closest to the centre.

38.4.5 VolumePickSensor
VolumePickSensor : X3DPickSensorNode {
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFString [in,out] objectType "ALL" ["ALL","NONE","TERRAIN",...]
 SFNode [in,out] pickingGeometry NULL [X3DGeometryNode]
 MFNode [in,out] pickTarget [] [X3DGroupingNode|X3DShapeNode|Inline]
 SFBool [out] isActive
 MFNode [out] pickedGeometry
 SFString [] intersectionType "BOUNDS" ["GEOMETRY"|"BOUNDS"|...]
 SFString [] sortOrder "CLOSEST" ["ANY"|"CLOSEST"|"ALL"|"ALL_SORTED"]
}

The VolumePickSensor picks against an arbitrary volume defined by the geometry. The
volume is defined by the convex hull of the enclosing planes of the provided geometry.
If the provided volume is not manifold, the pick results are undefined.

A pick is successful if any vertex of the pickTarget geometry intersects the volume
defined by the pickingGeometry. The sort order is based on the distance between the
centers of the bounds of the picking geometry and the picked geometry.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 38 Picking component

picking.html[8/1/2020 10:01:00 AM]

 38.5 Support levels
The Picking component provides three levels of support as specified in Table 38.2.

 Table 38.2 — Picking component support levels

Level Prerequisites Nodes/Features Support

1

Core 1
Grouping 1
Shape 1
Rendering 1

X3DPickSensorNode n/a

X3DPickableObject n/a

LinePickSensor All fields fully supported.

PickableGroup All fields fully supported.

PointPickSensor All fields fully supported.

2

Core 1
Grouping 1
Shape 1
Rendering 1

 All Level 1 nodes All fields fully supported.

 PrimitivePickSensor All fields fully supported. Non
uniform scale not supported.

3

Core 1
Grouping 1
Shape 1
Rendering 1

 All Level 2 nodes All fields fully supported.

 PrimitivePickSensor All fields fully supported.
Non-uniform scale supported.

 VolumePickSensor All fields fully supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Node, abstract node type, and abstract interface index

nodeIndex.html[8/1/2020 10:01:01 AM]

Extensible 3D (X3D)
Part 1: Architecture and bases

Node indexNode, abstract node type, and abstract
interface index

 General
This index lists the nodes in alphabetical order. Abstract nodes and objectsnode types
and abstract interfaces are italicized.

Node, abstract node type, and abstract
interface SpecificationSubclause

AcousticProperties 12.4.1

Anchor 9.4.1

Appearance 12.4.2

Arc2D 14.3.1

ArcClose2D 14.3.2

AudioClip 16.4.1

Background 24.4.1

BallJoint 37.4.1

Billboard 23.4.1

BlendedVolumeStyle 41.4.1

BooleanFilter 30.4.1

BooleanSequencer 30.4.2

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Node, abstract node type, and abstract interface index

nodeIndex.html[8/1/2020 10:01:01 AM]

BooleanToggle 30.4.3

BooleanTrigger 30.4.4

BoundaryEnhancementVolumeStyle 41.4.2

BoundedPhysicsModel 40.4.1

Box 13.3.1

CADAssembly 32.4.1

CADFace 32.4.2

CADLayer 32.4.3

CADPart 32.4.4

CartoonVolumeStyle 41.4.3

Circle2D 14.3.3

ClipPlane 11.4.1

CollidableOffset 37.4.2

CollidableShape 37.4.3

Collision 23.4.2

CollisionCollection 37.4.4

CollisionSensor 37.4.5

CollisionSpace 37.4.6

Color 11.4.1

ColorChaser 39.4.1

ColorDamper 39.4.2

ColorInterpolator 19.4.1

ColorRGBA 11.4.2

ComposedCubeMapTexture 34.4.1

ComposedShader 31.4.1

ComposedTexture3D 33.4.1

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Node, abstract node type, and abstract interface index

nodeIndex.html[8/1/2020 10:01:01 AM]

ComposedVolumeStyle 41.4.4

Cone 13.3.2

ConeEmitter 40.4.2

Contact 37.4.7

Contour2D 27.4.1

ContourPolyline2D 27.4.2

Coordinate 11.4.3

CoordinateChaser 39.4.3

CoordinateDamper 39.4.4

CoordinateDouble 27.4.3

CoordinateInterpolator 19.4.2

CoordinateInterpolator2D 19.4.3

Cylinder 13.3.3

CylinderSensor 20.4.1

DirectionalLight 17.4.1

DISEntityManager 28.3.1

DISEntityTypeMapping 28.3.2

Disk2D 14.3.4

DoubleAxisHingeJoint 37.4.8

EaseInEaseOut 19.4.4

EdgeEnhancementVolumeStyle 41.4.5

ElevationGrid 13.3.4

EspduTransform 28.3.3

ExplosionEmitter 40.4.3

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Node, abstract node type, and abstract interface index

nodeIndex.html[8/1/2020 10:01:01 AM]

Extrusion 13.3.5

FillProperties 12.4.3

FloatVertexAttribute 31.4.2

Fog 24.4.2

FogCoordinate 24.4.3

FontStyle 15.4.1

ForcePhysicsModel 40.4.4

GeneratedCubeMapTexture 34.4.2

GeoCoordinate 25.3.1

GeoElevationGrid 25.3.2

GeoLocation 25.3.3

GeoLOD 25.3.4

GeoMetadata 25.3.5

GeoOrigin (deprecated) 25.3.6

GeoPositionInterpolator 25.3.7

GeoProximitySensor 25.3.8

GeoTouchSensor 25.3.9

GeoTransform 25.3.10

GeoViewpoint 25.3.11

Group 10.4.1

HAnimDisplacer 26.3.1

HAnimHumanoid 26.3.2

HAnimJoint 26.3.3

HAnimMotion 26.3.4

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Node, abstract node type, and abstract interface index

nodeIndex.html[8/1/2020 10:01:01 AM]

HAnimSegment 26.3.5

HAnimSite 26.3.6

ImageCubeMapTexture 34.4.3

ImageTexture 18.4.1

ImageTexture3D 33.4.2

IndexedFaceSet 13.3.6

IndexedLineSet 11.4.4

IndexedQuadSet 32.4.5

IndexedTriangleFanSet 11.4.5

IndexedTriangleSet 11.4.6

IndexedTriangleStripSet 11.4.7

Inline 9.4.2

IntegerSequencer 30.4.5

IntegerTrigger 30.4.6

IsoSurfaceVolumeData 41.4.6

KeySensor 21.4.1

Layer 35.4.1

LayerSet 35.4.2

Layout 36.4.1

LayoutGroup 36.4.2

LayoutLayer 36.4.3

LinePickSensor 38.4.1

LineProperties 12.4.4

LineSet 11.4.8

LoadSensor 9.4.3

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Node, abstract node type, and abstract interface index

nodeIndex.html[8/1/2020 10:01:01 AM]

LocalFog 24.4.4

LOD 23.4.3

Material 12.4.5

Matrix3VertexAttribute 31.4.3

Matrix4VertexAttribute 31.4.4

MetadataBoolean 7.4.1

MetadataDouble 7.4.2

MetadataFloat 7.4.3

MetadataInteger 7.4.4

MetadataSet 7.4.5

MetadataString 7.4.6

MotorJoint 37.4.8

MovieTexture 18.4.2

MultiTexture 18.4.3

MultiTextureCoordinate 18.4.4

MultiTextureTransform 18.4.5

NavigationInfo 23.4.4

Normal 11.4.9

NormalInterpolator 19.4.5

NurbsCurve 27.4.4

NurbsCurve2D 27.4.5

NurbsOrientationInterpolator 27.4.6

NurbsPatchSurface 27.4.7

NurbsPositionInterpolator 27.4.8

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Node, abstract node type, and abstract interface index

nodeIndex.html[8/1/2020 10:01:01 AM]

NurbsSet 27.4.9

NurbsSurfaceInterpolator 27.4.10

NurbsSweptSurface 27.4.11

NurbsSwungSurface 27.4.12

NurbsTextureCoordinate 27.4.13

NurbsTrimmedSurface 27.4.14

OpacityMapVolumeStyle 41.4.7

OrientationChaser 39.4.5

OrientationDamper 39.4.6

OrientationInterpolator 19.4.6

OrthoViewpoint 23.4.5

PackagedShader 31.4.5

ParticleSystem 40.4.5

PhysicalMaterial 12.4.6

PickableGroup 38.4.2

PixelTexture 18.4.6

PixelTexture3D 33.4.3

PlaneSensor 20.4.2

PointEmitter 40.4.6

PointLight 17.4.2

PointPickSensor 38.4.3

PointProperties 12.4.7

PointSet 11.4.10

Polyline2D 14.3.5

PolylineEmitter 40.4.7

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Node, abstract node type, and abstract interface index

nodeIndex.html[8/1/2020 10:01:01 AM]

Polypoint2D 14.3.6

PositionChaser 39.4.7

PositionChaser2D 39.4.8

PositionDamper 39.4.9

PositionDamper2D 39.4.10

PositionInterpolator 19.4.7

PositionInterpolator2D 19.4.8

PrimitivePickSensor 38.4.4

ProgramShader 31.4.6

ProjectionVolumeStyle 41.4.8

ProximitySensor 22.4.1

QuadSet 32.4.6

ReceiverPdu 28.3.4

Rectangle2D 14.3.7

RigidBody 37.4.9

RigidBodyCollection 37.4.10

ScalarChaser 39.4.11

ScalarDamper 39.4.12

ScalarInterpolator 19.4.9

ScreenFontStyle 36.4.4

ScreenGroup 36.4.5

Script 29.4.1

SegmentedVolumeData 41.4.9

ShadedVolumeStyle 41.4.10

ShaderPart 31.4.7

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Node, abstract node type, and abstract interface index

nodeIndex.html[8/1/2020 10:01:01 AM]

ShaderProgram 31.4.8

Shape 12.4.8

SignalPdu 28.3.5

SilhouetteEnhancementVolumeStyle 41.4.11

SingleAxisHingeJoint 37.4.11

SliderJoint 37.4.12

Sound 16.4.2

Sphere 13.3.7

SphereSensor 20.4.3

SplinePositionInterpolator 19.4.10

SplinePositionInterpolator2D 19.4.11

SplineScalarInterpolator 19.4.12

SpotLight 17.4.3

SquadOrientationInterpolator 19.4.13

StaticGroup 10.4.2

StringSensor 21.4.2

SurfaceEmitter 40.4.8

Switch 10.4.3

TexCoordChaser2D 39.4.13

TexCoordDamper2D 39.4.14

Text 15.4.2

TextureBackground 24.4.3

TextureCoordinate 18.4.7

TextureCoordinate3D 33.4.4

TextureCoordinate4D 33.4.5

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Node, abstract node type, and abstract interface index

nodeIndex.html[8/1/2020 10:01:01 AM]

TextureCoordinateGenerator 18.4.8

TextureProjectorParallel 42.4.1

TextureProjectorPerspective 42.4.2

TextureProperties 18.4.9

TextureTransform 18.4.10

TextureTransform3D 33.4.7

TextureTransformMatrix3D 33.4.6

TimeSensor 8.4.1

TimeTrigger 30.4.7

ToneMappedVolumeStyle 41.4.12

TouchSensor 20.4.4

Transform 10.4.4

TransformSensor 22.4.2

TransmitterPdu 28.3.6

TriangleFanSet 11.4.11

TriangleSet 11.4.12

TriangleSet2D 14.3.8

TriangleStripSet 11.4.13

TwoSidedMaterial 12.4.9

UniversalJoint 37.4.13

UnlitMaterial 12.4.10

Viewpoint 23.4.6

ViewpointGroup 23.4.7

Viewport 35.4.3

VisibilitySensor 22.4.3

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Node, abstract node type, and abstract interface index

nodeIndex.html[8/1/2020 10:01:01 AM]

VolumeData 41.4.13

VolumeEmitter 40.4.7

VolumePickSensor 38.4.5

WindPhysicsModel 40.4.8

WorldInfo 7.4.6

X3DAppearanceChildNode 12.3.1

X3DAppearanceNode 12.3.2

X3DBackgroundNode 24.3.1

X3DBindableNode 7.3.1

X3DBoundedObject 10.3.1

X3DChaserNode 39.3.1

X3DChildNode 7.3.2

X3DColorNode 11.3.1

X3DComposableVolumeRenderStyleNode 41.3.1

X3DComposedGeometryNode 11.3.2

X3DCoordinateNode 11.3.3

X3DDamperNode 39.3.2

X3DDragSensorNode 20.3.1

X3DEnvironmentalSensorNode 22.3.1

X3DEnvironmentTextureNode 34.3.1

X3DFogObject 24.3.2

X3DFollowerNode 39.3.3

X3DFontStyleNode 15.3.1

X3DGeometricPropertyNode 11.3.4

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Node, abstract node type, and abstract interface index

nodeIndex.html[8/1/2020 10:01:01 AM]

X3DGeometryNode 11.3.5

X3DGroupingNode 10.3.2

X3DInfoNode 7.3.3

X3DInterpolatorNode 19.3.1

X3DKeyDeviceSensorNode 21.3.1

X3DLayerNode 35.3.1

X3DLayoutNode 36.3.1

X3DLightNode 17.3.1

X3DMaterialNode 12.3.3

X3DMetadataObject 7.3.3

X3DNBodyCollidableNode 37.3.1

X3DNBodyCollisionSpaceNode 37.3.2

X3DNetworkSensorNode 9.3.1

X3DNode 7.3.4

X3DNormalNode 11.3.6

X3DNurbsControlCurveNode 27.3.1

X3DNurbsSurfaceGeometryNode 27.3.2

X3DOneSidedMaterialNode 12.3.4

X3DParametricGeometryNode 27.3.3

X3DParticleEmitterNode 40.3.1

X3DParticlePhysicsModelNode 40.3.2

X3DPickableObject 38.3.1

X3DPickSensorNode 38.3.2

X3DPointingDeviceSensorNode 20.3.2

X3DProductStructureChildNode 32.3.1

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Node, abstract node type, and abstract interface index

nodeIndex.html[8/1/2020 10:01:01 AM]

X3DProgrammableShaderObject 31.3.1

X3DPrototypeInstance 7.3.5

X3DRigidJointNode 37.3.3

X3DScriptNode 29.3.1

X3DSensorNode 7.3.6

X3DSequencerNode 30.3.1

X3DShaderNode 31.3.2

X3DShapeNode 12.3.5

X3DSoundNode 16.3.1

X3DSoundSourceNode 16.3.2

X3DSingleTextureCoordinateNode 18.3.1

X3DSingleTextureNode 18.3.2

X3DSingleTextureTransformNode 18.3.3

X3DTexture2DNode 18.3.4

X3DTexture3DNode 33.3.1

X3DTextureCoordinateNode 18.3.5

X3DTextureNode 18.3.6

X3DTextureProjectorNode 42.3.1

X3DTextureTransformNode 18.3.7

X3DTimeDependentNode 8.3.1

X3DTouchSensorNode 20.3.3

X3DTriggerNode 30.3.2

X3DUrlObject 9.3.2

X3DVertexAttributeNode 31.3.3

Extensible 3D (X3D), ISO/IEC 19775-1:202x, Node, abstract node type, and abstract interface index

nodeIndex.html[8/1/2020 10:01:01 AM]

X3DViewpointNode 23.3.1

X3DViewportNode 35.3.2

X3DVolumeDataNode 41.3.2

X3DVolumeRenderStyleNode 41.3.3

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 18 Texturing component

texturing.html[8/1/2020 10:01:05 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

18 Texturing component

 18.1 Introduction

18.1.1 Name

The name of this component is "Texturing". This name shall be used when referring to this
component in the COMPONENT statement (see 7.2.5.4 Component statement).

18.1.2 Overview

This clause describes the Texturing component of this part of ISO/IEC 19775. This includes
how textures are specified and how they are positioned on the subject geometry. Table 18.1
provides links to the major topics in this clause.

 Table 18.1 — Topics

18.1 Introduction
18.1.1 Name
18.1.2 Overview

18.2 Concepts
18.2.1 Texture map formats
18.2.2 Texture map image formats
18.2.3 Texture coordinates
18.2.4 Multitexturing
18.2.5 Programmable shaders

18.3 Abstract types
18.3.1 X3DSingleTextureCoordinateNode
18.3.2 X3DSingleTextureNode
18.3.3 X3DSingleTextureTransformNode
18.3.4 X3DTexture2DNode
18.3.5 X3DTextureCoordinateNode
18.3.6 X3DTextureNode
18.3.7 X3DTextureTransformNode

18.4 Node reference
18.4.1 ImageTexture
18.4.2 MovieTexture

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 18 Texturing component

texturing.html[8/1/2020 10:01:05 AM]

18.4.3 MultiTexture
18.4.4 MultiTextureCoordinate
18.4.5 MultiTextureTransform
18.4.6 PixelTexture
18.4.7 TextureCoordinate
18.4.8 TextureCoordinateGenerator
18.4.9 TextureProperties
18.4.10 TextureTransform

18.5 Support levels

Figure 18.1 — Texture map coordinate system
Figure 18.2 — Lightmap example

Table 18.1 — Topics
Table 18.2 — Comparison of single texture and multitexture attributes
Table 18.3 — Multitexture modes
Table 18.4 — Values for the source field
Table 18.5 — Values for the function field
Table 18.6 — Texture coordinate generation modes
Table 18.7 — Texture boundary modes
Table 18.8 — Texture magnification modes
Table 18.9 — Texture minification modes
Table 18.10 — Texture compression modes
Table 18.11 — Texturing component support levels

 18.2 Concepts

18.2.1 Texture map formats

Node types specifying texture maps include Background, ImageTexture, MovieTexture,
MultiTexture, PixelTexture, descendants of X3DEnvironmentTextureNode, descendants of
X3DTexture3DNode. Texture maps are 2D or 3D or cubemap images that contain an array of
colour values describing the texture.

Depending on the number of channels, the following texture types are possible:

a. Intensity textures (one channel)
b. Intensity plus alpha opacity textures (two channels)
c. Full RGB textures (three channels)
d. Full RGB plus alpha opacity textures (four channels)

Note that image formats specify alpha (i.e., opacity), not transparency (where
alpha = 1 − transparency).

See 17.2.2.2 Texture sampling for a description of how the various texture types are
applied.

The textures described in this component, "Texturing", only support two-dimensional map
formats. See 33 Texturing3D component for a description of the use of 3D textures and 34
Cube map environmental texture component for a description of the use of cube map

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 18 Texturing component

texturing.html[8/1/2020 10:01:05 AM]

textures.

18.2.2 Texture map image formats

Texture nodes that require support for the PNG (see 2.[I15948]) image format shall
interpret the PNG pixel formats in the following way:

a. Greyscale pixels without alpha or simple transparency are treated as intensity textures.
b. Greyscale pixels with alpha or simple transparency are treated as intensity plus alpha

textures.
c. RGB pixels without alpha channel or simple transparency are treated as full RGB

textures.
d. RGB pixels with alpha channel or simple transparency are treated as full RGB plus alpha

textures.

If the image specifies colours as indexed-colour (i.e., palettes or colourmaps), the following
semantics shall be used (where `greyscale' refers to a palette entry with equal red, green,
and blue values):

e. If all the colours in the palette are greyscale and there is no transparency chunk, it is
treated as an intensity texture.

f. If all the colours in the palette are greyscale and there is a transparency chunk, it is
treated as an intensity plus opacity texture.

g. If any colour in the palette is not grey and there is no transparency chunk, it is treated
as a full RGB texture.

h. If any colour in the palette is not grey and there is a transparency chunk, it is treated
as a full RGB plus alpha texture.

Texture nodes that require support for JPEG files (see 2.[JPEG]) shall interpret JPEG files as
follows:

i. Greyscale files (number of components equals 1) are treated as intensity textures.
j. YCbCr files are treated as full RGB textures.
k. No other JPEG file types are required. It is recommended that other JPEG files are

treated as a full RGB textures.

Texture nodes that support MPEG files (see ISO/IEC 11172-1]) shall treat MPEG files as full
RGB textures.

Texture nodes that recommend support for GIF files (see [GIF]) shall follow the applicable
semantics described above for the PNG format.

Texture nodes that recommend support for Joint Photographic Experts Group (JPEG) 2000,
Geographic Tagged Image File Format (GeoTIFF), National Imagery Transmission Format
(NITF) or Basic Image Interchange Format (BIIF) formats shall follow the applicable
semantics described above for the PNG format.

 18.2.3 Texture coordinates

Texture maps are defined in a 2D coordinate system (s, t) that ranges from [0.0, 1.0] in
both directions. The bottom edge of the image corresponds to the S-axis of the texture map,
and left edge of the image corresponds to the T-axis of the texture map. The lower-left pixel
of the image corresponds to s=0, t=0, and the top-right pixel of the image corresponds to

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 18 Texturing component

texturing.html[8/1/2020 10:01:05 AM]

s=1, t=1. Texture maps may be viewed as two dimensional colour functions that, given an
(s, t) coordinate, return a colour value colour(s, t). These relationships are depicted in Figure
18.1.

Figure 18.1 — Texture map coordinate system

The texture map nodes ImageTexture, MovieTexture, and PixelTexture contain two fields,
repeatS and repeatT, that specify how the texture wraps in the S and T directions. If repeatS
is TRUE (the default), the texture map is repeated outside the [0.0, 1.0] texture coordinate
range in the S direction so that it fills the shape. If repeatS is FALSE, the texture coordinates
are clamped in the S direction to lie within the [0.0, 1.0] range. The repeatT field is
analogous to the repeatS field.

Textures nodes with a textureProperties field allow fined grained control of the texture setup
including further modes for handling clamping and repeating texture coordinates and
specifying how a texture should be filtered. Texture nodes with a provided TextureProperties
node shall ignore the settings of repeatS and repeatT and shall use the provided values in
the boundaryMode fields.

Each vertex-based geometry node (e.g., IndexedFaceSet and ElevationGrid) uses a set of 2D
texture coordinates that map textures to vertices. Texture coordinates for geometry nodes
are specified using the TextureCoordinate and TextureCoordinateGenerator nodes. Texture
map values (ImageTexture, MovieTexture, and PixelTexture) range from [0.0, 1.0] along the
S-axis and T-axis. However, texture coordinate values may be in the range (−∞,∞). Texture
coordinates identify a location (and thus a colour value) in the texture map. The horizontal
coordinate s is specified first, followed by the vertical coordinate t.

If the texture map is repeated in a given direction (S-axis or T-axis), a texture coordinate C
(s or t) is mapped into a texture map that has N pixels in the given direction as follows:

 Texture map location = (C − floor(C)) × N

If the texture map is not repeated, the texture coordinates are clamped to the 0.0 to 1.0
range as follows:

 Texture map location = N, if C > 1.0,
 = 0.0, if C < 0.0,
 = C × N, if 0.0 ≤ C ≤ 1.0.

Texture coordinates may be transformed (scaled, rotated, translated) by supplying a
TextureTransform node as a component of the texture's containing Appearance node.

Details on repeating textures are specific to texture map node types described in
ImageTexture, MovieTexture, and PixelTexture.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 18 Texturing component

texturing.html[8/1/2020 10:01:05 AM]

 18.2.4 Multitexturing

Multiple textures may be applied to a single geometry node and blended according to a
predefined set of operations. This enables a variety of visual effects that include light
mapping and environment mapping. Multiple textures may be applied using multi-stage or
multi-pass techniques, depending upon the available hardware. The number of textures to
be blended may have a significant impact on performance, depending upon the available
hardware.

Figure 18.2 depicts an example of light mapping, simulating a pre-lit object. Texture 2 is
added on top of texture 1.

 Base Texture + Lightmap = Result

Figure 18.2 — Lightmap example

Multitexturing is accomplished using the MultiTexture, MultiTextureCoordinate, and
MultiTextureTransform nodes. MultiTexture specifies a grouping of single textures and
texture transformations. MultiTextureCoordinate specifies a grouping of texture coordinates
to be used with the associated textures. MultiTextureTransform specifies a grouping of
texture transforms to be used with the associated textures.

Table 18.2 compares the usage of single texture and multitexture attributes within
Appearance and geometry nodes.

 Table 18.2: Comparison of single texture and multitexture attributes

Texture Node
appearance.texture Texture Transform Texture coordinate

geometry.texCoord
Texture
mode

ImageTexture { ...} appearance.textureTransform
TextureTransform {}

TextureCoordinate {
coord [] }

implicit in
lighting
model:
["REPLACE"
"MODULATE"]

MultiTexture {
texture [
ImageTexture { ...}
ImageTexture { ...}
]}

MultiTexture {
textureTransform [
TextureTransform { ...}
TextureTransform { ...}
]}

MultiTextureCoordinate
{
coord [
TextureCoordinate {
coord []
}TextureCoordinate {
coord [] }
]}

MultiTexture
{
mode [
"MODULATE"
"MODULATE"

]}

18.2.5 Programmable shaders

If a programmable shader is defined for the Appearance node containing textures, texture

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 18 Texturing component

texturing.html[8/1/2020 10:01:05 AM]

mapping shall be disabled. Textures defined shall be considered as sources of input and/or
output for a programmable shader. See 31.2.2.5 Per-object attributes for details on how to
map textures to shader program inputs.

 18.3 Abstract types

 18.3.1 X3DSingleTextureCoordinateNode
X3DSingleTextureCoordinateNode : X3DTextureCoordinateNode {
 SFString [in,out] mapping ""
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

This abstract node type is the base type for all texture coordinate nodes which specify
texture coordinates for a single texture. See 12.2.4 Texture mapping specified in material
nodes for a description how it interacts with texture specification inside materials.

This abstract type means "any texture coordinate node except MultiTextureCoordinate".

 18.3.2 X3DSingleTextureNode
X3DSingleTextureNode : X3DTextureNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

This abstract node type is the base type for all texture node types that define a single
texture. A single texture can be used to influence a parameter of various material nodes in
the Shape component, and it can be a child of MultiTexture.

This abstract type means "any texture node except MultiTexture".

 18.3.3 X3DSingleTextureTransformNode
X3DSingleTextureTransformNode : X3DTextureTransformNode {
 SFString [in,out] mapping ""
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

This abstract node type is the base type for all texture transform nodes which specify texture
coordinate transformation for a single texture. See 12.2.4 Texture mapping specified in
material nodes for a description how it interacts with texture specification inside materials.

This abstract type means "any texture transformation node except MultiTextureTransform".

 18.3.4 X3DTexture2DNode
X3DTexture2DNode : X3DSingleTextureNode {
X3DTexture2DNode : X3DTextureNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [] repeatS TRUE
 SFBool [] repeatT TRUE
 SFNode [] textureProperties NULL [TextureProperties]
}

This abstract node type is the base type for all node types which specify 2D sources for
texture images.

 18.3.5 X3DTextureCoordinateNode
X3DTextureCoordinateNode : X3DGeometricPropertyNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 18 Texturing component

texturing.html[8/1/2020 10:01:05 AM]

This abstract node type is the base type for all node types which specify texture coordinates.
It adds a new geometric property node type to those specified in 11 Rendering component.

 18.3.6 X3DTextureNode
X3DTextureNode : X3DAppearanceChildNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

This abstract node type is the base type for all node types which specify sources for texture
images.

 18.3.7 X3DTextureTransformNode
X3DTextureTransformNode : X3DAppearanceChildNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

This abstract node type is the base type for all node types which specify a transformation of
texture coordinates.

 18.4 Node reference

18.4.1 ImageTexture
ImageTexture : X3DTexture2DNode, X3DUrlObject {
 SFString [in,out] description ""
 SFBool [in,out] load TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFTime [in,out] refresh 0.0 [0,∞)
 MFString [in,out] url [] [URI]
 SFBool [] repeatS TRUE
 SFBool [] repeatT TRUE
 SFNode [] textureProperties NULL [TextureProperties]
}

The ImageTexture node defines a texture map by specifying an image file and general
parameters for mapping to geometry.

The texture is read from the URL specified by the url field. When the url field contains no
values ([]), texturing is disabled. Browsers shall support the JPEG (see 2. [JPEG]) and PNG
(see ISO/IEC 15948) image file formats. In addition, browsers may support other image
formats (EXAMPLE CGM, ISO/IEC 8632) that can be rendered into a 2D image. Support for the
GIF format (see [GIF]) is also recommended (including transparency). Details on the url field
can be found in 9.2.1 URLs.

See 18.2 Concepts, for a general description of texture maps.

See 17 Lighting component for a description of lighting equations and the interaction
between textures, materials, and geometry appearance.

18.4.2 MovieTexture
MovieTexture : X3DTexture2DNode, X3DSoundSourceNode, X3DUrlObject {
 SFString [in,out] description ""
 SFBool [in,out] load TRUE
 SFBool [in,out] loop FALSE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFTime [in,out] pauseTime 0 (-∞,∞)
 SFFloat [in,out] pitch 1.0 (0,∞)
 SFTime [in,out] refresh 0.0 [0,∞)
 SFTime [in,out] resumeTime 0 (-∞,∞)
 SFFloat [in,out] speed 1.0 (-∞,∞)
 SFTime [in,out] startTime 0 (-∞,∞)
 SFTime [in,out] stopTime 0 (-∞,∞)
 MFString [in,out] url [] [URI]
 SFTime [out] duration_changed
 SFTime [out] elapsedTime

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 18 Texturing component

texturing.html[8/1/2020 10:01:05 AM]

 SFBool [out] isActive
 SFBool [out] isPaused
 SFBool [] repeatS TRUE
 SFBool [] repeatT TRUE
 SFNode [] textureProperties NULL [TextureProperties]
}

The MovieTexture node defines a time dependent texture map (contained in a movie file)
and parameters for controlling the movie and the texture mapping. A MovieTexture node can
also be used as the source of sound data for a Sound node. In this special case, the
MovieTexture node is not used for rendering.

The url field that defines the movie data shall support MPEG1-Systems (audio and video) or
MPEG1-Video (video-only) movie file formats as defined in ISO/IEC 11172-1. Details on the
url field can be found in 9.2.1 URLs.

MovieTexture nodes can be referenced by an Appearance node's texture field (as a movie
texture) and by a Sound node's source field (as an audio source only).

As soon as the movie is loaded, a duration_changed field is sent. This indicates the duration
of the movie in seconds. This field value can be read (for instance, by a Script node) to
determine the duration of a movie. A value of "-1" implies the movie has not yet loaded or
the value is unavailable for some reason.

The loop, pauseTime, resumeTime, startTime, and stopTime inputOutput fields and the
elapsedTime, isActive, and isPaused outputOnly fields, and their effects on the MovieTexture
node, are discussed in detail in 8 Time component. The cycle of a MovieTexture node is the
length of time in seconds for one playing of the movie at the specified speed.

The speed field indicates how fast the movie shall be played. A speed of 2 indicates the
movie plays twice as fast. The duration_changed output is not affected by the speed field.
set_speed events are ignored while the movie is playing. A negative speed implies that the
movie will play backwards.

If a MovieTexture node is inactive when the movie is first loaded, frame 0 of the movie
texture is displayed if speed is non-negative or the last frame of the movie texture is shown
if speed is negative (see 8.2.4 Time-dependent nodes). A MovieTexture node shall display
frame 0 if speed = 0. For positive values of speed, an active MovieTexture node displays the
frame at movie time t as follows (i.e., in the movie's local time system with frame 0 at time
0 with speed = 1):

 t = (now − startTime) modulo (duration/speed)

If speed is negative, the MovieTexture node displays the frame at movie time:

 t = duration - ((now - startTime) modulo |duration/speed|)

When a MovieTexture node becomes inactive, the frame corresponding to the time at which
the MovieTexture became inactive will remain as the texture.

See 18.2 Concepts, for a general description of texture maps.

17 Lighting component contains details on lighting equations and the interaction between
textures, materials, and geometries.

18.4.3 MultiTexture
MultiTexture : X3DTextureNode {
 SFFloat [in,out] alpha 1 [0,1]
 SFColor [in,out] color 1 1 1 [0,1]
 MFString [in,out] function []

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 18 Texturing component

texturing.html[8/1/2020 10:01:05 AM]

 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFString [in,out] mode []
 MFString [in,out] source []
 MFNode [in,out] texture [] [X3DSingleTextureNode]
 MFNode [in,out] texture [] [X3DTextureNode]
}

The MultiTexture node specifies the application of several individual textures to a 3D object
to achieve a more complex visual effect. MultiTexture can be used as a value for the texture
field in an Appearance node.

The texture field contains a list of texture nodes (e.g., ImageTexture, PixelTexture, and
MovieTexture). The texture field may not contain another MultiTexture node.

The color and alpha fields define base RGB and alpha values for SELECT mode operations.

The mode field controls the type of blending operation. The available modes include MODULATE
for a lit Appearance, REPLACE for an unlit Appearance, and several variations of the two. The
value chosen for the mode field may also specify the blending mode for the alpha channel.

EXAMPLE The mode value '"MODULATE","REPLACE"' specifies Color = (Arg1.color × Arg2.color, Arg1.alpha).

The number of used texture stages is determined by the length of the texture field. If there
are fewer mode values, the default mode is "MODULATE".

Table 18.3 lists possible multitexture modes.

Table 18.3 — Multitexture modes

MODE Description

"MODULATE" (default)
Multiply texture color with current color
Arg1 × Arg2

"REPLACE"
Replace current color
Arg2

"MODULATE2X"

Multiply the components of the arguments, and shift the
products to the left 1 bit (effectively multiplying them by 2)
for brightening.

"MODULATE4X"

Multiply the components of the arguments, and shift the
products to the left 2 bits (effectively multiplying them by 4)
for brightening.

"ADD"
Add the components of the arguments
Arg1 + Arg2

"ADDSIGNED"
Add the components of the arguments with a -0.5 bias,
making the effective range of values from −0.5 through 0.5.

"ADDSIGNED2X"
Add the components of the arguments with a -0.5 bias, and
shift the products to the left 1 bit.

"SUBTRACT"

Subtract the components of the second argument from those
of the first argument.
Arg1 − Arg2

Add the first and second arguments, then subtract their

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 18 Texturing component

texturing.html[8/1/2020 10:01:05 AM]

"ADDSMOOTH" product from the sum.
Arg1 + Arg2 − Arg1 × Arg2 = Arg1 + (1 − Arg1) × Arg2

"BLENDDIFFUSEALPHA"

Linearly blend this texture stage, using the interpolated
alpha from each vertex.
Arg1 × (Alpha) + Arg2 × (1 − Alpha)

"BLENDTEXTUREALPHA"

Linearly blend this texture stage, using the alpha from this
stage's texture.
Arg1 × (Alpha) + Arg2 × (1 − Alpha)

"BLENDFACTORALPHA"

Linearly blend this texture stage, using the alpha factor from
the MultiTexture node.
Arg1 × (Alpha) + Arg2 × (1 − Alpha)

"BLENDCURRENTALPHA"

Linearly blend this texture stage, using the alpha taken from
the previous texture stage.
Arg1 × (Alpha) + Arg2 × (1 − Alpha)

"MODULATEALPHA_ADDCOLOR"

Modulate the color of the second argument, using the alpha
of the first argument; then add the result to argument one.
Arg1.RGB + Arg1.A × Arg2.RGB

"MODULATEINVALPHA_ADDCOLOR"

Similar to MODULATEALPHA_ADDCOLOR, but use the inverse
of the alpha of the first argument.
(1 − Arg1.A) × Arg2.RGB + Arg1.RGB

"MODULATEINVCOLOR_ADDALPHA"

Similar to MODULATECOLOR_ADDALPHA, but use the inverse
of the color of the first argument.
(1 − Arg1.RGB) × Arg2.RGB + Arg1.A

"OFF" Turn off the texture unit

"SELECTARG1"
Use color argument 1
Arg1

"SELECTARG2"
Use color argument 1
Arg2

"DOTPRODUCT3"

Modulate the components of each argument (as signed
components), add their products, then replicate the sum to
all color channels, including alpha.
This can do either diffuse or specular bump mapping with
correct input. Performs the function (Arg1.R × Arg2.R +
Arg1.G × Arg2.G + Arg1.B × Arg2.B) where each component
has been scaled and offset to make it signed. The result is
replicated into all four (including alpha) channels.

The source field determines the colour source for the second argument. Table 18.4 lists valid
values for the source field. Typically, there are the same number of source field values as
textures. Otherwise, the default source field value is used.

Table 18.4 — Values for the source field

MODE Description

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 18 Texturing component

texturing.html[8/1/2020 10:01:05 AM]

"" (default) The second argument color (ARG2) is the color from the previous
rendering stage (DIFFUSE for first stage).

"DIFFUSE"
The texture argument is the diffuse color interpolated from vertex
components during Gouraud shading.

"SPECULAR"
The texture argument is the specular color interpolated from vertex
components during Gouraud shading.

"FACTOR"
The texture argument is the factor (color, alpha) from the texture
provided for the current stage of the MultiTexture node.

The function field defines an optional function to be applied to the argument after the mode
has been evaluated. Table 18.5 lists valid values for the function field. Typically, there are
the same number of function field values as textures. Otherwise, the default function field
value is used.

Table 18.5 — Values for the function field

Operator Description

"" (default) No function is applied.

"COMPLEMENT"
Invert the argument so that, if the result of the argument were
referred to by the variable x, the value would be 1.0 minus x.

"ALPHAREPLICATE"
Replicate the alpha information to all color channels before the
operation completes.

 18.4.4 MultiTextureCoordinate
MultiTextureCoordinate : X3DTextureCoordinateNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFNode [in,out] texCoord NULL [X3DSingleTextureCoordinateNode]
 MFNode [in,out] texCoord NULL [X3DTextureCoordinateNode]
}

MultiTextureCoordinate supplies multiple texture coordinates per vertex. This node can be
used to set the texture coordinates for the different texture channels. It can be used to
provide texture coordinates:

For the texture specified in the Appearance.texture field. This includes a MultiTexture
node. In this case the order of the texture coordinates must match the order of texture
nodes within the MultiTexture.texture list.

For any texture specified within material nodes using fields like Material.diffuseTexture,
PhysicalMaterial.baseTexture. In this case, the mapping field of the child
X3DSingleTextureCoordinateNode node must correspond to the appropriate
xxxTextureMapping value in the material. See 12.2.4 Texture mapping specified in
material nodes for details.

Each entry in the texCoord field may contain a TextureCoordinate,
TextureCoordinateGenerator or other X3DSingleTextureCoordinateNode descendant node.

Example:

Shape {

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 18 Texturing component

texturing.html[8/1/2020 10:01:05 AM]

 appearance Appearance {
 texture MultiTexture {
 mode ["MODULATE" "MODULATE"]
 texture [
 ImageTexture { url "brick.jpg")
 ImageTexture { repeatS FALSE repeatT FALSE url "light_gray.png"}
]
 }
 }
 geometry IndexedFaceSet {
 ...
 texCoord MultiTextureCoordinate {
 texCoord [
 TextureCoordinate { ... }
 TextureCoordinate { ... }
]
 }
 }
}

If using a MultiTexture node with a geometry node without a MultiTextureTransform node,
identity matrices are assumed for all channels. If there are too few entries in the
textureTransform field, identity matrices shall be used for all remaining undefined channels.

Using a MultiTextureCoordinate with exactly one child is always equivalent to using this child
directly. That is, these two constructs (in X3D classic encoding) are exactly equivalent for
the purpose of texture coordinate determination:

1. IndexedFaceSet {
 texCoord TextureCoordinate {
 point [0 0, 1 1]
 }
}

2. IndexedFaceSet {
 texCoord MultiTextureCoordinate {
 texCoord [
 TextureCoordinate {
 point [0 0, 1 1]
 }
]
 }
}

When the MultiTexture node is used in Appearance.texture field, and there is not enough
texture coordinates in the MultiTextureCoordinate, texture coordinates for the last channel
are replicated along the other channels.

18.4.5 MultiTextureTransform
MultiTextureTransform : X3DTextureTransformNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFNode [in,out] textureTransform NULL [X3DSingleTextureTransformNode]
 MFNode [in,out] textureTransform NULL [X3DTextureTransformNode]
}

MultiTextureTransform supplies multiple texture transforms per appearance. This node can
be used to set the texture transform for each of the different texture channels. It can be
used to transform texture coordinates:

For the texture specified in the Appearance.texture field. This includes a MultiTexture
node. In this case the order of the texture transformations must match the order of
texture nodes within the MultiTexture.texture list.

For any texture specified within material nodes using fields like Material.diffuseTexture,
PhysicalMaterial.baseTexture. In this case, the mapping field of the child
X3DSingleTextureTransformNode node must correspond to the appropriate
xxxTextureMapping value in the material. See 12.2.4 Texture mapping specified in
material nodes for details.

Each entry in the textureTransform field shall contain an X3DSingleTextureTransformNode or
NULL.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 18 Texturing component

texturing.html[8/1/2020 10:01:05 AM]

Example:

Shape {
 appearance Appearance {
 texture MultiTexture {
 mode ["MODULATE" "MODULATE"]
 texture [
 ImageTexture { url "brick.jpg")
 ImageTexture { repeatS FALSE repeatT FALSE url "light_gray.png"}
]
 }

 textureTransform MultiTextureTransform {
 textureTransform [
 TextureTransform {}
 TextureTransform { scale 0.5 0.5 }
]
 }
 }
}

If using MultiTexture with an IndexedFaceSet without a MultiTextureTransform node, texture
coordinates for channel 0 are replicated along the other channels. Similarly, if there are too
few entries in the textureTransform field, the last entry is replicated.

Note that we treat a MultiTextureTransform with a single child always the same as using this
child directly. That, is these two constructs are equivalent, for the purpose of texture
transformation determination:

1. Appearance {
 textureTransform TextureTransform {
 scale 10 10
 }
}

2. Appearance {
 textureTransform MultiTextureTransform {
 textureTransform [
 TextureTransform {
 scale 10 10
 }
]
 }
}

When the MultiTexture node is used in Appearance.texture field, and there is not enough
texture coordinates in the MultiTextureTransform, identity matrices (no transformation) shall
be used for all remaining channels.

 18.4.6 PixelTexture
PixelTexture : X3DTexture2DNode {
 SFImage [in,out] image 0 0 0
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [] repeatS TRUE
 SFBool [] repeatT TRUE
 SFNode [] textureProperties NULL [TextureProperties]
}

The PixelTexture node defines a 2D image-based texture map as an explicit array of pixel
values (image field) and parameters controlling tiling repetition of the texture onto
geometry.

The repeatS and repeatT fields specify how the texture wraps in the S and T directions. If
repeatS is TRUE (the default), the texture map is repeated outside the 0-to-1 texture
coordinate range in the S direction so that it fills the shape. If repeatS is FALSE, the texture
coordinates are clamped in the S direction to lie within the 0.0 to 1.0 range. The repeatT
field is analogous to the repeatS field.

See 18.2 Concepts, for a general description of texture maps.

See 17 Lighting component for a description of how the texture values interact with the

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 18 Texturing component

texturing.html[8/1/2020 10:01:05 AM]

appearance of the geometry. 5.7 SFImage and MFImage describes the specification of an
image.

 18.4.7 TextureCoordinate
TextureCoordinate : X3DSingleTextureCoordinateNode {
TextureCoordinate : X3DTextureCoordinateNode {
 SFString [in,out] mapping ""
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFVec2f [in,out] point [] (-∞,∞)
}

The TextureCoordinate node is a geometry property node that specifies a set of 2D texture
coordinates used by vertex-based geometry nodes (EXAMPLE IndexedFaceSet and
ElevationGrid) to map textures to vertices.

 18.4.8 TextureCoordinateGenerator
TextureCoordinateGenerator : X3DSingleTextureCoordinateNode {
TextureCoordinateGenerator : X3DTextureCoordinateNode {
 SFString [in,out] mapping ""
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFString [in,out] mode "SPHERE" [see Table 18.6]
 MFFloat [in,out] parameter [] [see Table 18.6]
}

TextureCoordinateGenerator supports the automatic generation of texture coordinates for
geometric shapes.

This node can be used to set the texture coordinates for a node with a texCoord field.

The mode field describes the algorithm used to compute texture coordinates, as depicted in
Table 18.6.

 Table 18.6 — Texture coordinate generation modes

Mode Description

"SPHERE"

Creates texture coordinates for a spherical environment or
"chrome" mapping based on the vertex normals
transformed to camera space.
u = Nx/2 + 0.5
v = Ny/2 + 0.5
where u and v are the texture coordinates being computed,
and Nx and Ny are the x and y components of the camera-
space vertex normal. If the normal has a positive x
component, the normal points to the right, and the u
coordinate is adjusted to address the texture appropriately.
Likewise for the v coordinate: positive y indicates that the
normal points up. The opposite is of course true for
negative values in each component. If the normal points
directly at the camera, the resulting coordinates should
receive no distortion. The +0.5 bias to both coordinates
places the point of zero-distortion at the center of the
sphere map, and a vertex normal of (0, 0, z) addresses this
point. Note that this formula doesn't take account for the z
component of the normal.

"CAMERASPACENORMAL"

Use the vertex normal, transformed to camera space, as
input texture coordinates, resulting coordinates are in −1
to 1 range.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 18 Texturing component

texturing.html[8/1/2020 10:01:05 AM]

"CAMERASPACEPOSITION"
Use the vertex position, transformed to camera space, as
input texture coordinates

"CAMERASPACEREFLECTIONVECTOR"

Use the reflection vector, transformed to camera space, as
input texture coordinates. The reflection vector is computed
from the input vertex position and normal vector.
R=2 × DotProd(E,N) × N − E;
In the preceding formula, R is the reflection vector being
computed, E is the normalized position-to-eye vector, and
N is the camera-space vertex normal.
Resulting coordinates are in −1 to 1 range.

"SPHERE-LOCAL" Sphere mapping but in local coordinates

"COORD" use vertex coordinates

"COORD-EYE" use vertex coordinates transformed to camera space

"NOISE"

computed by applying Perlin solid noise function on vertex
coordinates, parameter contains scale and translation
[scale.x scale.y scale.z translation.x translation.y
translation.z]

"NOISE-EYE"
same as above but transform vertex coordinates to camera
space first

"SPHERE-REFLECT"

similar to "CAMERASPACEREFLECTIONVECTOR" with
optional index of refraction, parameter[0] contains index of
refraction

Resulting coordinates are in −1 to 1 range.

"SPHERE-REFLECT-LOCAL"

Similar to "SPHERE-REFLECT", parameter[0] contains index
of refraction, parameter[1 to 3] the eye point in local
coordinates. By animating parameter [1 to 3] the reflection
changes with respect to the point.
Resulting coordinates are in −1 to 1 range.

Some modes may be hardware accelerated. Some modes are view dependent.

18.4.9 TextureProperties
TextureProperties : X3DNode
 SFFloat [in,out] anisotropicDegree 1.0 [1,∞)
 SFColorRGBA [in,out] borderColor 0 0 0 0 [0,1]
 SFInt32 [in,out] borderWidth 0 [0,1]
 SFString [in,out] boundaryModeS "REPEAT" [see Table 18.7]
 SFString [in,out] boundaryModeT "REPEAT" [see Table 18.7]
 SFString [in,out] boundaryModeR "REPEAT" [see Table 18.7]
 SFString [in,out] magnificationFilter "FASTEST" [see Table 18.8]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFString [in,out] minificationFilter "FASTEST" [see Table 18.9]
 SFString [in,out] textureCompression "FASTEST" [see Table 18.10]
 SFFloat [in,out] texturePriority 0 [0,1]
 SFBool [] generateMipMaps FALSE
}

TextureProperties allows fine control over a texture's application.

This node can be used to set the texture properties for a node with a textureProperties field.
A texture with a TextureProperties node will ignore the repeatS and repeatT fields on the
texture.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 18 Texturing component

texturing.html[8/1/2020 10:01:05 AM]

The anisotropicDegree field describes the minimum degree of anisotropy to account for in
texture filtering. A value of 1 implies no anisotropic filtering. Values above the system's
maximum supported value will be clamped to the maximum allowed. Browsers are allowed
to use higher values as deemed appropriate.

The borderColor field describes the color to use for border pixels.

The borderWidth field describes the number of pixels to use for a texture border.

The boundaryModeS field describes the way S texture coordinate boundaries are handled, as
depicted in Table 18.7.

The boundaryModeT field describes the way T texture coordinate boundaries are handled, as
depicted in Table 18.7.

The boundaryModeR field describes the way R texture coordinate boundaries are handled, as
depicted in Table 18.7. This field only applies to three dimensional textures and shall be
ignored by other texture types.

The magnificationFilter field describes the way textures are filtered when the image is
smaller than the screen space representation. Valid values are depicted in Table 18.8.

The minificationFilter field describes the way textures are filtered when the image is larger
than the screen space representation. Valid values are depicted in Table 18.9. Modes with
MIPMAP in the name require mipmaps. If mipmaps are not provided, the mode shall pick the
corresponding non-mipmapped mode (e.g., AVG_PIXEL_NEAREST_MIPMAP becomes AVG_PIXEL).

The texturePriority field describes the texture residence priority for allocating texture
memory. Zero indicates the lowest priority and 1 indicates the highest priority. Values are
clamped to the range [0,1].

The textureCompression field specifies the preferred image compression method to be used
during rendering. Valid values are in Table 18.10.

The generateMipMaps field describes whether mipmaps should be generated for the texture.
Mipmaps are required for filtering modes with MIPMAP in their value.

Table 18.7 — Texture boundary modes

Mode Description

"CLAMP" Clamp texture coordinates to the range [0,1]

"CLAMP_TO_EDGE"

Clamp texture coordinates such that a border texel is never
sampled.
Coordinates are clamped to the range [1/(2N), 1 - 1/(2N)], where N
is the size of the texture in the direction of clamping.

"CLAMP_TO_BOUNDARY"

Clamp texture coordinates such that texture samples are border
texels for fragments
whose corresponding texture coordinate is sufficiently outside the
range [0,1].
Texture coordinates are clamped to the range [-1/(2N), 1 +
1/(2N)].

Texture coordinates are mirrored and then clamped as in

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 18 Texturing component

texturing.html[8/1/2020 10:01:05 AM]

"MIRRORED_REPEAT"
CLAMP_TO_EDGE

"REPEAT"
Repeat a texture across the fragment. Ignore the integer part of the
texture coordinates, using only the fractional part.

Table 18.8 — Texture magnification modes

Mode Description

"AVG_PIXEL"
Select the weighted average of the four texture elements that are
closest to the center of the pixel being textured.

"DEFAULT" Select the browser-specified default magnification mode.

"FASTEST" Select the fastest method available.

"NEAREST_PIXEL"
Select the pixeltexture element that is nearest to the center of the pixel
being textured.

"NICEST" Select the highest quality method available.

Table 18.9 — Texture minification modes

Mode Description

"AVG_PIXEL"
Select the weighted average of the four texture elements
that are closest to the center of the pixel being textured.

"AVG_PIXEL_AVG_MIPMAP"

Performs tri-linear filtering. Choose the two mipmaps that
most closely match the size of the pixel being textured and
use the weighted average of the four texture elements
that are closest to the center of the pixel to produce a
texture value from each mipmap. The final texture value is
a weighted average of those two values.

"AVG_PIXEL_NEAREST_MIPMAP"

Choose the mipmap that most closely matches the size of
the pixel being textured and use the weighted average of
the four texture elements that are closest to the center of
the pixel to produce a texture value.

"DEFAULT" Select the browser-specified default minification mode.

"FASTEST"
Select the fastest method available. Mipmaps shall be
used, if available.

"NEAREST_PIXEL"
Select the pixeltexture element that is nearest to the
center of the pixel being textured.

"NEAREST_PIXEL_AVG_MIPMAP"

Choose the two mipmaps that most closely match the size
of the pixel being textured and use the texture element
nearest to the center of the pixel to produce a texture
value from each mipmap. The final texture value is a
weighted average of those two values.

Choose the mipmap that most closely matches the size of

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 18 Texturing component

texturing.html[8/1/2020 10:01:05 AM]

"NEAREST_PIXEL_NEAREST_MIPMAP"
the pixel being textured and use the texture element
nearest to the center of the pixel) to produce a texture
value.

"NICEST"
Select the highest quality method available. Mipmaps shall
be used, if available.

Table 18.10 — Texture compression modes

Mode Description

"DEFAULT" Select the browser-specified default compression mode.

"FASTEST" Select the fastest compression mode available.

"HIGH" Select the compression mode with the greatest amount of compression.

"LOW" Select the compression mode with the least amount of compression.

"MEDIUM" Select a compression mode with a moderate amount of compression.

"NICEST" Select the compression mode that produces the nicesthighest quality effect.

18.4.10 TextureTransform
TextureTransform : X3DSingleTextureTransformNode {
TextureTransform : X3DTextureTransformNode {
 SFVec2f [in,out] center 0 0 (-∞,∞)
 SFString [in,out] mapping ""
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFFloat [in,out] rotation 0 (-∞,∞)
 SFVec2f [in,out] scale 1 1 (-∞,∞)
 SFVec2f [in,out] translation 0 0 (-∞,∞)
}

The TextureTransform node defines a 2D transformation that is applied to texture
coordinates (see TextureCoordinate). This node affects the way textures coordinates are
applied to the geometric surface. The transformation consists of (in order):

a. a translation;
b. a rotation about the centre point;
c. a non-uniform scale about the centre point.

These parameters support changes to the size, orientation, and position of textures on
shapes. Note that these operations appear reversed when viewed on the surface of
geometry. For example, a scale value of (2 2) will scale the texture coordinates and have the
net effect of shrinking the texture size by a factor of 2 (texture coordinates are twice as
large and thus cause the texture to repeat). A translation of (0.5 0.0) translates the texture
coordinates +.5 units along the S-axis and has the net effect of translating the texture −0.5
along the S-axis on the geometry's surface. A rotation of π/2 of the texture coordinates
results in a −π/2 rotation of the texture on the geometry.

The center field specifies a translation offset in texture coordinate space about which the
rotation and scale fields are applied. The scale field specifies a scaling factor in S and T of
the texture coordinates about the center point. scale values shall be in the range (−∞,∞).
The rotation field specifies a rotation in angle base units of the texture coordinates about the
center point after the scale has been applied. A positive rotation value makes the texture

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 18 Texturing component

texturing.html[8/1/2020 10:01:05 AM]

coordinates rotate counterclockwise about the centre, thereby rotating the appearance of the
texture itself clockwise. The translation field specifies a translation of the texture
coordinates.

In matrix transformation notation, where Tc is the untransformed texture coordinate, Tc' is
the transformed texture coordinate, C (center), T (translation), R (rotation), and S (scale)
are the intermediate transformation matrices,

 Tc' = −C × S × R × C × T × Tc

NOTE This transformation order is the reverse of the Transform node transformation order since the texture coordinates,
not the texture, are being transformed (i.e., the texture coordinate system).

 18.5 Support levels
The Texturing component provides three levels of support as specified in Table 18.7.

 Table 18.11 — Texturing component support levels

Level Prerequisites Nodes/Features Support

1

Core 1
Grouping 1
Shape 1
Rendering 1

X3DSingleTextureCoordinateNode
(abstract) n/a

X3DSingleTextureNode (abstract) n/a

X3DSingleTextureTransformNode
(abstract) n/a

X3DTextureCoordinateNode
(abstract) n/a

X3DTextureNode (abstract) n/a

X3DTexture2DNode (abstract) n/a

X3DTextureTransformNode
(abstract) n/a

ImageTexture All fields fully
supported.

PixelTexture All fields fully
supported.

TextureCoordinate All fields fully
supported.

 TextureTransform All field fully
supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 18 Texturing component

texturing.html[8/1/2020 10:01:05 AM]

2

Core 1
Grouping 1
Shape 1
Rendering 1

 All Level 1 Texturing nodes All fields as
supported in Level 1.

MultiTextureCoordinate All fields fully
supported.

 MultiTextureTransform All fields fully
supported.

TextureCoordinateGenerator All fields fully
supported.

 TextureProperties All fields fully
supported.

3

Core 1
Grouping 1
Shape 1
Rendering 1

All Level 2 Texturing nodes All fields as
supported in Level 2.

MultiTexture All fields fully
supported.

4

Core 1
Grouping 1
Shape 1
Rendering 1

All Level 3 Texturing nodes All fields as
supported in Level 3.

MovieTexture All fields fully
supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 39 Followers component

followers.html[8/1/2020 10:01:09 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

39 Followers component

 39.1 Introduction

39.1.1 Name

The name of this component is "Followers". This name shall be used when referring to
this component in the COMPONENT statement (see 7.2.5.4 Component statement).

39.1.2 Overview

This clause describes the Followers component of this part of ISO/IEC 19775. This
includes how Followers are specified and how they behave. Table 39.1 provides links to
the major topics in this clause.

 Table 39.1 — Topics

39.1 Introduction
39.1.1 Name
39.1.2 Overview

39.2 Concepts
39.3 Abstract types

39.3.1 X3DChaserNode
39.3.2 X3DDamperNode
39.3.3 X3DFollowerNode

39.4 Node reference
39.4.1 ColorChaser
39.4.2 ColorDamper
39.4.3 CoordinateChaser
39.4.4 CoordinateDamper
39.4.5 OrientationChaser
39.4.6 OrientationDamper
39.4.7 PositionChaser
39.4.8 PositionChaser2D

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 39 Followers component

followers.html[8/1/2020 10:01:09 AM]

39.4.9 PositionDamper
39.4.10 PositionDamper2D
39.4.11 ScalarChaser
39.4.12 ScalarDamper
39.4.13 TexCoordChaser2D
39.4.14 TexCoordDamper2D

39.5 Support levels

Figure 39.1 — Calculating the output of an X3DFollowerNode
Figure 39.2 — Concept of an X3DDamperNode
Figure 39.3 — Mode of operation of an X3DFollowerNode

Table 39.1 — Topics
Table 39.2 — Followers component support levels

 39.2 Concepts
The group of Follower nodes supports the creation of transitions of parameters at
runtime (dynamically) by receiving a destination value upon which they create an
animation that transitions their output value from its current value towards the newly
set destination value.

In case a transition triggered by reception of a previous destination value is not yet
finished while the new destination is received, both the new and old transition are
merged, so that a smooth animation is created where the previous movement degrades
and gradually becomes a movement towards the new destination which is then
eventually reached.

Follower nodes accomplish the transition by implementing finite impulse response (FIR)
filters and infinite impulse response (IIR) filters from the field of system theory. Due to
this filter distinction, the Follower nodes are divided into Chaser nodes (FIR) and
Damper nodes (IIR).

Like TimeSensor nodes, Follower nodes often send output events at times when they
have not received input events. Their behaviour is completely determined by the events
they receive from the scene graph itself at earlier times.

Follower nodes are not affected by their position in the transformation hierarchy nor are
they affected by the state of containing Switch nodes, LOD nodes and other nodes that
affect the visibility of their children.

 39.3 Abstract types

39.3.1 X3DChaserNode
X3DChaserNode : X3DFollowerNode {
 [S|M]F<type> [in] set_destination
 [S|M]F<type> [in] set_value
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [out] isActive
 [S|M]F<type> [out] value_changed
 SFTime [] duration 1 [0,∞)

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 39 Followers component

followers.html[8/1/2020 10:01:09 AM]

 [S|M]F<type> [] initialDestination
 [S|M]F<type> [] initialValue
}

The X3DChaserNode abstract node type calculates the output on value_changed as a
finite impulse response (FIR) based on the events received on set_destination in the
following manner.

Each time an event is received on set_destination, a transition An from the previously
received destination to the new destination is created according to Equation (1). The
data types of all variables are floating point numbers, or integers in the case of indices,
except for dn, dn-1, An(t) and O(t). These variables have the data type of the node
(e.g., SFVec3f or SFColor).

where:

Tn is the point in time where the event has been received
D is the value of the duration field
dn is the new destination value received with the event
dn-1 is the value that was the destination before the event
R(x) is the core function of the filter:

All the transitions created for every event on set_destination are added together to
form the output on value_changed.

where l is the number of events received so far on set_destination. If k is set to 0, d-1 is
the value of the initialValue field and d0 is the value of initialDestination. This way the
initial transition determined by these two fields is produced.

Theoretically the start index k could might be always set to zero meaning that all
set_destination events since initialization are to be stored. However, k can be increased
without changing the result O(t) as long as the time stamp Tk-1 is more than D seconds
before the current time stamp. This is due to the facts:

a. after a period of D seconds (the duration field), the transitions An(t) are constantly
dn - dn-1; and

b. dk-1 is the sum of all differences dn - dn-1 so far.

This way the X3DChaserNode implementation remembers the values and time stamps
of all set_destination events received in the last period of duration seconds plus the

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 39 Followers component

followers.html[8/1/2020 10:01:09 AM]

value received latest before that period. For calculating the current value of
value_changed, the X3DChaserNode uses that latest received value as a starting point
(dk-1) and adds to it all transitions An(t) generated by the stored events.

A more optimal implementation could might divide the time-line into equidistant time-
slots and store only the latest set_destination event received for each time-slot. This
way a fixed length array could might be used for describing the input during the period
of the last duration seconds. This however can create little jumps in the animation
created at value_changed since a set_destination event may cause the beginning of a
transition being produced and may then be replaced by a later event received in the
same time-slot. To avoid this, events are associated with the end of the time-slot rather
than with the time-stamp when they are received.

Thus, the output reaches the value received at set_destination up to the length of a
time-slot later than is dictated by the duration field. To compensate, an implementation
shall subtract the length of a time-slot from duration and use the result for D.

It is suggested that the implementation uses (about) 10 time-slots per duration
duration as depicted in Figure 39.1.

Figure 39.1 — Calculating the output of an X3DFollowerNode

The above diagram illustrates how an implementation calculates the output at an
arbitrary point in time. Figure 39.1 depicts only four time-slots per duration D. The
period goes from the current time-stamp Now back by D seconds, not necessarily
matching the grid of the time slots. The events d1 and d2 have happened before this
period and are therefore summarized by the value of d2. The event d3 however falls
into the period of D seconds. It is moved towards the end of the time-slot it falls into
and generates the transition A3(t) with the amplitude d3 - d2. The event d4 gets ignored
because it is followed by d5 in the same time-slot. Therefore only d5 generates a
transition, which is A5(t). The amplitude of A5(t) is d5 - d3 because d4 got ignored. The
output O(t) is thus calculated as specified in Equation (4):

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 39 Followers component

followers.html[8/1/2020 10:01:09 AM]

When the current time-stamp has advanced until after the end of curve A3(t), which is
when the time-slot containing event d3 is no longer part of the last D seconds, the start
value for the addition d2 is replaced with d3 and the curve A3(t) is removed from the
addition, so that O(t) = d3 + A5(t).

The above diagram uses four time-slots per duration D. With the above
recommendations of making D one time-slot shorter than the duration field specifies,
this means that a time-slot is a fifth of what is specified by duration.

39.3.2 X3DDamperNode
X3DDamperNode : X3DFollowerNode {
 [S|M]F<type> [in] set_destination
 [S|M]F<type> [in] set_value
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFTime [in,out] tau 0.3 [0,∞)
 SFFloat [in,out] tolerance -1 -1 or [0,∞)
 SFBool [out] isActive
 [S|M]F<type> [out] value_changed
 [S|M]F<type> [] initialDestination
 [S|M]F<type> [] initialValue
 SFInt32 [] order 3 [0..5]
}

The X3DDamperNode abstract node type creates an IIR response that approaches the
destination value according to the shape of the e-function only asymptotically but very
quickly.

An X3DDamperNode node is parameterized by the tau, order and tolerance fields.
Internally, it consists of a set of linear first-order filters each of which processes the
output of the previous filter as shown in Figure 39.2. The input of the first filter is fed
by the values received on set_destination and the output of the last filter goes to the
value_changed field.

Figure 39.2 — Concept of an X3DDamperNode

The calculations of the output for the current time-stamp Tn for each filter are based on
the output of that filter from the previous time-stamp Tn-1 and the current input using
the Equation (5):

The field order specifies the number of such internal filters. Specifying zero for order

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 39 Followers component

followers.html[8/1/2020 10:01:09 AM]

means that no filter is used. In this case the events received on set_destination are
forwarded directly to output_changed. The larger the value for order, the smoother the
output on value_changed will be, but the more delay will be introduced. Since values
larger than five do not introduce any more smoothing, the range for order is limited to
a maximum of five.

The field tau specifies the time-constant of the internal filters and thus the speed that
the output of an X3DDamperNode responds to the input. Its value is assigned to the
variable τ in the above equation. A value of zero for tau means immediate response and
the events received on set_destination are forwarded directly to output_changed. The
field tau specifies how long it takes the output of an internal filter to reach the value of
its input by 63% (1 - 1/e). The remainder after that period is reduced by 63% during
another period of tau seconds provided that the input of the filter does not change. This
behavior can be exposed if order is set to one.

Since the output of an X3DDamperNode approaches the input value only
asymptotically, there must be a means to determine when the destination value can be
assumed to be reached and the node can stop emitting values and set isActive to FALSE.
This is governed by the tolerance field. if tolerance is set to its default value -1, the
browser implementation is allowed to find a good way for detecting the end of a
transition. Browsers that do not have an elaborate algorithm can just use .001 as the
tolerance value instead. If a value larger than zero is specified for tolerance, the
browser shall calculate the difference between output and input for each internal filter
being used and stop the animation only when all filters fall below that limit or are equal
to it. If zero is specified for tolerance, a transition should be stopped only if input and
output match exactly for all internal filters. This can happen if set_value receives an
event.

An implementation shall test for end of transition before it calculates the new output
value. Then, the implementation shall either assign the destination value to the output
value, if the difference falls below the tolerance limit, or calculate an updated output
value.

39.3.3 X3DFollowerNode
X3DFollowerNode : X3DChildNode {
 [S|M]F<type> [in] set_destination
 [S|M]F<type> [in] set_value
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [out] isActive
 [S|M]F<type> [out] value_changed
 [S|M]F<type> [] initialDestination
 [S|M]F<type> [] initialValue
}

The abstract node X3DFollowerNode forms the basis for all nodes specified in this
clause. The data type place holder [S|M]F<type> evaluates to the same data type for
all fields of a specialization of the abstract node class X3DFollowerNode.

An X3DFollowerNode maintains an internal state that consists of a current value and a
destination value. Both values are of the same data type into which the term
[S|M]F<type> evaluatesfor a given specialization. It is the 'data type of the node'. In
certain cases of usage, the terms input and output fit better for destination value and
current value, respectively.

Whenever the current value differs from the destination value, the current value

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 39 Followers component

followers.html[8/1/2020 10:01:09 AM]

gradually changes until it reaches the destination value producing a smooth transition.
It generally moves towards the destination value but, if a transition triggered by a
prevous destination value is still in progress, it may take a short while until the
movement becomes a movement towards the new destination value. Figure 39.3
depicts this action.

Figure 39.3 — Mode of operation of an X3DFollowerNode

The value_changed outputOnly field outputs the current value of the internal state.

The set_destination inputOnly field receives new destination values, resulting in the
value_changed field sending output values in most cases.

The initializeOnly fields, initialDestination and initialValue, initialize the internal state of
the X3DFollowerNode. The current value receives the value of initialValue and the
destination value receives the value of initialDestination. If both fields have the same
values, the X3DFollowerNode sends that value through the value_changed field in a
single event upon initialization. If both fields have different values, the
X3DFollowerNode creates an animation from the value of initialValue towards the value
of initialDestination. The shape of that transition is the same as if the current value
internal state had always been at the value of initialValue and the node had just
received the destination value.

With the set_value inputOnly field, one can immediately force the current value towards
a certain value. When the X3DFollowerNode receives a value on set_value, any current
transition is stopped and the current value assumes that value. The value_changed field
outputs that value and then moves towards the value currently set for the destination
value. This animation has the same shape as if the current value had already been at
the newly received value for a long time and the node had just received an event on
set_destination carrying the value of the currently set destination value.

One can achieve various results by sending certain values to set_value, set_destination
or both at the same time:

set_destination and set_value receive different values:
A transition is created that goes from the value of set_value towards the value of
set_destination. The transition is independent of the previous history of the node.
With most parameter settings, the transition starts with zero speed and then
accelerates towards the destination.
set_destination and set_value receive the same value:

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 39 Followers component

followers.html[8/1/2020 10:01:09 AM]

Output_changed assumes the specified value immediately and stays there. No
transition is created.
set_value receives the value value_changed currently has:
Value_changed stops moving immediately and begins a new transition towards the
currently set destination value. With most parameter settings, the result is that
value_changed stops moving and then accelerates towards the destination value to
which it was already targeted.
set_value receives the value currently set as destination:
The output_changed value jumps to the destination value immediately.
set_destination and set_value both receive the current value of
value_changed:
The transition produced comes to an immediate halt at its current value.

The isActive outputOnly field identifies the beginning and end of a transition. It sends
TRUE before set_value begins animating and it sends FALSE after set_value has reached
the destination or has been stopped by another means. When set_value receives an
event while isActive is TRUE, isActive sends FALSE after value_changed has output the
received value. If isActive is FALSE at that moment, isActive generates no event.

 39.4 Node reference

39.4.1 ColorChaser
ColorChaser: X3DChaserNode {
 SFColor [in] set_destination
 SFColor [in] set_value
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [out] isActive
 SFColor [out] value_changed
 SFTime [] duration 1 [0,∞)
 SFColor [] initialDestination 0.8 0.8 0.8 [0,1]
 SFColor [] initialValue 0.8 0.8 0.8 [0,1]
}

The ColorChaser animates transitions for single colour values. Whenever the
set_destination field receives a floating point number, the value_changed creates a
transition from its current value to the newly set number. It creates a smooth transition
that ends duration seconds after the last number has been received.

When set_value receives a colour value, any transition currently in process is stopped
and value_changed sends this value immediately, creating a jump. The field initialValue
can be used to set the initial value of value_changed. The field initialDestination should
be set to the same value unless a transition to a certain value is to be created right
after the scene is loaded or right after the ColorChaser node is created dynamically.

39.4.2 ColorDamper
ColorDamper : X3DDamperNode {
 SFColor [in] set_destination
 SFColor [in] set_value
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFTime [in,out] tau 0.3 [0,∞)
 SFFloat [in,out] tolerance -1 -1 or [0,∞)
 SFBool [out] isActive
 SFColor [out] value_changed
 SFColor [] initialDestination 0.8 0.8 0.8 [0,1]
 SFColor [] initialValue 0.8 0.8 0.8 [0,1]
 SFInt32 [] order 3 [0..5]
}

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 39 Followers component

followers.html[8/1/2020 10:01:09 AM]

The ColorDamper animates colour values. Whenever the set_destination field receives a
colour, the ColorDamper node creates a transition from the current colour to the newly
set colour. The transition created approaches the newly set position asymptotically
during a time period of approximately three to four times the value of the field tau
depending on the desired accuracy and the value of order. The order field specifies the
smoothness of the transition.

When set_value receives a colour, any transition currently in process is stopped and
value_changed sends this value immediately, creating a jump to the new colour. The
field initialValue can be used to set the initial colour. The field initialDestination should
be set to the same value unless a transition to a certain colour is to be created right
after the scene is loaded or right after the ColorDamper node is created dynamically.

39.4.3 CoordinateChaser
CoordinateChaser: X3DChaserNode {
 MFVec3f [in] set_destination
 MFVec3f [in] set_value
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [out] isActive
 MFVec3f [out] value_changed
 SFTime [] duration 1 [0,∞)
 MFVec3f [] initialDestination 0 0 0
 MFVec3f [] initialValue 0 0 0
}

The CoordinateChaser animates transitions for array of 3D vectors (e.g., the
coordinates of a mesh). Whenever the set_destination field receives an array of 3D
vectors, the value_changed creates a transition from its current value to the newly set
number. It creates a smooth transition that ends duration seconds after the last
number has been received.

When set_value receives an array of 3D vectors, any transition currently in process is
stopped and value_changed sends this value immediately, creating a jump. The field
initialValue can be used to set the initial value of value_changed. The field
initialDestination should be set to the same value unless a transition to a certain value
is to be created right after the scene is loaded or right after the CoordinateChaser node
is created dynamically.

39.4.4 CoordinateDamper
CoordinateDamper : X3DDamperNode {
 MFVec3f [in] set_destination
 MFVec3f [in] set_value
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFTime [in,out] tau 0.3 [0,∞)
 SFFloat [in,out] tolerance -1 -1 or [0,∞)
 SFBool [out] isActive
 MFVec3f [out] value_changed
 MFVec3f [] initialDestination 0 0 0
 MFVec3f [] initialValue 0 0 0
 SFInt32 [] order 3 [0..5]
}

The CoordinateDamper animates transitions for an array of 3D vectors (e.g., the
coordinates of a mesh). Whenever the set_destination field receives an array of 3D
vectors, value_changed begins sending an array of the same length, where each
element moves from its current value towards the value at the same position in the
array received. Each element approaches its destination value asymptotically during a
time period of approximately three to four times the value of the field tau depending on
the desired accuracy and the value of order. The order field specifies the smoothness of
the transition. The transition ends when all elements have reached their destination.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 39 Followers component

followers.html[8/1/2020 10:01:09 AM]

When set_value receives an event, any transition currently in process is stopped and
value_changed sends this array immediately, creating a jump. The field initialValue can
be used to set the initial value of value_changed. The field initialDestination should be
set to the same value unless a transition to a certain 3D vector value is to be created
right after the scene is loaded or right after the CoordinateDamper node is created
dynamically.

The MFVec3f arrays that are sent to the set_destination or set_value field shall have the
same length (number of elements). The length of the arrays shall not change over time.
Values assigned to initialDestination or initialValue shall either be an empty array or an
array with the same number of elements as is sent to the set_destination or set_value
fields. In any other case, the behavior is not defined.

39.4.5 OrientationChaser
OrientationChaser : X3DChaserNode {
 SFRotation [in] set_destination
 SFRotation [in] set_value
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [out] isActive
 SFRotation [out] value_changed
 SFTime [] duration 1 [0,∞)
 SFRotation [] initialDestination 0 1 0 0
 SFRotation [] initialValue 0 1 0 0
}

The OrientationChaser animates transitions for orientations. If the value_changed field
is routed to a rotation field of a Transform node that contains an object, whenever the
set_destination field receives an orientation, the OrientationChaser node rotates the
object from its current orientation to the newly set orientation. It creates a smooth
transition that ends duration seconds after the last orientation has been received.

When set_value receives an orientation, any transition currently in process is stopped
and the object jumps directly to the given orientation. The field initialValue can be used
to set the initial orientation of the object. The field initialDestination should be set to
the same value unless a transition to a certain orientation is to be created right after
the scene is loaded or right after the OrientationChaser node is created dynamically.

The OrientationChaser node can be implemented by combining Equations (1), (2), and
(3) to form Equation (6):

This leads to the following loop denoted in pseudo code:

 var Result= dk-1;
 for (var n from k to l) {
 var Delta = dn - dn-1;
 Result = Result + Delta × R(...);
 }
 O(t) = Result;

Since dk-1, dn, dn-1 and thus Result contain rotation values (SFRotation), the above code
must be converted to use operations available for rotations. This can be achieved using

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 39 Followers component

followers.html[8/1/2020 10:01:09 AM]

the slerp operation. For the following, let slerp(A, B, t) be a function that calculates the
linear spherical interpolation from A to B by the amount t. Let also Core(.) be a function
that calculates R(...) and let Buffer be an array so that Buffer[i] evaluates to di. Then,
the above loop can be implemented as:

 var Result= Buffer[k-1];
 for(var n from k to l) {
 var Delta = Buffer[n-1].inverse().multiply(Buffer[n]);
 Result = slerp(Result, Result.multiply(Delta), Core(...));
 }
 O(t) = Result;

39.4.6 OrientationDamper
OrientationDamper : X3DDamperNode {
 SFRotation [in] set_destination
 SFRotation [in] set_value
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFTime [in,out] tau 0.3 [0,∞)
 SFFloat [in,out] tolerance -1 -1 or [0..∞]
 SFBool [out] isActive
 SFRotation [out] value_changed
 SFRotation [] initialDestination 0 1 0 0
 SFRotation [] initialValue 0 1 0 0
 SFInt32 [] order 3 [0..5]
}

The OrientationDamper animates transitions of orientations. If the value_changed field
is routed to an orientation field of a Transform node that contains an object, then,
whenever the set_destination field receives an orientation, the OrientationDamper node
rotates the object from its current orientation to the newly set orientation. It creates a
transition that approaches the newly set orientation asymptotically during a time period
of approximately three to four times the value of the field tau depending on the desired
accuracy and the value of order. Through this asymptotic approach of the destination
orientation, a very smooth transition is created. The order field specifies the
smoothness of the transition.

When set_value receives an orientation, any transition currently in process is stopped
and the object jumps directly to the given orientation. The field initialValue can be used
to set the initial orientation of the object. The field initialDestination should be set to
the same value unless a transition to a certain orientation is to be created right after
the scene is loaded or right after the OrientationDamper node is created dynamically.

The OrientationDamper node is implemented by calculating Equation (5) for each
internal filter. For SFRotation values, the equation is equivalent to the following term:

 output = input.slerp(output, alpha);

where:

 output: on or on-1, respectively
 input: dn
 alpha: e-ΔT/τ

39.4.7 PositionChaser
PositionChaser : X3DChaserNode {

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 39 Followers component

followers.html[8/1/2020 10:01:09 AM]

 SFVec3f [in] set_destination
 SFVec3f [in] set_value
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [out] isActive
 SFVec3f [out] value_changed
 SFTime [] duration 1 [0,∞)
 SFVec3f [] initialDestination 0 0 0
 SFVec3f [] initialValue 0 0 0
}

The PositionChaser animates transitions for 3D vectors. If the value_changed field is
routed to a translation field of a Transform node that contains an object, then,
whenever the set_destination field receives a 3D position, the PositionChaser node
moves the object from its current position to the newly set position. It creates a smooth
transition that ends duration seconds after the last position has been received.

When set_value receives a position, any transition currently in process is stopped and
the object jumps directly to the given position. The field initialValue can be used to set
the initial position of the object. The field initialDestination should be set to the same
value unless a transition to a certain position is to be created right after the scene is
loaded or right after the PositionChaser node is created dynamically.

39.4.8 PositionChaser2D
PositionChaser2D : X3DChaserNode {
 SFVec2f [in] set_destination
 SFVec2f [in] set_value
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [out] isActive
 SFVec2f [out] value_changed
 SFTime [] duration 1 [0,∞)
 SFVec2f [] initialDestination 0 0
 SFVec2f [] initialValue 0 0
}

The PositionChaser2D animates transitions for 2D vectors. Whenever the
set_destination field receives a 2D vector the value_changed creates a transition from
its current 2D vector value to the newly set value. It creates a smooth transition that
ends duration seconds after the last 2D vector has been received.

When set_value receives a 2D vector, any transition currently in process is stopped and
value_changed sends this value immediately. The field initialValue can be used to set
the initial initial value of value_changed. The field initialDestination should be set to the
same value unless a transition to a certain 2D vector value is to be created right after
the scene is loaded or right after the PositionChaser2D node is created dynamically.

39.4.9 PositionDamper
PositionDamper : X3DDamperNode {
 SFVec3f [in] set_destination
 SFVec3f [in] set_value
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFTime [in,out] tau 0.3 [0,∞)
 SFFloat [in,out] tolerance -1 -1 or [0,∞)
 SFBool [out] isActive
 SFVec3f [out] value_changed
 SFVec3f [] initialDestination 0 0 0
 SFVec3f [] initialValue 0 0 0
 SFInt32 [] order 3 [0..5]
}

The PositionDamper animates transitions for 3D vectors. If the value_changed field is
routed to a translation field of a Transform node that contains an object, then,
whenever the set_destination field receives a 3D position, the PositionDamper node
moves the object from its current position to the newly set position. It creates a
transition that approaches the newly set position asymptotically during a time period of

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 39 Followers component

followers.html[8/1/2020 10:01:09 AM]

approximately three to four times the value of the field tau depending on the desired
accuracy and the value of order. Through this asymptotic approach of the destination
value, a smooth transition is created. The order field specifies the smoothness of the
transition.

When set_value receives a position, any transition currently in process is stopped and
the object jumps directly to the given position. The field initialValue can be used to set
the initial position of the object. The field initialDestination should be set to the same
value unless a transition to a certain position is to be created right after the scene is
loaded or right after the PositionDamper node is created dynamically.

39.4.10 PositionDamper2D
PositionDamper2D : X3DDamperNode {
 SFVec2f [in] set_destination
 SFVec2f [in] set_value
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFTime [in,out] tau 0.3 [0,∞)
 SFFloat [in,out] tolerance -1 -1 or [0..∞]
 SFBool [out] isActive
 SFVec2f [out] value_changed
 SFVec2f [] initialDestination 0 0
 SFVec2f [] initialValue 0 0
 SFInt32 [] order 3 [0..5]
}

The PositionDamper2D animates transitions for 2D vectors. Whenever the
set_destination field receives a 2D vector, the value_changed creates a transition from
its current 2D vector value to the newly set value. It creates a transition that
approaches the newly set 2D vector asymptotically during a time period of
approximately three to four times the value of the field tau depending on the desired
accuracy and the value of order. The order field specifies the smoothness of the
transition.

When set_value receives a 2D vector, any transition currently in process is stopped and
value_changed sends this value immediately, creating a jump. The field initialValue can
be used to set the initial initial value of value_changed. The field initialDestination
should be set to the same value unless a transition to a certain 2D vector value is to be
created right after the scene is loaded or right after the PositionChaser2D node is
created dynamically.

39.4.11 ScalarChaser
ScalarChaser : X3DChaserNode {
 SFFloat [in] set_destination
 SFFloat [in] set_value
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [out] isActive
 SFFloat [out] value_changed
 SFTime [] duration 1 [0,∞)
 SFFloat [] initialDestination 0
 SFFloat [] initialValue 0
}

The ScalarChaser animates transitions for single float values. Whenever the
set_destination field receives a floating point number, the value_changed creates a
transition from its current value to the newly set number. It creates a smooth transition
that ends duration seconds after the last number has been received.

When set_value receives a floating point number, any transition currently in process is
stopped and value_changed sends this value immediately, creating a jump. The field
initialValue can be used to set the initial initial value of value_changed. The field

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 39 Followers component

followers.html[8/1/2020 10:01:09 AM]

initialDestination should be set to the same value unless a transition to a certain value
is to be created right after the scene is loaded or right after the ScalarChaser node is
created dynamically.

39.4.12 ScalerDamper ScalarDamper
ScalarDamper: X3DDamperNode {
 SFFloat [in] set_destination
 SFFloat [in] set_value
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFTime [in,out] tau 0.3 [0,∞)
 SFFloat [in,out] tolerance -1 -1 or [0,∞)
 SFBool [out] isActive
 SFFloat [out] value_changed
 SFFloat [] initialDestination 0
 SFFloat [] initialValue 0
 SFInt32 [] order 3 [0..5]
}

The ScalarDamper animates transitions for single float values. If the value_changed
field is routed to a transparency field of a Material node, then, whenever the
set_destination field receives a single float value, the ScalarDamper node creates a
transition from its current value to the newly set value. It creates a transition that
approaches the newly set value asymptotically during a time period of approximately
three to four times the value of the field tau depending on the desired accuracy and the
value of order. Through this asymptotic approach of the destination value, a smooth
transition is created. The order field specifies the smoothness of the transition.

When set_value receives a value, any transition currently in process is stopped and
value_changed sends this value immediately, creating a jump to the new value. The
field initialValue can be used to set the initial value of the node. The field
initialDestination should be set to the same value unless a transition to a certain value
is to be created right after the scene is loaded or right after the ScalarDamper node is
created dynamically.

39.4.13 TexCoordChaser2D
TexCoordChaser2D: X3DChaserNode {
 MFVec2f [in] set_destination
 MFVec2f [in] set_value
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [out] isActive
 MFVec2f [out] value_changed
 SFTime [] duration 1 [0,∞)
 MFVec2f [] initialDestination []
 MFVec2f [] initialValue []
}

The TexCoordChaser2D animates transitions for an array of 2D vectors (e.g., the
texture coordinates of a mesh). Whenever the set_destination field receives an array of
2D vectors, the value_changed creates a transition from its current value to the newly
set number. It creates a smooth transition that ends duration seconds after the last
number has been received.

When set_value receives an array of 2D vectors, any transition currently in process is
stopped and value_changed sends this value immediately, creating a jump. The field
initialValue can be used to set the initial value of value_changed. The field
initialDestination should be set to the same value unless a transition to a certain value
is to be created right after the scene is loaded or right after the TexCoordChaser2D
node is created dynamically.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 39 Followers component

followers.html[8/1/2020 10:01:09 AM]

39.4.14 TexCoordDamper2D
TexCoordDamper2D : X3DDamperNode {
 MFVec2f [in] set_destination
 MFVec2f [in] set_value
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFTime [in,out] tau 0.3 [0,∞)
 SFFloat [in,out] tolerance -1 -1 or [0..∞]
 SFBool [out] isActive
 MFVec2f [out] value_changed
 MFVec2f [] initialDestination []
 MFVec2f [] initialValue []
 SFInt32 [] order 3 [0..5]
}

The TexCoordDamper2D node animates transitions for an array of 2D vectors (e.g., the
texture coordinates of a mesh). Whenever the set_destination field receives an array of
2D vectors, value_changed begins sending an array of the same length, where each
element moves from its current value towards the value at the same position in the
array received. Each element approaches its destination value asymptotically during a
time period of approximately three to four times the value of the field tau depending on
the desired accuracy and the value of order. The order field specifies the smoothness of
the transition. The transition ends when all elements have reached their destination.

When set_value receives an event, any transition currently in process is stopped and
value_changed sends this array immediately, creating a jump. The field initialValue can
be used to set the initial value of value_changed. The field initialDestination should be
set to the same value unless a transition to a certain 2D vector value is to be created
right after the scene is loaded or right after the CoordinateDamper node is created
dynamically.

The MFVec2f arrays that are sent to the set_destination or set_value field shall have the
same length (number of elements). The length of the arrays shall not change over time.
Values assigned to initialDestination or initialValue shall either be an empty array or an
array with the same number of elements as is sent to the set_destination or set_value
fields. In any other case, the behavior is not defined.

 39.5 Support levels
The Followers component provides one level of support as specified in Table 39.2.

 Table 39.2 — Followers component support levels

Level Prerequisites Nodes/Features Support

1

Core 1
Grouping 1
Shape 1
Rendering 1

 X3DChaserNode n/a

 X3DDamperNode n/a

 X3DFollowerNode n/a

All fields fully

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 39 Followers component

followers.html[8/1/2020 10:01:09 AM]

 ColorChaser supported.

 ColorDamper All fields fully
supported.

 CoordinateChaser All fields fully
supported.

 CoordinateDamper All fields fully
supported.

 OrientationChaser All fields fully
supported.

 OrientationDamper All fields fully
supported.

 PositionChaser All fields fully
supported.

 PositionChaser2D All fields fully
supported.

 PositionDamper All fields fully
supported.

 PositionDamper2D All fields fully
supported.

 ScalerChaser ScalarChaser All fields fully
supported.

 ScalerDamper
ScalarDamper

All fields fully
supported.

 TexCoordChaser All fields fully
supported.

 TexCoordDamper All fields fully
supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 19 Interpolation component

interpolators.html[8/1/2020 10:01:11 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

19 Interpolation component

 19.1 Introduction

19.1.1 Name

The name of this component is "Interpolation". This name shall be used when referring
to this component in the COMPONENT statement (see 7.2.5.4 Component statement).

19.1.2 Overview

This subclause describes the Interpolation component of this part of ISO/IEC 19775.
Table 19.1 provides links to the major topics in this subclause.

 Table 19.1 — Topics

19.1 Introduction
19.1.1 Name
19.1.2 Overview

19.2 Concepts
19.2.1 Interpolators
19.2.2 Linear interpolation
19.2.3 Non-linear interpolation
19.2.4 Hermite spline interpolation

19.3 Abstract types
19.3.1 X3DInterpolatorNode

19.4 Node reference
19.4.1 ColorInterpolator
19.4.2 CoordinateInterpolator
19.4.3 CoordinateInterpolator2D
19.4.4 EaseInEaseOut
19.4.5 NormalInterpolator
19.4.6 OrientationInterpolator
19.4.7 PositionInterpolator

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 19 Interpolation component

interpolators.html[8/1/2020 10:01:11 AM]

19.4.8 PositionInterpolator2D
19.4.9 ScalarInterpolator
19.4.10 SplinePositionInterpolator
19.4.11 SplinePositionInterpolator2D
19.4.12 SplineScalarInterpolator
19.4.13 SquadOrientationInterpolator

19.5 Support levels

Table 19.1 — Topics
Table 19.2 — Interpolation component support levels

Figure 19.1 — EaseInEaseOut algorithm illustration

 19.2 Concepts
This clause includes six Interpolator nodes all of which provide keyframe-based
animation capability.

 19.2.1 Interpolators

The Interpolator nodes provide interpolation between animation key frame values. The
following node types are Interpolator nodes, each based on the type of value that is
interpolated:

ColorInterpolator
CoordinateInterpolator
CoordinateInterpolator2D
NormalInterpolator
OrientationInterpolator
PositionInterpolator
PositionInterpolator2D
ScalarInterpolator
SplinePositionInterpolator
SplinePositionInterpolator2D
SplineScalarInterpolator
SquadOrientationInterpolator
EaseInEaseOut

All Interpolator nodes are based on the abstract type X3DInterpolatorNode.

 19.2.2 Linear interpolation

The X3D interpolator nodes specified in this clause are designed for linear key framed
animation. Each of these nodes defines a piecewise-linear function, f(t), on the interval
(−∞,∞). The piecewise-linear function is defined by n values of t, called key, and the n
corresponding values of f(t), called keyValue. The keys shall be monotonically non-
decreasing, otherwise the results are undefined.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 19 Interpolation component

interpolators.html[8/1/2020 10:01:11 AM]

An interpolator node evaluates f(t) given any value of t (via the fraction field) as
follows: Let the n keys t0, t1, t2, ..., tn−1 partition the domain (−∞,∞) into the n+1
subintervals given by (-∞, t0), [t0, t1), [t1, t2), ... , [tn−1, +∞). Also, let the n values
v0, v1, v2, ..., vn-1 be the values of f(t) at the associated key values. The piecewise-
linear interpolating function, f(t), is defined to be:

 f(t) = v0, if t ≤ t0,
 = vn−1, if t ≥ tn−1,
 = linterp(t, vi, vi+1), if ti ≤ t ≤ ti+1,

 where linterp(t,x,y) is the linear interpolant,
 i belongs to {0,1,..., n−2}.

The third conditional value of f(t) allows the defining of multiple values for a single key,
(i.e., limits from both the left and right at a discontinuity in f(t)). The first specified
value is used as the limit of f(t) from the left, and the last specified value is used as the
limit of f(t) from the right. The value of f(t) at a multiply defined key is indeterminate,
but should be one of the associated limit values.

19.2.3 Non-linear interpolation

This component also provides non-linear interpolator nodes that provide for smoother
animation than the linear interpolator nodes. Linear interpolators tend to produce
animations that have a discontinuous velocity vectors. The transitions at the keys
produce a noticeably jerky effect which will not occur when using non-linear interpolator
nodes.

The non-linear interpolator nodes consist of three spline interpolator nodes for 3D, 2D,
and scalar interpolation. These three nodes use the Hermite spline interpolation with
adjustments to accommodate non-uniform key intervals (see 19.2.4 Hermite spline
interpolation). The SquadOrientationInterpolator node supports non-linear orientation
interpolation.

Each of non-linear interpolator nodes provides a SFBool closed field that specifies
whether the interpolator should provide a closed loop, with continuous velocity vectors
as the interpolator transitions from the last key to the first key. If the velocity vectors
at the first and last keys are specified, the closed field is ignored. If the keyValues at
the first and last key are not identical, the closed field is ignored.

The SFBool normalizeVelocity field specifies whether the velocity vectors are to be
transformed into tangency vectors. If the normalizeVelocity field has value TRUE, the
keyVelocity values are normalized, thus converting them to tangency vectors. In this
case, the vectors are normalized to produce smooth speed transitions, as described
mathematically below in 19.2.4 Hermite spline interpolation. The magnitude of the
specified velocity vectors is ignored.

If the normalizeVelocity field has value FALSE, the units specified in the velocity field are
defined to be length/cycleInterval.

EXAMPLE Using a SplinePositionInterpolator, in which the velocity at a key is specified to be (0, 0, 1), and the

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 19 Interpolation component

interpolators.html[8/1/2020 10:01:11 AM]

cycleInterval that drives the interpolator is 4 seconds, the actual speed of the object at that key will be 0.25 metres
per second (assuming the initial base units have been specified).

In addition to the interpolation nodes, this component provides a node that modifies the
time fraction that is typically fed from the TimeSensor node into the interpolator node.
This is the EaseInEaseOut node. It allows for a deceleration as the interpolator
approaches a key, and an acceleration as the interpolator exits a key. Authors can route
time fraction events into the EaseInEaseOut node. The EaseInEaseOut node will then
send out a modified time fraction, which can them be routed into one or more
interpolators.

19.2.4 Hermite spline interpolation

The SplinePositionInterpolator, SplinePositionInterpolator2D, and the
SplineScalarInterpolator nodes all use the Hermite spline interpolation with adjustments
to accommodate non-uniform key intervals. These three nodes all use the same
algorithm which is described below.

The algorithm used by these interpolators is as follows. It defines the output value sent
form the value_changed field for a given segment of the interpolation, between key(i),
and key(i+1). This segment is valid when the fraction value satisfies (ti ≤ fraction <
ti+1), where ti is the key at (i), and ti+1 is the key at (i+1).

The local fraction will vary from zero to one between the two keys, as follows:

s = (t - ti) / (ti+1 - ti)

The velocity vectors at key (i) and key (i+1) are denoted by Ti and Ti+1 respectively.
These velocity vectors need not be unit vectors. The magnitude of these vectors
specifies the relative speed of the interpolation.

If the size of the keyVelocity field is equal to the size of the keyValue field, the values of
T used below should come from the keyVelocity field. If the size of the keyVelocity field
is 2, the first value is used as the velocity vector for the first key, and the second value
is used as the velocity for the last key. If the size of the keyVelocity field is anything
other than those two values, the keyVelocity field is ignored. Any velocity vectors that
are not specified will be calculated using the following algorithm:

The keyValue at key (i) is denoted as vi and the keyValue at key (i+1) is denoted as
vi+1.

With those parameters defined, the value_changed value (vs)can be calculated as
follows:

vs = ST H C

where

S=

s3

 H=

2 -2 1 1

 C=

vi

s2 -3 3 -2 -1 vi+1

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 19 Interpolation component

interpolators.html[8/1/2020 10:01:11 AM]

s 0 0 1 0 T0
i

1 1 0 0 0 T1
i+1

The values of T0
i and T1

i+1 are defined as follows:

The standard Hermite spline assumes that the keys are equally spaced. Since this is not
a valid assumption, these values are ajusted to calculate T0

i and T1
i+1 as follows. If the

velocity vector is specified by the author, the value of Ti is extracted from the
keyVelocity field for the specific key.

If the velocity vector is not specified, it is calculated as follows:

Ti = (vi+1 - vi-1) / 2

There are special cases as specified below:

If the velocity vector is specified, and the normalizeVelocity flag has value FALSE, the
velocity at the key is set to the corresponding value of the keyVelocity field:

Ti = keyVelocity[i]

If the velocity vector is specified, and the normalizeVelocity flag is TRUE, the velocity at
the key is set using the corresponding value of the keyVelocity field:

Ti = keyVelocity[i] × (Dtot / |keyVelocity[i]|)

where:

Dtot is the sum of the distance between all adjacent keys.

or

Dtot = SUM{i=0, i < n-1}(|vi - vi+1|)

Lastly, to accommodate the non-uniform key intervals, the values of T0
i and T1

i are
calculated as follows:

T0
i = F+i Ti

T1
i = F-

i Ti

where:

F-
i = 2 (ti+1 - ti) / (ti+1 - ti-1)

F+i = 2 (ti - ti-1) / (ti+1 - ti-1)

If the interpolator is closed, the values of the key and keyValue used in these
calculations should wrap appropriately:

t-1 = tN-2

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 19 Interpolation component

interpolators.html[8/1/2020 10:01:11 AM]

v-1 = vN-2
tN = t1
vN = t1

If the interpolator is not closed, and the first and last velocity vectors are not specified
by the author, the values are calculated as follows:

T0
0 = T1

0 = T0
N-1 = T1

N-1 = 0

If the interpolator is not closed, and the first and last velocity vectors are specified by
the author, the values are calculated as follows:

T0
0 = T0

T1
N-1 = TN-1

where N is the size of the keyValue field.

Additional information on the Hermite algorithm is available in [CATROM].

 19.3 Abstract types

 19.3.1 X3DInterpolatorNode
X3DInterpolatorNode : X3DChildNode {
 SFFloat [in] set_fraction (-∞,∞)
 MFFloat [in,out] key [] (-∞,∞)
 MF<type> [in,out] keyValue []
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 [S|M]F<type> [out] value_changed
}

The abstract node X3DInterpolatorNode forms the basis for all types of interpolators
specified in this clause.

The key field contains the list of key times, which could might appear as:

 key [0 0.25 0.65 0.75 1]

to indicate there are five key frames in this node. The keyValue field contains values for
the target field, one complete set of values for each key. Interpolator nodes containing
no keys in the key field shall not produce any events. However, an input event that
replaces an empty key field with one that contains keys will cause the interpolator node
to produce events the next time that a set_fraction event is received..

The set_fraction inputOnly field receives an SFFloat event and causes the interpolator
node function to evaluate, resulting in a value_changed output event of the specified
type with the same timestamp as the set_fraction event.

The contents of the keyValue and value_changed fields are dependent on the type of
the node (e.g., the PositionInterpolator fields use MFVec3f values). Each value or set of
values in the keyValue field corresponds in order to the parameter value in the key
field.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 19 Interpolation component

interpolators.html[8/1/2020 10:01:11 AM]

For interpolator nodes that produce a single value, results are undefined if the number
of values in the key field is not the same as the number of values in the keyValue field.

For interpolator nodes that produce multiple values, the keyValue field is an nxm array
of values, where n is the number of values in the key field and m is the number of
values at each key frame. Each m values in the keyValue field correspond, in order, to a
parameter value in the key field. Each value_changed event shall contain m
interpolated values. Results are undefined if the number of values in the keyValue field
is not a positive integer multiple of the number of values in the key field.

If an X3DInterpolatorNode value_changed outputOnly field is read before it receives
any inputs, keyValue[0] is returned if keyValue is not empty. If keyValue is empty (i.e.,
[]), the initial value for the respective field type is returned (EXAMPLE (0, 0, 0) for
SFVec3f); see 5 Field type reference for initial event values.

The location of an X3DInterpolatorNode in the transformation hierarchy has no effect on
its operation. For example, if a parent of an interpolator node is a Switch node with
whichChoice set to −1 (i.e., ignore its children), the interpolator continues to operate as
specified (receives and sends events).

A typical simplified structure for a key frame animation implementation involves a
TimeSensor, ROUTEs, and the target node.

 Transform {
 Shape
 IndexedFaceSet { coordIndex='... −1 ... >
 Coordinate DEF='Moved' point [x y z, ...] # t0Geometry
 }
 }
 }

 CoordinateInterpolator DEF='Mover'
 key [t0 t1 t2] # list of key times, 0 to 1
 keyValue ' x y z, ... ' # one geometry per key time

 TimeSensor DEF='Timer' cycleInterval 5 loop TRUE

 ROUTE Timer.fraction_changed TO Mover.set_value
 ROUTE Mover.value_changed TO Moved.point

In typical operation, the key frame set_fraction event arrives from a TimeSensor to
signal that the time value has advanced. This value varies from 0 to 1 depending upon
where the TimeSensor is in its cycle time.

EXAMPLE If the TimeSensor has a cycleTime of 10 seconds, and 5 seconds has elapsed in its cycle, the
set_fraction value will be 0.5.

In this sample structure, the IndexedFaceSet contains a Coordinate field named Moved.
This defines the time equals zero geometry for the node. The CoordinateInterpolator
node named Mover contains the list of key frame times and the corresponding sets of
coordinates in the keyValue field. When the set_fraction event arrives for key, the
corresponding interpolated keyValue is sent to the target Coordinate node for
rendering.

 19.4 Node reference

 19.4.1 ColorInterpolator
ColorInterpolator : X3DInterpolatorNode {
 SFFloat [in] set_fraction (-∞,∞)

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 19 Interpolation component

interpolators.html[8/1/2020 10:01:11 AM]

 MFFloat [in,out] key [] (-∞,∞)
 MFColor [in,out] keyValue [] [0,1]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFColor [out] value_changed
}

The ColorInterpolator node interpolates among a list of MFColor key values to produce
an SFColor (RGB) value_changed event. The number of colours in the keyValue field
shall be equal to the number of key frames in the key field. The keyValue field and
value_changed events are defined in RGB colour space. A linear interpolation using the
value of set_fraction as input is performed in HSV space (see [FOLEY] for description of
RGB and HSV colour spaces). The results are undefined when interpolating between two
consecutive keys with complementary hues.

 19.4.2 CoordinateInterpolator
CoordinateInterpolator : X3DInterpolatorNode {
 SFFloat [in] set_fraction (-∞,∞)
 MFFloat [in,out] key [] (-∞,∞)
 MFVec3f [in,out] keyValue [] (-∞,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFVec3f [out] value_changed
}

The CoordinateInterpolator node linearly interpolates among a list of MFVec3f values to
produce an MFVec3f value_changed event. The number of coordinates in the keyValue
field shall be an integer multiple of the number of key frames in the key field. That
integer multiple defines how many coordinates will be contained in the value_changed
events.

 19.4.3 CoordinateInterpolator2D
CoordinateInterpolator2D : X3DInterpolatorNode {
 SFFloat [in] set_fraction (-∞,∞)
 MFFloat [in,out] key [] (-∞,∞)
 MFVec2f [in,out] keyValue [] (-∞,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFVec2f [out] value_changed
}

This node linearly interpolates among a list of MFVec2f values to produce an MFVec2f
value_changed event. The number of coordinates in the keyValue field shall be an
integer multiple of the number of key frames in the key field. That integer multiple
defines how many coordinates will be contained in the value_changed events.

19.4.4 EaseInEaseOut
EaseInEaseOut : X3DNode {
 SFFloat [in] set_fraction (-∞,∞)
 MFVec2f [in,out] easeInEaseOut [] (-∞,∞)
 MFFloat [in,out] key [] (-∞,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFFloat [out] modifiedFraction_changed
}

The EaseInEaseOut node supports controlled gradual transitions by specifying
modifications for TimeSensor node fractions. The EaseInEaseOut node receives a
set_fraction field event. It uses the values of the key field and the easeInEaseOut field
to modify that fraction which is then issued as a modifiedFraction_changed event.

The first components of each pair of easeInEaseOut field Vec2f values correspond to the
easeIn/easeOut features following each key as the interpolator progresses. The second
components of each pair of easeInEaseOut field Vec2f values correspond to the

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 19 Interpolation component

interpolators.html[8/1/2020 10:01:11 AM]

easeIn/easeOut features as the interpolator progresses between keyValues.

The values of the easeInEaseOut field range from zero to one. At zero, there is no
modification of the fraction.

The scope of the easeOut effect on the local fraction is equal to the easeOut value.

EXAMPLE 1 If the easeOut value is 0.4, the object will accelerate out of the previous key and reach a constant
speed at 40% of the way from the previous key to the next key.

The scope of the easeIn effect on the local fraction begins when the local fraction
reaches (1.0 - easeIn).

EXAMPLE 2 If the easeIn value is 0.3, the object will transition from a constant speed, and begin to decelerate
when unmodified local fraction reaches 0.7 (70% of the way from the previous key to the next key).

If the sum of the previous easeIn value, plus the next easeIn value is greater than 1.0,
both values are scaled by the same amount so that the sum of the values is equal 1.0.
In that case, there is no period of constant speed.

The algorithm for computing the modifiedFraction_changed value is:

a. Let u be the value of the set_fraction field, representing the proportion the
distance between keyi and keyi+1.

b. Let eout be the easeOut value for keyi; (i.e., easeOut = easeInEaseOuti.y).
c. Let ein be the easeIn value for keyi+1; (i.e., easeIn = easeInEaseOuti+1.x).
d. Let S be the sum of einand eout.
e. If S < 0, modifiedFraction_changed is set to u.
f. If S > 1.0, divide ein and eout by S.
g. Compute t = 1.0 / (2.0 - eout - ein).
h. If u < eout, modifiedFraction_changed is set to:

 (t / eout) × u2

i. If u < 1.0 - ein, modifiedFraction_changed is set to:
 (t × (2u - eout))

j. Else, modifiedFraction_changed is set to:
 1.0 - ((t × (1.0 - u)2) / ein)

Figure 19.1 illustrates the algorithm above.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 19 Interpolation component

interpolators.html[8/1/2020 10:01:11 AM]

Figure 19.1 — EaseInEaseOut algorithm illustration

The easeInEaseOut field values shall be monotonically non-decreasing, otherwise
results are undefined.

 19.4.5 NormalInterpolator
NormalInterpolator : X3DInterpolatorNode {
 SFFloat [in] set_fraction (-∞,∞)
 MFFloat [in,out] key [] (-∞,∞)
 MFVec3f [in,out] keyValue [] (-∞,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFVec3f [out] value_changed
}

The NormalInterpolator node interpolates among a list of normal vector sets specified
by the keyValue field to produce an MFVec3f value_changed event. The output vector,
value_changed, shall be a set of normalized vectors.

Values in the keyValue field shall be of unit length. The number of normals in the
keyValue field shall be an integer multiple of the number of key frames in the key field.
That integer multiple defines how many normals will be contained in the value_changed
events.

Normal interpolation shall be performed on the surface of the unit sphere. That is, the
output values for a linear interpolation from a point P on the unit sphere to a point Q
also on the unit sphere shall lie along the shortest arc (on the unit sphere) connecting
points P and Q. Also, equally spaced input fractions shall result in arcs of equal length.
The results are undefined if P and Q are diagonally opposite.

 19.4.6 OrientationInterpolator
OrientationInterpolator : X3DInterpolatorNode {
 SFFloat [in] set_fraction (-∞,∞)
 MFFloat [in,out] key [] (-∞,∞)
 MFRotation [in,out] keyValue [] [-1,1] or (-∞,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFRotation [out] value_changed
}

The OrientationInterpolator node interpolates among a list of rotation values specified
in the keyValue field to produce an SFRotation value_changed event. These rotations

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 19 Interpolation component

interpolators.html[8/1/2020 10:01:11 AM]

are absolute in object space and therefore are not cumulative. The keyValue field shall
contain exactly as many rotations as there are key frames in the key field.

An orientation represents the final position of an object after a rotation has been
applied. An OrientationInterpolator interpolates between two orientations by computing
the shortest path on the unit sphere between the two orientations. The interpolation is
linear in arc length along this path. The results are undefined if the two orientations are
diagonally opposite.

If two consecutive keyValue values exist such that the arc length between them is
greater than π, the interpolation will take place on the arc complement. For example,
the interpolation between the orientations

(0, 1, 0, 0) and (0, 1, 0, 5.0)

is equivalent to the rotation between the orientations

(0, 1, 0, 2π) and (0, 1, 0, 5.0).

 19.4.7 PositionInterpolator
PositionInterpolator : X3DInterpolatorNode {
 SFFloat [in] set_fraction (-∞,∞)
 MFFloat [in,out] key [] (-∞,∞)
 MFVec3f [in,out] keyValue [] (-∞,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFVec3f [out] value_changed
}

The PositionInterpolator node linearly interpolates among a list of 3D vectors to produce
an SFVec3f value_changed event. The keyValue field shall contain exactly as many
values as in the key field.

 19.4.8 PositionInterpolator2D
PositionInterpolator2D : X3DInterpolatorNode {
 SFFloat [in] set_fraction (-∞,∞)
 MFFloat [in,out] key [] (-∞,∞)
 MFVec2f [in,out] keyValue [] (-∞,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFVec2f [out] value_changed
}

The PositionInterpolator node linearly interpolates among a list of 2D vectors to produce
an SFVec2f value_changed event. The keyValue field shall contain exactly as many
values as in the key field.

 19.4.9 ScalarInterpolator
ScalarInterpolator : X3DInterpolatorNode {
 SFFloat [in] set_fraction (-∞,∞)
 MFFloat [in,out] key [] (-∞,∞)
 MFFloat [in,out] keyValue [] (-∞,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFFloat [out] value_changed
}

The ScalarInterpolator node linearly interpolates among a list of SFFloat values to
produce an SFFloat value_changed event. This interpolator is appropriate for any
parameter defined using a single floating point value.

EXAMPLE 1 width fields

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 19 Interpolation component

interpolators.html[8/1/2020 10:01:11 AM]

EXAMPLE 2 radius fields

EXAMPLE 3 intensity fields

The keyValue field shall contain exactly as many numbers as there are key frames in
the key field.

19.4.10 SplinePositionInterpolator
SplinePositionInterpolator : X3DInterpolatorNode {
 SFFloat [in] set_fraction (-∞,∞)
 SFBool [in,out] closed FALSE
 MFFloat [in,out] key [] (-∞,∞)
 MFVec3f [in,out] keyValue [] (-∞,∞)
 MFVec3f [in,out] keyVelocity [] (-∞,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [in,out] normalizeVelocity FALSE
 SFVec3f [out] value_changed
}

The SplinePositionInterpolator node non-linearly interpolates among a list of 3D vectors
to produce an SFVec3f value_changed event. The keyValue, keyVelocity, and key fields
shall each have the same number of values.

19.4.11 SplinePositionInterpolator2D
SplinePositionInterpolator2D : X3DInterpolatorNode {
 SFFloat [in] set_fraction (-∞,∞)
 SFBool [in,out] closed FALSE
 MFFloat [in,out] key [] (-∞,∞)
 MFVec2f [in,out] keyValue [] (-∞,∞)
 MFVec2f [in,out] keyVelocity [] (-∞,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [in,out] normalizeVelocity FALSE
 SFVec2f [out] value_changed
}

The SplinePositionInterpolator2D node non-linearly interpolates among a list of 2D
vectors to produce an SFVec2f value_changed event. The keyValue, keyVelocity, and
key fields shall each have the same number of values.

19.4.12 SplineScalarInterpolator
SplineScalarInterpolator : X3DInterpolatorNode {
 SFFloat [in] set_fraction (-∞,∞)
 SFBool [in,out] closed FALSE
 MFFloat [in,out] key [] (-∞,∞)
 MFFloat [in,out] keyValue [] (-∞,∞)
 MFFloat [in,out] keyVelocity [] (-∞,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [in,out] normalizeVelocity FALSE
 SFFloat [out] value_changed
}

The SplineScalarInterpolator node non-linearly interpolates among a list of floats to
produce an SFFloat value_changed event. The keyValue, keyVelocity, and key fields
shall each have the same number of values.

19.4.13 SquadOrientationInterpolator
SquadOrientationInterpolator : X3DInterpolatorNode {
 SFFloat [in] set_fraction (-∞,∞)
 MFFloat [in,out] key [] (-∞,∞)
 MFRotation [in,out] keyValue [] (-∞,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [in,out] normalizeVelocity FALSE
 SFRotation [out] value_changed
}

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 19 Interpolation component

interpolators.html[8/1/2020 10:01:11 AM]

The SquadOrientationInterpolator node non-linearly interpolates among a list of
rotations to produce an SFRotation value_changed event. The keyValue field shall have
the same number of values and the key field.

The SquadOrientationInterpolator uses the industry standard Squad method for
smoothly interpolating orientations. Squad is an acronym for Spherical Cubic
Interpolation. The Linear OrientationInterpolator described in 19.4.6
OrientationInterpolator provides spherical linear interpolation. The
SquadOrientationInterpolator applies the spline interpolation approach described above
to interpolation in quaternion space. For more information on Squad interpolation, see
[SHOE].

 19.5 Support levels
The Interpolation component provides three levels of support as specified in Table 19.2.

 Table 19.2 — Interpolation component support levels

Level Prerequisites Nodes/Features Support

1
Core 1
Grouping 1
Shape 1

 X3DInterpolatorNode
(abstract) n/a

 CoordinateInterpolator All fields fully
supported.

OrientationInterpolator All fields fully
supported.

PositionInterpolator All fields fully
supported.

ScalarInterpolator All fields fully
supported.

2
Core 1
Grouping 1
Shape 1

All Level 1 Interpolator
nodes

All fields fully
supported.

ColorInterpolator All fields fully
supported.

NormalInterpolator All fields fully
supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 19 Interpolation component

interpolators.html[8/1/2020 10:01:11 AM]

3
Core 1
Grouping 1
Shape 1

All Level 2 Interpolator
nodes

All fields fully
supported.

 CoordinateInterpolator2D All fields fully
supported.

 PositionInterpolator2D All fields fully
supported.

4
Core 1
Grouping 1
Shape 1

 All Level 3 Interpolator
nodes

All fields fully
supported.

 EaseInEaseOut All fields fully
supported.

 SplinePositionInterpolator All fields fully
supported.

 SplinePositionInterpolator2D All fields fully
supported.

 SplineScalarInterpolator All fields fully
supported.

5
Core 1
Grouping 1
Shape 1

 All Level 4 Interpolator
nodes

All fields fully
supported.

 SquadOrientationInterpolator All fields fully
supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 40 Particle systems component

particleSystems.html[8/1/2020 10:01:14 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

40 Particle systems component

 40.1 Introduction

40.1.1 Name

The name of this component is "ParticleSystems". This name shall be used when
referring to this component in the COMPONENT statement (see 7.2.5.4 Component
statement).

40.1.2 Overview

This component specifies how to model particles and their interactions through the
application of basic physics principles to affect motion. Table 40.1 provides links to the
major topics in this clause.

 Table 40.1 — Topics

40.1 Introduction
40.1.1 Name
40.1.2 Overview

40.2 Concepts
40.2.1 Overview
40.2.2 Physics models
40.2.3 Colour ramps
40.2.4 Randomness and variation
40.2.5 Event model interaction
40.2.6 Interaction with other components

40.3 Abstract types
40.3.1 X3DParticleEmitterNode
40.3.2 X3DParticlePhysicsModelNode

40.4 Node reference
40.4.1 BoundedPhysicsModel
40.4.2 ConeEmitter
40.4.3 ExplosionEmitter

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 40 Particle systems component

particleSystems.html[8/1/2020 10:01:14 AM]

40.4.4 ForcePhysicsModel
40.4.5 ParticleSystem
40.4.6 PointEmitter
40.4.7 PolylineEmitter
40.4.8 SurfaceEmitter
40.4.9 VolumeEmitter
40.4.10 WindPhysicsModel

40.5 Support levels

Table 40.1 — Topics
Table 40.2 — Particle systems component support levels

 40.2 Concepts

40.2.1 Overview

A particle system specifies a process for rendering such effects as fire, smoke, and
snow. Although various physics models are available, it is not meant to be used as a
simulation engine for testing particle behaviour models. Thus, particle systems are
designed for visual effects, not rigid analysis systems.

A particle system is a shape node type as both appearance and texturing need to be
controlled in order to create realistic particle system effects. A particle system in and of
itself is not geometry because it dynamically creates and destroys geometry on the fly.
A particle system also has other factors feeding into the visual output different from a
typical geometry node.

EXAMPLE Time-varying colour values

The geometry node of a shape node is not used at the first support level. If a node
supports both levels of the specification, the geometry node takes preference over the
geometryType field.

Particles are generated using the current geometry, allowing particle geometry to be
changed over time. Old particles that are still current when the specified geometry
changes continue to use the original geometry.

40.2.2 Physics models

To allow aggregating a collection of nodes with a particular physics model, an
X3DParticlePhysicsModelNode abstract node type is provided that is used to derive
nodes in which all children nodes of that group are bound by the specified physics
model. This can be used to support simple effects such as gravity. The physics models
are designed to be composable.

EXAMPLE The BoundedPhysicsModel node can be used with an extrusion as the geometry and then a
WindPhysicsModel node can be used with the geometry to produce smoke tunneling effects.

40.2.3 Colour ramps

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 40 Particle systems component

particleSystems.html[8/1/2020 10:01:14 AM]

A colour ramp is used to specify the colour cycle over time. A colour ramp is a variation
on the normal use of a colour interpolator. The key represents relative time values from
the start of the lifetime of the particle. There should be the same number of colours in
the node as there are key values. If not, the smaller number of the two values will be
used. For particles that last longer than the last time value, the colour associated with
the last time value will be continued for the rest of the lifetime of the particle.

40.2.4 Randomness and variation

Many nodes describe emission as using a random pattern. The random generation
model shall use a linear distribution of equal probability across the defined output
spectrum.

Nodes that describe a variation field allow for deviation from the described main field
value. The variation is the maximum bound of that value, described as a proportion of
the original value. A variation value of zero does not allow any randomness.

EXAMPLE If field has a value of 10, a variation of 0.25 will allow values to be randomly generated in the range of
7.5 to 12.5. The same field with a value of 1 will only allow a range of randomly generated values between 0.75
and 1.25.

40.2.5 Event model interaction

Evaluation of emission and interactions of particles are performed as specified in
4.4.8.3 Execution model. All changes made during current event cascade are first
applied. Then, the particles are generated, particle system physics are applied, and
rendering of the particles takes place.

Particle systems interact with navigation, pointing device sensors, collision detection
and picking according to the underlying geometry type. Point particles, point sprite
particles and line particles cannot be picked; other types of particles can be picked.

40.2.6 Interaction with other components

There are many different ways to implement particle systems. This specification does
not require any particular technology or means of implementation. However, a popular
implementation is to use programmable shaders to perform the per-frame evaluation of
the particles. While it is not advised, it is possible and legal to supply programmable
shaders as part of the particle system's appearance field. If the user supplies a
programmable shader, the implementation shall use a CPU-generated model for this
case.

The physics model nodes in this component are independent of the physics evaluation
defined in 37 Rigid body physics component. This part of ISO/IEC 19775 does not
explicitly prohibit interaction between the two models, but does not cater for direct
implementation of one by the other (e. g., use of hardware accelerated physics cards to
implement particle systems).

 40.3 Abstract types

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 40 Particle systems component

particleSystems.html[8/1/2020 10:01:14 AM]

40.3.1 X3DParticleEmitterNode
X3DParticleEmitterNode : X3DNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFFloat [in,out] speed 0 [0,∞)
 SFFloat [in,out] variation 0.25 [0,∞)
 SFFloat [] mass 0 [0,∞)
 SFFloat [] surfaceArea 0 [0,∞)
}

The X3DParticleEmitterNode abstract type represents any node that is an emitter of
particles. The shape and distribution of particles is dependent on the type of the
concrete node.

The speed field specifies an initial linear speed that will be imparted to all particles. It
does not signify the direction of the particles. The directional component of the velocity
is specified by the concrete node representation.

The variation field specifies a multiplier for the randomness that is used to control the
range of possible output values. The bigger the value, the more random the output and
the bigger the range of possible initial values possible. A variation of zero does not
allow any randomness.

The mass field specifies the basic mass of each particle in mass base units. Mass is
needed if gravity or other force-related calculations are to be performed per-particle.

The surfaceArea field specifies the surface area of the particle in area base units.
Surface area is used for calculations such as wind effects per particle. The surfaceArea
field value represents an average frontal area that would be presented to the wind,
assuming a spherical model for each particle (i.e., the surface area is the same
regardless of direction).

40.3.2 X3DParticlePhysicsModelNode
X3DParticlePhysicsModelNode : X3DNode {
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

The X3DParticlePhysicsModelNode abstract type represents any node that applies a
form of constraints on the particles after they have been generated.

The enabled field specifies whether this physics model is currently being applied to the
particles.

 40.4 Node reference

40.4.1 BoundedPhysicsModel
BoundedPhysicsModel : X3DParticlePhysicsModelNode {
 SFBool [in,out] enabled TRUE
 SFNode [in,out] geometry NULL [X3DGeometryNode]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

The BoundedPhysicsModel node specifies a physics model that applies a user-defined
set of geometrical bounds to the particles.

The geometry field specifies a piece of geometry that models the bounds that constrain

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 40 Particle systems component

particleSystems.html[8/1/2020 10:01:14 AM]

the location of the particles. When a particle touches the surface of the bounds, it is
reflected. The particles may be restricted to an inside location or an outside location. All
geometry defined by the bounds are considered to be non-solid, regardless of the
setting of the solid field. It does not matter whether the particle impacts the front or
back side of the geometry. Particles are reflected at the same angle to the normal of
the surface to which they impact, continuing in the same direction. The calculation of
the correct normal is determined by the rules of the geometry that forms the bounds.

EXAMPLE A particle can be made to bounce off an elevation grid representing terrain.

40.4.2 ConeEmitter
ConeEmitter : X3DParticleEmitterNode {
 SFFloat [in,out] angle π/4 [0,π]
 SFVec3f [in,out] direction 0 1 0
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFVec3f [in,out] position 0 0 0
 SFFloat [in,out] speed 0 [0,∞)
 SFFloat [in,out] variation 0.25 [0,∞)
 SFFloat [] mass 0 [0,∞)
 SFFloat [] surfaceArea 0 [0,∞)
}

The ConeEmitter node is an emitter that generates all the available particles from a
specific point in space. Particles are emitted from the single point specified by the
position field emanating in a direction randomly distributed within the cone specified by
the angle and direction fields at the speed specified by the speed field.

40.4.3 ExplosionEmitter
ExplosionEmitter : X3DParticleEmitterNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFVec3f [in,out] position 0 0 0
 SFFloat [in,out] speed 0 [0,∞)
 SFFloat [in,out] variation 0.25 [0,∞)
 SFFloat [] mass 0 [0,∞)
 SFFloat [] surfaceArea 0 [0,∞)
}

The ExplosionEmitter node is an emitter that generates all the available particles from a
specific point in space at the initial time. Particles are emitted from the single point
specified by the position field in all directions at the speed specified by the speed field.

40.4.4 ForcePhysicsModel
ForcePhysicsModel : X3DParticlePhysicsModelNode {
 SFBool [in,out] enabled TRUE
 SFVec3f [in,out] force 0 -9.8 0 (∞,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

The ForcePhysicsModel node specifies a physics model that applies a constant force
value to the particles. Force may act in any given direction vector at any strength.

The force field is used to indicate the strength and direction of the force (e.g., gravity)
that should be applied. Force is specified in force base units. If the particles are defined
to have zero mass by the emitter, the ForcePhysicsModel node has no effect.

40.4.5 ParticleSystem
ParticleSystem : X3DShapeNode {
 SFNode [in,out] appearance NULL [X3DAppearanceNode]
 SFBool [in,out] createParticles TRUE

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 40 Particle systems component

particleSystems.html[8/1/2020 10:01:14 AM]

 SFNode [in,out] geometry NULL [X3DGeometryNode]
 SFBool [in,out] enabled TRUE
 SFFloat [in,out] lifetimeVariation 0.25 [0,1]
 SFInt32 [in,out] maxParticles 200 [0,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFFloat [in,out] particleLifetime 5 [0,∞)
 SFVec2f [in,out] particleSize 0.02 0.02 [0,∞)
 SFBool [out] isActive
 SFVec3f [] bboxCenter 0 0 0
 SFVec3f [] bboxSize -1 -1 -1 (0,∞) or -1 -1 -1
 SFNode [] colorRamp NULL [X3DColorNode]
 MFFloat [] colorKey [] [0,∞)
 SFNode [] emitter NULL [X3DParticleEmitterNode]
 SFString [] geometryType "QUAD" ["LINE"|"POINT"|"QUAD"|"SPRITE"|"TRIANGLE"|"GEOMETRY"|...]
 MFNode [] physics [] [X3DParticlePhysicsModelNode]
 SFNode [] texCoordRamp NULL [TextureCoordinate]
 MFFloat [] texCoordKey [] [0,∞)
}

The ParticleSystem node specifies a complete particle system.

The geometryType field specifies the type of geometry that should be used to represent
individual particles. Typically, a particle is calculated as a point in space at which the
geometry is placed and then rendered using the appearance attributes.

The types of geometry are defined to render in the following way:

"LINE": A line is drawn along the particle's current velocity vector, for this frame,
centered about the particle's position. The length of the line is specified by the
particle's height from the particleSize field value.
"POINT": A point geometry is rendered at the particle's position.
"QUAD": A 2D quad is rendered aligned in the local coordinate space of the particle
system with the face normal pointing along the positive Z axis. Individual quads
are not aligned to the user's eye position but are affected in depth by the physics
model. The particle's position is at the center of the quad.
"SPRITE": A point sprite that uses a 2D point position to locate a screen-aligned
quad at the center of the particle's location is rendered.
"TRIANGLE": A 2D quad is rendered using a pair of triangles aligned in the local
coordinate space of the particle system with the face normal pointing along the
positive Z axis. Individual triangles are not aligned to the user's eye position, but
are effected in depth by the physics model. The particle's position is at the center
of the triangle.
"GEOMETRY": The geometry specified by the geometry field is rendered for each
particle using the local coordinate system. Changing the value of the geometry
field or the definition of the geometry node shall be applied during current
computation of the next frame to be rendered.

The geometry field specifies the geometry to be used for each particle when the
geometryType field has value "GEOMETRY".

The appearance field holds information that is used for the geometry. All effects, such
as material colours and/or multi-textures, are applied to each particle. If a texture
coordinate ramp and key is supplied with this geometry, it shall be used in preference
to any automatic texture coordinate generation. If automatic texture coordinate
generation is used, results shall be based on the entire volume that the particles
consume, not locally applied to each particle.

Procedural shaders may also be supplied. The particle system shall manage the position
of all particles each frame. This position becomes the initial geometry input to the

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 40 Particle systems component

particleSystems.html[8/1/2020 10:01:14 AM]

shader.

The emitter field specifies the type of emitter geometry and properties that the particles
are given for their initial positions. After being created, the individual particles are then
manipulated according to the physics model(s) specified in the physics field.

The colorRamp and colorKey fields specify how to change the base colour of the particle
over the lifetime of an individual particle. The colorKey field represents the time of the
particle in seconds, while the colorRamp field holds a series of colour values to be used
at the given key points in time. Between keys, colour values are interpreted in a linear
HSV space, using the same rules defined for the ColorInterpolator node. The colour
values are defined as per-vertex colour values. Consequently, if an appearance node
with material is provided, the material properties will override the colour ramp.

The isActive outputOnly field indicates whether the particle system is currently running,
based on the setup of the node.

EXAMPLE Using an explosion emitter that generates all of its particles at the first time and has them all die at a
fixed time later, the particle system will only run for a short amount of time. After that, nothing is visible on-screen or
the particle geometry does not need updating any more.

The isActive field sends a value of FALSE when activity has stopped occurring. A particle
system without an emitter set can never be active. If the emitter is defined by an
EXTERNPROTO that has not yet resolved, isActive shall initially be FALSE, until the point
the EXTERNPROTO has loaded and is verified as being a correct node type. If these
validity checks pass, isActive is set to TRUE and this defines the local time zero to start
the particle effects.

The enabled field controls whether this ParticleSystem is currently active and rendering
particles this frame. Setting this value to FALSE will immediately remove all visible
particles from the scene from the next frame onwards. Setting the field to TRUE will start
the system again from a local time zero. It does not start off from where it was
previously. In doing so, it will issue another value of TRUE for isActive. If a value of FALSE
is set for enabled, isActive will also be set to FALSE.

The createParticles field is used to control whether any further new particles should be
created. This allows the user to stop production of new particles, but keep those already
existing in the scene to continue to animate. This differs from the enabled field that
would immediately remove all particles. The createParticles field keeps the existing
particles in existence until the end of their lifetimes. If there are no particles left in the
scene, the system is still considered both active and enabled.

The maxParticles field specifies the maximum number of particles to be generated at
one time (subject to player limitations). Support for at least 10,000 particles is
required.

The particleLifetime field specifies the nominal duration in seconds of any particle.

The lifetimeVariation field specifies the proportion of the total lifetime that is the
amount of allowed linear random variation from the value specified by the
particleLifetime field.

The particleSize field describes the dimensions in length base units of the width and

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 40 Particle systems component

particleSystems.html[8/1/2020 10:01:14 AM]

height of each particle. Changing this value dynamically will only change new particles
created after the change. Particles created before this timestamp will remain at the old
size. This field only effects particles using "LINE", "QUAD", "SPRITE", and "TRIANGLE" geometry
types.

The texCoordRamp and texCoordKey fields control the texture coordinates of the
provided texture(s) in the Appearance node, over time. Particle systems frequently like
to change the texture on a particle as it ages, yet there is no good way of
accomplishing this through standard interpolators because interpolators have no
concept of particle time. This pair of fields hold time-dependent values for the texture
coordinates to be applied to the particle. When a particle reaches the next time stamp it
moves to the next set of texture coordinates. There is no interpolation of the texture
coordinates, just sequenced according to the times defined by texCoordKey.

The node placed in texCoordRamp shall have enough values to work with the numbers
required by geometryType. The following numbers and rules for mapping texture
coordinates to the quad shall be used:

"LINE": The coordinates are paired such that the coordinate with lowest value index
is associated with the end of the line that is closest to the emitter location and the
coordinate with the next higher index is associated with the end of the line furthest
from the emitter location. Each timestamp increases the index into the ramp by
two.
"POINT": Texture coordinates are ignored.
"QUAD": Assuming a quad facing the current viewer position, coordinates are
defined in a counter-clockwise order starting at the lower-left corner.
"SPRITE": Texture coordinates are ignored for this type. Each particle uses the entire
supplied texture.
"TRIANGLE": Assuming two triangles facing the user, only four coordinates are
supplied, representing the four corners of the quad. The order is the same as for
"QUAD".
"GEOMETRY": Texture coordinates ramps are ignored for this type. Texture coordinates
from the geometry representation are used or automatic texture coordinate
generation from the appearance node is used.

40.4.6 PointEmitter
PointEmitter : X3DParticleEmitterNode {
 SFVec3f [in,out] direction 0 1 0
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFVec3f [in,out] position 0 0 0
 SFFloat [in,out] speed 0 [0,∞)
 SFFloat [in,out] variation 0.25 [0,∞)
 SFFloat [] mass 0 [0,∞)
 SFFloat [] surfaceArea 0 [0,∞)
}

The PointEmitter node is an emitter that generates particles from a specific point in
space. Particles are emitted from a single point in the specified direction and speed.

The direction field specifies a direction along which the particles are to be emitted. If
the vector is zero length (a value of (0,0,0), particles are emitted in random directions
from this point in space.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 40 Particle systems component

particleSystems.html[8/1/2020 10:01:14 AM]

40.4.7 PolylineEmitter
PolylineEmitter : X3DParticleEmitterNode {
 MFInt32 [in] set_coordIndex
 SFNode [in,out] coord NULL [X3DCoordinateNode]
 SFVec3f [in,out] direction 0 1 0 [-1,1]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFFloat [in,out] speed 0 [0,∞)
 SFFloat [in,out] variation 0.25 [0,∞)
 MFInt32 [] coordIndex -1 [0,∞) or -1
 SFFloat [] mass 0 [0,∞)
 SFFloat [] surfaceArea 0 [0,∞)
}

The PolylineEmitter node emits particles along a single polyline. The coordinates for the
line along which particles should be randomly generated are taken from a combination
of the coord and coordIndex fields. The starting point for generating particles is
randomly distributed along this line and given the initial speed and direction. If no
coordinates are available, the PolylineEmitter node shall act like a point source located
at the local origin.

40.4.8 SurfaceEmitter
SurfaceEmitter : X3DParticleEmitterNode {
 MFInt32 [in] set_coordIndex
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFFloat [in,out] speed 0 [0,∞)
 SFFloat [in,out] variation 0.25 [0,∞)
 MFInt32 [] coordIndex -1 [0,∞) or -1
 SFFloat [] mass 0 [0,∞)
 SFNode [] surface NULL [X3DGeometryNode]
 SFFloat [] surfaceArea 0 [0,∞)
}

The SurfaceEmitter node is an emitter that generates particles from the surface of an
object. New particles are generated by first randomly choosing a face on the tessellated
geometry and then a random position on that face. Particles are generated with an
initial direction of the normal to that point (including any normal averaging due to
normalPerVertex and creaseAngle field settings). If the surface is indicated as not being
solid (solid field set to FALSE), randomly choose from which side of the surface to emit,
negating the normal direction when generating from the back side. Only valid geometry
shall be used.

The surface field specifies the geometry to be used as the emitting surface.

EXAMPLE A cylinder with both end caps turned off would only generate particles along the side of the cylinder. It
would be an error to generate a particle with an initial direction that is not perpendicular to the axis.

40.4.9 VolumeEmitter
VolumeEmitter : X3DParticleEmitterNode {
 MFInt32 [in] set_coordIndex
 SFNode [in,out] coord NULL [X3DCoordinateNode]
 SFVec3f [in,out] direction 0 1 0 [-1,1]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFFloat [in,out] speed 0 [0,∞)
 SFFloat [in,out] variation 0.25 [0,∞)
 MFInt32 [] coordIndex -1 [0,∞) or -1
 SFBool [] internal TRUE
 SFFloat [] mass 0 [0,∞)
 SFFloat [] surfaceArea 0 [0,∞)
}

A VolumeEmitter node emits particles from a random position confined within the given
closed geometry volume. Otherwise, a VolumeEmitter node acts like a PolylineEmitter
node.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 40 Particle systems component

particleSystems.html[8/1/2020 10:01:14 AM]

40.4.10 WindPhysicsModel
WindPhysicsModel : X3DParticlePhysicsModelNode {
 SFVec3f [in,out] direction 0 0 0 (∞,∞)
 SFBool [in,out] enabled TRUE
 SFFloat [in,out] gustiness 0.1 [0,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFFloat [in,out] speed 0.1 [0,∞)
 SFFloat [in,out] turbulence 0 [0,1]
}

The WindPhysicsModel node specifies a physics model that applies a wind effect to the
particles. The wind has a random variation factor that allows for the gustiness of the
wind to be modelled.

The direction field specifies the direction in which the wind is travelling in the form of a
normalized, unit vector.

The speed field specifies the current wind speed in length base units. From the wind
speed, the force applied per unit-area on the particle is calculated using the following
formula:

pressure = 10(2 × log(speed)) × 0.64615

The gustiness specifies how much the wind speed varies from the average value defined
by the speed field. The wind speed variation is calculated once per frame and applied
equally to all particles.

The turbulence field specifies how much the wind acts directly in line with the direction,
and how much variation is applied in directions other than the wind direction. This is
determined per-particle to model how the particle is effected by turbulence.

 40.5 Support levels
The Particle Systems component provides two levels of support as specified in Table
40.2.

 Table 40.2 — Particle systems component support levels

Level Prerequisites Nodes/Features Support

1

Core 1
Grouping 1
Shape 1
Rendering 1

X3DParticleEmitterNode n/a

X3DParticlePhysicsModelNode n/a

 ConeEmitter All fields fully
supported.

ExplosionEmitter All fields fully
supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 40 Particle systems component

particleSystems.html[8/1/2020 10:01:14 AM]

GravityPhysicsModel All fields fully
supported.

ParticleSystem

All fields fully
supported, except
"SPRITE" and "GEOMETRY"
geometry types and
the geometry field.

 PointEmitter All fields fully
supported.

 PolylineEmitter All fields fully
supported.

 WindPhysicsModel All fields fully
supported.

2

Core 1
Grouping 1
Shape 1
Rendering 1
Texturing 1

 All Level 1 nodes

All fields supported
as specified for Level
1 except as specified
below.

 BoundedPhysicsModel All fields fully
supported.

 ParticleSystem

All fields fully
supported, except
"GEOMETRY" geometry
type and the
geometry field.

 SurfaceEmitter All fields fully
supported.

 VolumeEmitter All fields fully
supported.

3

Core 1
Grouping 1
Shape 1
Rendering 1
Texturing 1

 All Level 2 nodes All fields fully
supported.

 ParticleSystem All fields fully
supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 40 Particle systems component

particleSystems.html[8/1/2020 10:01:14 AM]

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 20 Pointing device sensor component

pointingDeviceSensor.html[8/1/2020 10:01:16 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

20 Pointing device sensor component

 20.1 Introduction

20.1.1 Name

The name of this component is "PointingDeviceSensor". This name shall be used when
referring to this component in the COMPONENT statement (see 7.2.5.4 Component
statement).

20.1.2 Overview

This clause describes the Pointing Device Sensor component of this part of ISO/IEC
19775. This includes how pointing device sensors operate conceptually as well as which
varieties of pointing device sensors are provided. Table 20.1 provides links to the major
topics in this clause.

 Table 20.1 — Topics

20.1 Introduction
20.1.1 Name
20.1.2 Overview

20.2 Concepts
20.2.1 Overview of pointing device sensors
20.2.2 Drag sensors
20.2.3 Activating and manipulating pointing device sensors

20.3 Abstract types
20.3.1 X3DDragSensorNode
20.3.2 X3DPointingDeviceSensorNode
20.3.3 X3DTouchSensorNode

20.4 Node reference
20.4.1 CylinderSensor
20.4.2 PlaneSensor
20.4.3 SphereSensor
20.4.4 TouchSensor

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 20 Pointing device sensor component

pointingDeviceSensor.html[8/1/2020 10:01:16 AM]

20.5 Support levels

Table 20.1 — Topics
Table 20.2 — Pointing device sensor component support levels

 20.2 Concepts

20.2.1 Overview of pointing device sensors

Pointing device sensors detect user pointing events such as the user clicking on a piece
of geometry (i.e., TouchSensor). The following node types are pointing device sensors:

CylinderSensor
PlaneSensor
SphereSensor
TouchSensor

The Anchor node is also considered a pointing device sensor for the purpose of
detecting user picking. However, it does not extend from the
X3DPointingDeviceSensorNode interface.

Other components may add additional pointing device sensors.

A pointing device sensor is activated when the user locates the pointing device over
geometry that is influenced by that specific pointing device sensor. Pointing device
sensors have influence over all geometry that is descended from the sensor's parent
groups. In the case of the Anchor node, the Anchor node itself is considered to be the
parent group. Typically, the pointing device sensor is a sibling to the geometry that it
influences. In other cases, the sensor is a sibling to groups which contain geometry
(i.e., are influenced by the pointing device sensor).

The appearance properties of the geometry do not affect activation of the sensor. In
particular, transparent materials or textures shall be treated as opaque with respect to
activation of pointing device sensors.

For a given user activation, the lowest enabled pointing device sensor in the hierarchy
is activated. All other pointing device sensors above the lowest enabled pointing device
sensor are ignored. The hierarchy is defined by the geometry node over which the
pointing device sensor is located and the entire hierarchy upward. If there are multiple
pointing device sensors tied for lowest, each of these is activated simultaneously and
independently, possibly resulting in multiple sensors activating and generating output
simultaneously. This feature allows combinations of pointing device sensors
(e.g., TouchSensor and PlaneSensor). If a pointing device sensor appears in the
transformation hierarchy multiple times (DEF/USE), it shall be tested for activation in all
of the coordinate systems in which it appears.

If a pointing device sensor is not enabled when the pointing device button is activated,
it will not generate events related to the pointing device until after the pointing device
is deactivated and the sensor is enabled (i.e., enabling a sensor in the middle of

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 20 Pointing device sensor component

pointingDeviceSensor.html[8/1/2020 10:01:16 AM]

dragging does not result in the sensor activating immediately).

20.2.2 Drag sensors

Drag sensors are a subset of pointing device sensors. There are three types of drag
sensors: CylinderSensor, PlaneSensor, and SphereSensor. Drag sensors have two
outputOnly fields in common, trackPoint_changed and <value>_changed. These
outputOnly fields send events for each movement of the activated pointing device
according to their "virtual geometry" (e.g., cylinder for CylinderSensor). The
trackPoint_changed outputOnly field sends the intersection point of the bearing with the
drag sensor's virtual geometry. The <value>_changed outputOnly field sends the sum
of the relative change since activation plus the sensor's offset field. The type and name
of <value>_changed depends on the drag sensor type: rotation_changed for
CylinderSensor, translation_changed for PlaneSensor, and rotation_changed for
SphereSensor.

To simplify the application of these sensors, each node has an offset and an autoOffset
exposed field. When the sensor generates events as a response to the activated
pointing device motion, <value>_changed sends the sum of the relative change since
the initial activation plus the offset field value. If autoOffset is TRUE when the pointing
device is deactivated, the offset field is set to the sensor's last <value>_changed value
and offset sends an offset_changed output event. This enables subsequent grabbing
operations to accumulate the changes. If autoOffset is FALSE, the sensor does not set
the offset field value at deactivation (or any other time).

 20.2.3 Activating and manipulating pointing device sensors

The pointing device controls a pointer in the virtual world. While activated by the
pointing device, a sensor will generate events as the pointer moves. Typically the
pointing device may be categorized as either 2D (e.g., conventional mouse) or 3D (e.g.,
wand). It is suggested that the pointer controlled by a 2D device is mapped onto a
plane a fixed distance from the viewer and perpendicular to the line of sight. The
mapping of a 3D device may describe a 1:1 relationship between movement of the
pointing device and movement of the pointer.

The position of the pointer defines a bearing which is used to determine which
geometry is being indicated. When implementing a 2D pointing device it is suggested
that the bearing is defined by the vector from the viewer position through the location
of the pointer. When implementing a 3D pointing device it is suggested that the bearing
is defined by extending a vector from the current position of the pointer in the direction
indicated by the pointer.

In all cases the pointer is considered to be indicating a specific geometry when that
geometry is intersected by the bearing. If the bearing intersects multiple sensors'
geometries, only the sensor nearest to the pointer will be eligible for activation.

 20.3 Abstract types

 20.3.1 X3DDragSensorNode

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 20 Pointing device sensor component

pointingDeviceSensor.html[8/1/2020 10:01:16 AM]

X3DDragSensorNode : X3DPointingDeviceSensorNode {
 SFBool [in,out] autoOffset TRUE
 SFString [in,out] description ""
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [out] isActive
 SFBool [out] isOver
 SFVec3f [out] trackPoint_changed
}

This abstract node type is the base type for all drag-style pointing device sensors.

 20.3.2 X3DPointingDeviceSensorNode
X3DPointingDeviceSensorNode : X3DSensorNode {
 SFString [in,out] description ""
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [out] isActive
 SFBool [out] isOver
}

This abstract node type is the base type for all pointing device sensors.

 20.3.3 X3DTouchSensorNode
X3DTouchSensorNode : X3DPointingDeviceSensorNode {
 SFString [in,out] description ""
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [out] isActive
 SFBool [out] isOver
 SFTime [out] touchTime
}

This abstract node type is the base type for all touch-style pointing device sensors.

 20.4 Node reference

 20.4.1 CylinderSensor
CylinderSensor : X3DDragSensorNode {
 SFBool [in,out] autoOffset TRUE
 SFRotation [in,out] axisRotation 0 1 0 0
 SFString [in,out] description ""
 SFFloat [in,out] diskAngle π/12 [0,π/2]
 SFBool [in,out] enabled TRUE
 SFFloat [in,out] maxAngle -1 [-2π,2π]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFFloat [in,out] minAngle 0 [-2π,2π]
 SFFloat [in,out] offset 0 (-∞,∞)
 SFBool [out] isActive
 SFBool [out] isOver
 SFRotation [out] rotation_changed
 SFVec3f [out] trackPoint_changed
}

The CylinderSensor node maps pointer motion (e.g., a mouse or wand) into a rotation
on an invisible cylinder that is aligned with the Y-axis of the local sensor coordinate
system. The local sensor coordinate system is created by applying the axisRotation field
value to the local coordinate system. The CylinderSensor uses the descendent geometry
of its parent node to determine whether it is liable to generate events.

The description field in the CylinderSensor node specifies a textual description of the
CylinderSensor node. This may be used by browser-specific user interfaces that wish to
present users with more detailed information about the CylinderSensor.

The enabled field enables and disables the CylinderSensor node. If TRUE, the sensor

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 20 Pointing device sensor component

pointingDeviceSensor.html[8/1/2020 10:01:16 AM]

reacts appropriately to user events. If FALSE, the sensor does not track user input or
send events. If enabled receives a FALSE event and isActive is TRUE, the sensor becomes
disabled and deactivated, and outputs an isActive FALSE event. If enabled receives a TRUE
event the sensor is enabled and ready for user activation.

A CylinderSensor node generates events when the pointing device is activated while the
pointer is indicating any descendent geometry nodes of the sensor's parent group. See
20.2.3 Activating and manipulating pointing device sensors, for more details on using
the pointing device to activate the CylinderSensor.

Upon activation of the pointing device while indicating the sensor's geometry, an
isActive TRUE event is sent. The initial acute angle between the bearing vector and the
local sensor coordinate system Y-axis of the CylinderSensor node determines whether
the sides of the invisible cylinder or the caps (disks) are used for manipulation. If the
initial angle is less than the diskAngle, the geometry is treated as an infinitely large disk
lying in the Y=0 plane of the local sensor coordinate system and coincident with the
initial intersection point. Dragging motion is mapped into a rotation around the +Y-axis
vector of the local sensor coordinate system. The perpendicular vector from the initial
intersection point to this Y-axis defines zero rotation about the Y-axis of the local sensor
coordinate system. For each subsequent position of the bearing, a rotation_changed
event is sent that equals the sum of the rotation about the +Y-axis vector of the local
sensor coordinate system (from the initial intersection to the new intersection) plus the
offset value. trackPoint_changed events reflect the unclamped drag position on the
surface of this disk. When the pointing device is deactivated and autoOffset is TRUE,
offset is set to the last rotation angle and an offset_changed event is generated. See
20.2.2 Drag sensors, for a more general description of autoOffset and offset fields.

If the initial acute angle between the bearing vector and the local sensor coordinate
system Y-axis of the CylinderSensor node is greater than or equal to diskAngle, the
sensor behaves like a cylinder. The shortest distance between the point of intersection
(between the bearing and the sensor's geometry) and the Y-axis of the parent group's
local coordinate system determines the radius of an invisible cylinder used to map
pointing device motion and marks the zero rotation value. For each subsequent position
of the bearing, a rotation_changed event is sent that equals the sum of the right-
handed rotation from the original intersection about the +Y-axis vector plus the offset
value. trackPoint_changed events reflect the unclamped drag position on the surface of
the invisible cylinder. When the pointing device is deactivated and autoOffset is TRUE,
offset is set to the last rotation angle and an offset_changed event is generated. More
details are available in 20.2.2 Drag sensors.

When the sensor generates an isActive TRUE event, it grabs all further motion events
from the pointing device until it is released and generates an isActive FALSE event (other
pointing device sensors shall not generate events during this time). Motion of the
pointing device while isActive is TRUE is referred to as a "drag" operation. If a 2D
pointing device is in use, isActive events will typically reflect the state of the primary
button associated with the device (i.e., isActive is TRUE when the primary button is
pressed and FALSE when it is released). If a 3D pointing device (e.g., a wand) is in use,
isActive events will typically reflect whether the pointer is within or in contact with the
sensor's geometry.

While the pointing device is activated, trackPoint_changed and rotation_changed events
are output and are interpreted from pointing device motion based on the sensor's local

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 20 Pointing device sensor component

pointingDeviceSensor.html[8/1/2020 10:01:16 AM]

coordinate system at the time of activation. trackPoint_changed events represent the
unclamped intersection points on the surface of the invisible cylinder or disk. If the
initial angle results in cylinder rotation (as opposed to disk behaviour) and if the
pointing device is dragged off the cylinder while activated, browsers may interpret this
in a variety of ways (e.g., clamp all values to the cylinder and continuing to rotate as
the point is dragged away from the cylinder). Each movement of the pointing device
while isActive is TRUE generates trackPoint_changed and rotation_changed events.

The minAngle and maxAngle fields clamp rotation_changed events to a range of values.
If minAngle is greater than maxAngle, rotation_changed events are not clamped. The
minAngle and maxAngle fields are restricted to the range [-2π, 2π].

More information about this behaviour is described in 20.2 Concepts.

 20.4.2 PlaneSensor
PlaneSensor : X3DDragSensorNode {
 SFBool [in,out] autoOffset TRUE
 SFRotation [in,out] axisRotation 0 0 1 0
 SFString [in,out] description ""
 SFBool [in,out] enabled TRUE
 SFVec2f [in,out] maxPosition -1 -1 (-∞,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFVec2f [in,out] minPosition 0 0 (-∞,∞)
 SFVec3f [in,out] offset 0 0 0 (-∞,∞)
 SFBool [out] isActive
 SFBool [out] isOver
 SFVec3f [out] trackPoint_changed
 SFVec3f [out] translation_changed
}

The PlaneSensor node maps pointing device motion into two-dimensional translation in
a plane parallel to the Z=0 plane of the local sensor coordinate system. The local sensor
coordinate system is created by applying the axisRotation field value to the local
coordinate system. The PlaneSensor node uses the descendent geometry of its parent
node to determine whether it is liable to generate events.

The description field in the PlaneSensor node specifies a textual description of the
PlaneSensor node. This may be used by browser-specific user interfaces that wish to
present users with more detailed information about the PlaneSensor.

The enabled field enables and disables the PlaneSensor. If enabled is TRUE, the sensor
reacts appropriately to user events. If enabled is FALSE, the sensor does not track user
input or send events. If enabled receives a FALSE event and isActive is TRUE, the sensor
becomes disabled and deactivated, and outputs an isActive FALSE event. If enabled
receives a TRUE event, the sensor is enabled and made ready for user activation.

The PlaneSensor node generates events when the pointing device is activated while the
pointer is indicating any descendent geometry nodes of the sensor's parent group. See
20.2.3 Activating and manipulating pointing device sensors, for details on using the
pointing device to activate the PlaneSensor.

Upon activation of the pointing device (e.g., mouse button down) while indicating the
sensor's geometry, an isActive TRUE event is sent. Pointer motion is mapped into relative
translation in the tracking plane, (a plane parallel to the local sensor coordinate system
Z=0 plane and coincident with the initial point of intersection). For each subsequent
movement of the bearing, a translation_changed event is output which corresponds to
the sum of the relative translation from the original intersection point to the intersection

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 20 Pointing device sensor component

pointingDeviceSensor.html[8/1/2020 10:01:16 AM]

point of the new bearing in the plane plus the offset value. The sign of the translation is
defined by the Z=0 plane of the local sensor coordinate system. trackPoint_changed
events reflect the unclamped drag position on the surface of this plane. When the
pointing device is deactivated and autoOffset is TRUE, offset is set to the last
translation_changed value and an offset_changed event is generated. More details are
provided in 20.2.2 Drag sensors.

When the sensor generates an isActive TRUE event, it grabs all further motion events
from the pointing device until it is deactivated and generates an isActive FALSE event.
Other pointing device sensors shall not generate events during this time. Motion of the
pointing device while isActive is TRUE is referred to as a "drag" operation. If a 2D
pointing device is in use, isActive events typically reflect the state of the primary button
associated with the device (i.e., isActive is TRUE when the primary button is pressed, and
is FALSE when it is released). If a 3D pointing device (e.g., wand) is in use, isActive
events typically reflect whether the pointer is within or in contact with the sensor's
geometry.

minPosition and maxPosition may be set to clamp translation_changed events to a
range of values as measured from the origin of the Z=0 plane of the local sensor
coordinate system. If the X or Y component of minPosition is greater than the
corresponding component of maxPosition, translation_changed events are not clamped
in that dimension. If the X or Y component of minPosition is equal to the corresponding
component of maxPosition, that component is constrained to the given value. This
technique provides a way to implement a line sensor that maps dragging motion into a
translation in one dimension.

While the pointing device is activated and moved, trackPoint_changed and
translation_changed events are sent. trackPoint_changed events represent the
unclamped intersection points on the surface of the tracking plane. If the pointing
device is dragged off of the tracking plane while activated (e.g., above horizon line),
browsers may interpret this in a variety ways (e.g., clamp all values to the horizon).
Each movement of the pointing device, while isActive is TRUE, generates
trackPoint_changed and translation_changed events.

Further information about this behaviour can be found in 20.2 Concepts.

 20.4.3 SphereSensor
SphereSensor : X3DDragSensorNode {
 SFBool [in,out] autoOffset TRUE
 SFString [in,out] description ""
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFRotation [in,out] offset 0 1 0 0 [-1,1],(-∞,∞)
 SFBool [out] isActive
 SFBool [out] isOver
 SFRotation [out] rotation_changed
 SFVec3f [out] trackPoint_changed
}

The SphereSensor node maps pointing device motion into spherical rotation about the
origin of the local coordinate system. The SphereSensor node uses the descendent
geometry of its parent node to determine whether it is liable to generate events.

The description field in the SphereSensor node specifies a textual description of the
SphereSensor node. This may be used by browser-specific user interfaces that wish to
present users with more detailed information about the SphereSensor.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 20 Pointing device sensor component

pointingDeviceSensor.html[8/1/2020 10:01:16 AM]

The enabled field enables and disables the SphereSensor node. If enabled is TRUE, the
sensor reacts appropriately to user events. If enabled is FALSE, the sensor does not track
user input or send events. If enabled receives a FALSE event and isActive is TRUE, the
sensor becomes disabled and deactivated, and outputs an isActive FALSE event. If
enabled receives a TRUE event the sensor is enabled and ready for user activation.

The SphereSensor node generates events when the pointing device is activated while
the pointer is indicating any descendent geometry nodes of the sensor's parent group.
See 20.2.3 Activating and manipulating pointing device sensors, for details on using the
pointing device to activate the SphereSensor.

Upon activation of the pointing device (e.g., mouse button down) over the sensor's
geometry, an isActive TRUE event is sent. The vector defined by the initial point of
intersection on the SphereSensor's geometry and the local origin determines the radius
of the sphere that is used to map subsequent pointing device motion while dragging.
The virtual sphere defined by this radius and the local origin at the time of activation is
used to interpret subsequent pointing device motion and is not affected by any changes
to the sensor's coordinate system while the sensor is active. For each position of the
bearing, a rotation_changed event is sent which corresponds to the sum of the relative
rotation from the original intersection point plus the offset value. trackPoint_changed
events reflect the unclamped drag position on the surface of this sphere. When the
pointing device is deactivated and autoOffset is TRUE, offset is set to the last
rotation_changed value and an offset_changed event is generated. See 20.2 Concepts,
for more details.

When the sensor generates an isActive TRUE event, it grabs all further motion events
from the pointing device until it is released and generates an isActive FALSE event (other
pointing device sensors shall not generate events during this time). Motion of the
pointing device while isActive is TRUE is termed a "drag" operation. If a 2D pointing
device is in use, isActive events will typically reflect the state of the primary button
associated with the device (i.e., isActive is TRUE when the primary button is pressed and
FALSE when it is released). If a 3D pointing device (e.g., wand) is in use, isActive events
will typically reflect whether the pointer is within (or in contact with) the sensor's
geometry.

While the pointing device is activated, trackPoint_changed and rotation_changed events
are output. trackPoint_changed events represent the unclamped intersection points on
the surface of the invisible sphere. If the pointing device is dragged off the sphere while
activated, browsers may interpret this in a variety of ways (e.g., clamp all values to the
sphere or continue to rotate as the point is dragged away from the sphere). Each
movement of the pointing device while isActive is TRUE generates trackPoint_changed
and rotation_changed events.

Further information about this behaviour can be found in 20.2 Concepts.

 20.4.4 TouchSensor
TouchSensor : X3DTouchSensorNode {
 SFString [in,out] description ""
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFVec3f [out] hitNormal_changed
 SFVec3f [out] hitPoint_changed
 SFVec2f [out] hitTexCoord_changed

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 20 Pointing device sensor component

pointingDeviceSensor.html[8/1/2020 10:01:16 AM]

 SFBool [out] isActive
 SFBool [out] isOver
 SFTime [out] touchTime
}

A TouchSensor node tracks the location and state of the pointing device and detects
when the user points at geometry contained by the TouchSensor node's parent group.

The description field in the TouchSensor node specifies a textual description of the
TouchSensor node. This may be used by browser-specific user interfaces that wish to
present users with more detailed information about the TouchSensor.

A TouchSensor node can be enabled or disabled by sending it an enabled event with a
value of TRUE or FALSE. If the TouchSensor node is disabled, it does not track user input
or send events.

The TouchSensor generates events when the pointing device points toward any
geometry nodes that are descendants of the TouchSensor's parent group. See 20.2.3
Activating and manipulating pointing device sensors, for more details on using the
pointing device to activate the TouchSensor.

The isOver field reflects the state of the pointing device with regard to whether it is
pointing towards the TouchSensor node's geometry or not. When the pointing device
changes state from a position such that its bearing does not intersect any of the
TouchSensor node's geometry to one in which it does intersect geometry, an isOver
TRUE event is generated. When the pointing device moves from a position such that its
bearing intersects geometry to one in which it no longer intersects the geometry, or
some other geometry is obstructing the TouchSensor node's geometry, an isOver FALSE
event is generated. These events are generated only when the pointing device has
moved and changed `over' state. Events are not generated if the geometry itself is
animating and moving underneath the pointing device.

As the user moves the bearing over the TouchSensor node's geometry, the point of
intersection (if any) between the bearing and the geometry is determined. Each
movement of the pointing device, while isOver is TRUE, generates hitPoint_changed,
hitNormal_changed and hitTexCoord_changed events. hitPoint_changed events contain
the 3D point on the surface of the underlying geometry, given in the TouchSensor
node's coordinate system. hitNormal_changed events contain the surface normal vector
at the hitPoint. hitTexCoord_changed events contain the texture coordinates of that
surface at the hitPoint. The values of hitTexCoord_changed and hitNormal_changed
events are computed as appropriate for the associated shape.

If isOver is TRUE, the user may activate the pointing device to cause the TouchSensor
node to generate isActive events (e.g., by pressing the primary mouse button). When
the TouchSensor node generates an isActive TRUE event, it grabs all further motion
events from the pointing device until it is released and generates an isActive FALSE event
(other pointing device sensors will not generate events during this time). Motion of the
pointing device while isActive is TRUE is termed a "drag" operation. If a 2D pointing
device is in use, isActive events reflect the state of the primary button associated with
the device (i.e., isActive is TRUE when the primary button is pressed and FALSE when it is
released). If a 3D pointing device is in use, isActive events will typically reflect whether
the pointing device is within (or in contact with) the TouchSensor node's geometry.

The field touchTime is generated when all three of the following conditions are true:

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 20 Pointing device sensor component

pointingDeviceSensor.html[8/1/2020 10:01:16 AM]

a. The pointing device was pointing towards the geometry when it was initially
activated (isActive is TRUE).

b. The pointing device is currently pointing towards the geometry (isOver is TRUE).
c. The pointing device is deactivated (isActive FALSE event is also generated).

More information about this behaviour is described in 20.2 Concepts.

 20.5 Support levels
The Pointing Device Sensor component provides one level of support as specified in
Table 20.2.

 Table 20.2 — Pointing device sensor component support levels

Level Prerequisites Nodes/Features Support

1
Core 1
Grouping 1
Shape 1

DragSensorNodeType
(abstract) n/a

PointingDeviceSensorNodeType
(abstract) n/a

TouchSensorNodeType
(abstract) n/a

CylinderSensor All fields fully
supported.

PlaneSensor All fields fully
supported.

SphereSensor All fields fully
supported.

TouchSensor All fields fully
supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 41 Volume rendering component

volume.html[8/1/2020 10:01:19 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

41 Volume rendering component

 41.1 Introduction

41.1.1 Name

The name of this component is "VolumeRendering". This name shall be used when referring to
this component in the COMPONENT statement (see 7.2.5.4 Component statement).

41.1.2 Overview

This component provides the ability to specify and render volumetric data sets. Table 41.1
provides links to the major topics in this clause.

 Table 41.1 — Topics

41.1 Introduction
41.1.1 Name
41.1.2 Overview

41.2 Concepts
41.2.1 Overview
41.2.2 Representing volumetric data

41.2.2.1 Registration and scaling
41.2.2.2 Data representation

41.2.2.2.1 3D texture definition
41.2.2.2.2 Vector and normal representation
41.2.2.2.3 Data optimization

41.2.2.3 Segmentation information
41.2.2.4 Tensor representation
41.2.2.5 Visual representation

41.2.3 Interaction with other nodes and components
41.2.3.1 Overview
41.2.3.2 Lighting
41.2.3.3 Geometry

41.2.4 Conformance
41.2.4.1 Dimensionality
41.2.4.2 Hardware requirements
41.2.4.3 Scene graph interaction

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 41 Volume rendering component

volume.html[8/1/2020 10:01:19 AM]

41.3 Abstract types
41.3.1 X3DComposableVolumeRenderStyleNode
41.3.2 X3DVolumeDataNode
41.3.3 X3DVolumeRenderStyleNode

41.4 Node reference
41.4.1 BlendedVolumeStyle
41.4.2 BoundaryEnhancementVolumeStyle
41.4.3 CartoonVolumeStyle
41.4.4 ComposedVolumeStyle
41.4.5 EdgeEnhancementVolumeStyle
41.4.6 IsoSurfaceVolumeData
41.4.7 OpacityMapVolumeStyle
41.4.8 ProjectionVolumeStyle
41.4.9 SegmentedVolumeData
41.4.10 ShadedVolumeStyle
41.4.11 SilhouetteEnhancementVolumeStyle
41.4.12 ToneMappedVolumeStyle
41.4.13 VolumeData

41.5 Support levels

Table 41.1 — Topics
Table 41.2 — Mapping of texture colour components to 3D coordinates
Table 41.3 — Weight function types
Table 41.4 — Transfer function to weight mapping
Table 41.5 — Transfer function mapping from texture type to texture coordinate
Table 41.6 — Transfer function mapping from texture type to output colour
Table 41.7 — Volume rendering component support levels

Figure 41.1 — Torso in BlendedVolumeStyle
Figure 41.2 — Default volume style on left and BoundaryEnhancementVolumeStyle on
right
Figure 41.3 — Default volume style on left and CartoonVolumeStyle on right
Figure 41.4 — Default volume style on left and ComposedVolumeStyle on right
Figure 41.5 — Default volume style on left and EdgeEnhancementVolumeStyle on right
Figure 41.6 — IsoSurface volume data using CartoonVolumeStyle
Figure 41.7 — Default volume style on left and OpacityMapVolumeStyle on right
Figure 41.8 — Illustration of values selected when using MIP or LMIP volume rendering
styles
Figure 41.9 — Default volume style on left and MIP ProjectionVolumeStyle on right
Figure 41.10 — Segmented volume data using OpacityMapVolumeStyle and
ToneMappedVolumeStyle
Figure 41.11 — Default volume style on left and ShadedVolumeStyle on right
Figure 41.12 — Default volume style on left and SilhouetteEnhancementVolumeStyle on
right
Figure 41.13 — Default volume style on left and ToneMappedVolumeStyle on right
Figure 41.14 — Volume data using default volume style

 41.2 Concepts

41.2.1 Overview

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 41 Volume rendering component

volume.html[8/1/2020 10:01:19 AM]

Volume rendering is an alternate form of visual data representation compared to the traditional
polygonal form used in the rest of this part of ISO/IEC 19775. Whereas polygons represent a
portion of an infinitely thin plane, volume data represents a three-dimensional portion of space.
When polygonal data representing a volume in space is sliced, such as with a clipping plane,
there is empty space. In the same situation, volumetric data shows the internals of that
volume.

There are many different techniques for implementing rendering of volumetric data. This
component does not define the technique used to render the data, only the type of visual
output to be produced. In addition, it defines several different types of data representations for
which the renderings may be applied. To implement some of the higher-complexity
representations, the implementer may need to use a more complex rendering technique than
the simpler representations (though this is not required). Each of the rendering nodes
represents the visual output required, not the technique used to implement that visual output.
Most of the rendering styles defined in this component are formally defined in [FOLEY].

41.2.2 Representing volumetric data

41.2.2.1 Coordinate system

Volumetric data consists of a set of aligned 2D textures. The coordinate system places the 2D
textures in the volume such that each 2D texture lies in the XY-plane, with the depth
increasing away from the viewer along the +Z axis.

NOTE This, effectively, inverts the 3D texture coordinates for the R axis direction, which defines them to have depth
increasing along the -Z axis (see Figure 33.1).

The volume is centered around the local origin and is subject to the parent transformation
hierarchy, including scales, shears and rotations.

41.2.2.1 Registration and scaling

Volumetric data represents volume information that often comes from the real world or is
computationally generated.

EXAMPLE Human body scans are from the real world while simulated stress analysis of an engine part is computationally
generated.

The volumetric data is typically part of a larger environment space and thus needs to be
located within that space so that volumes for different parts (e.g., an arm and leg of a single
human) may be presented in a spatially correct manner. Typically, volumes are not a unit cube
in size. Thus, additional dimensional information accompanies the volume to indicate its true
size in the local coordinate system.

41.2.2.2 Data representation

41.2.2.2.1 3D texture definition

Volume rendering requires the data be provided in a volumetric form. This component uses the
3D texturing component (see 33 Texturing3D component) to represent the raw volume data,
but without rendering that data directly onto polygonal surfaces. Volumetric rendering may
make use of multiple 3D textures to generate a final visual form.

Data may be represented using between one and four colour components. How each colour

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 41 Volume rendering component

volume.html[8/1/2020 10:01:19 AM]

component is to be interpreted as part of the rendering is defined for each node. Some nodes
may require a specific minimum number of components or define that anything more than a
specific number are to be ignored. Providing extra data may not be helpful to the
implementation. In cases where not enough components are provided (e.g., a surface normal
texture only being defined with a one or two component colour image), the entire data source
is ignored.

41.2.2.2.2 Vector and normal representation

Some nodes make use of 3D textures to convey data other than colour.

EXAMPLE Normal or other vector information may be included.

For the purposes of representing 3D information, the 3D texture components shall be
interpreted as defined by Table 41.2.

Table 41.2 — Mapping of texture colour components to 3D coordinates

Color Component 3D Coordinate

Red X

Green Y

Blue Z

Alpha Ignored

If the texture provided for the field does not contain enough colour components for the data to
be represented, it shall be ignored and the node's default behaviour used.

If a rendering style requires a surface normal value and is required to implicitly calculate one,
the normal at a given voxel is the normalized gradient of the scalar field at that voxel location.

41.2.2.2.3 Data optimization

An implementation is free to provide whatever data reduction techniques are appropriate
during pre-processing prior to rendering. Within a specific volume data representation, the
implementation may also perform its own optimization techniques.

EXAMPLE Automatic mipmapping may occur.

Volume visualization data sets are not required to be represented in sizes that are powers of
two. Implementations may need to internally pad the texture sizes for passing to the
underlying rendering engine, but user-provided content is not required to do this.

41.2.2.3 Segmentation information

The volume data may optionally represent segmented data sets. Doing so requires
representing the data in a slightly different manner than a standard volume data set.
Therefore, a separate node is provided. Segmentation data takes the form of an additional
volume of data where each voxel represents a segment ID value in addition to other values
represented in each voxel. The segmentation information is used by the rendering process to

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 41 Volume rendering component

volume.html[8/1/2020 10:01:19 AM]

control how each voxel is to be rendered. It is not unusual to use segmentation information to
render each segment identifier with a different style.

EXAMPLE Bone may be rendered using isosurfaces while skin may be rendered using tone shading.

41.2.2.4 Tensor representation

This part of ISO/IEC 19775 does not explicitly handle or represent tensor data (i.e., higher-
order products of functions that are each applied to a set of variables). Nevertheless, tensor
information may be rendered using the techniques in this International Standard even though
no direct data is being transmitted. It is recommended that, if an application needs to know
about the existence of tensor data, the metadata capabilities of this part of ISO/IEC 19775 also
be used.

41.2.2.5 Visual representation

Volumetric data is typically given as a 3D rectangular block of information. Turning that
densely packed information into something meaningful where internal structures may be
discernable is the job of the rendering process. However, there is not a single uniform approach
to volume rendering. A technique that is good for exposing structures for medical visualization
may be poor for fluid simulation visualization.

To allow for the production of different visual outputs, the Volume rendering component
separates the scenegraph into two sets of responsibilities:

a. nodes for representing the volume data, and
b. nodes for rendering that volume data in different ways.

In this way, the same rendering process may be used for different sets of volume data where
varying rendering styles may be used to highlight different structures within the one volume.

Many rendering techniques map volume data to a visual representation through the use of
another texture known as a Transfer function. This secondary texture defines the colours to
use, acting as a form of lookup table. Transfer functions can be defined in one, two, or three
dimensions. A one-dimensional texture capability can be achieved through the use of a 2D
texture that is only one pixel wide.

41.2.3 Interaction with other nodes and components

41.2.3.1 Overview

Volumetric rendering requires a completely different implementation path from traditional
polygonal rendering. The data represents not only surface information, but also colour and
potentially lighting information as well. As such, volume rendering occupies the role in the
renderable scenegraph of an X3DShapeNode rather than as individual geometry or appearance
information.

41.2.3.2 Lighting

Volumetric rendering is not required to follow the standard lighting equations specified in 17
Lighting component. Many techniques include the ability to self-light and self-shadow using
information from the parent scene graph (e.g., light scoping).

The volume data is rendered using one or more rendering styles. Each rendering style defines
its own lighting equation that takes the colour and opacity value from the previously evaluated

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 41 Volume rendering component

volume.html[8/1/2020 10:01:19 AM]

style, modifies the lighting equation according to the local style rules, and generates an output
colour and opacity value. The first rendering style that is applied to the voxel obtains the
source values directly from the voxel data using the colour and/or opacity channels as needed.
Typically, the first rendering style the used to render the volume data are transfer functions
and the OpacityMapVolumeStyle.

Many of these rendering styles involve non-photorealistic rendering effects. Each style presents
its own lighting equation specifying how to get from the underlying voxel representation to the
contributed output colour. The following are some common terms that are found in the lighting
equations:

Ov: The initial opacity of the object prior to the use of this rendering style. If this is the
first rendering style applied to the object, this is the value of the alpha component of the
voxel being evaluated.
Og: The output opacity of the object resulting from evaluating this rendering style.
Cv: The initial colour of the object prior to the use of this rendering style. If this is the first
rendering style applied to the object, this is the value of the colour components of the
voxel being applied.
Cg The output colour of the object resulting from evaluating this rendering style.
Δf: The normalized value gradient of the voxel. This is the rate of change of the value
relative to the values in neighbouring voxels.
V: The vector from the viewer's position to the voxel being evaluated, in the local
coordinate space of the volume data.
n: The local surface normal. This may be provided by the user through another 3D texture
that contains a surface normal for each voxel or else is internally calculated through
algorithmic means.
Li: Light direction vector from light source i. Typically, this is part of a summation over all
light sources affecting the volume.

When determining the view direction for any lighting or rendering calculations, the view
direction is calculated from the user's current location in the world to the current voxel being
processed. Lighting and rendering style calculations are assumed to be individually calculated
for each voxel.

41.2.3.3 Geometry

The volumetric rendering nodes representing geometry are leaf nodes in the renderable tree.
Volumetric nodes may exist as part of a shared scene graph with DEF/USE.

41.2.4 Conformance

41.2.4.1 Dimensionality

The minimum required voxel dimensions that shall be supported are 256x256x256.

41.2.4.2 Hardware requirements

There are no specific requirements for hardware acceleration of this component. In addition,
this component does not define the specific implementation strategy to be used by a given
rendering style. It is as equally valid to implement the code using simple multi-pass rendering
as it is to use hardware shaders.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 41 Volume rendering component

volume.html[8/1/2020 10:01:19 AM]

41.2.4.3 Scene graph interaction

For minimum conformance, sensor nodes that require interaction with the geometry (e.g.,
TouchSensor) shall provide intersection information based on the volume's bounds. An
implementation may optionally provide real intersection information based on performing ray
casting into the volume space and reporting the first non-transparent voxel hit.

Navigation and collision detection also require a minimal conformance requirement of using the
bounds of the volume. In addition, the implementation may allow greater precision with non-
opaque voxels in a similar manner to the sensor interactions.

 41.3 Abstract types

41.3.1 X3DComposableVolumeRenderStyleNode
X3DComposableVolumeRenderStyleNode : X3DVolumeRenderStyleNode {
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

The X3DComposableVolumeRenderStyleNode abstract node type is the base type for all node
types that allow rendering styles to be sequentially composed together to form a single
renderable output. The output of one style may be used as the input of the next style.
Composition in this manner is performed using the ComposedVolumeStyle node.

41.3.2 X3DVolumeDataNode
X3DVolumeDataNode : X3DChildNode, X3DBoundedObject {
 SFVec3f [in,out] dimensions 1 1 1 (0,∞)
 SFBool [in out] bboxDisplay FALSE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [in out] visible TRUE
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or -1 -1 -1
}

The X3DVolumeDataNode abstract node type is the base type for all node types that describe
volumetric data to be rendered. It sits at the same level as the polygonal X3DShapeNode (see
12.3.4 X3DShapeNode) within the scene graph structure, but defines volumetric data rather
than polygonal data.

The dimensions field specifies the dimensions of this geometry in the local coordinate space
using standard X3D length base units. It is assumed the volume is centered around the local
origin. If the bboxSize field is set, it typically has the same value as the dimensions field.

If one of the dimension values is zero, the X3DVolumeDataNode shall be rendered as a plane.
If two of the dimension values are zero, the X3DVolumeDataNode shall be rendered as a line. If
all three dimension values are zero, the X3DVolumeDataNode shall be rendered as a point.

41.3.3 X3DVolumeRenderStyleNode
X3DVolumeRenderStyleNode : X3DNode {
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

The X3DVolumeRenderStyleNode abstract node type is the base type for all node types that
specify a specific visual rendering style to be used when rendering volume data.

The enabled field defines whether this rendering style is currently applied to the volume data.
If the field is set to FALSE, the rendering shall not be applied. The result of rendering with the
enabled field set to FALSE shall act as though no volume data is provided. Effectively, this allows

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 41 Volume rendering component

volume.html[8/1/2020 10:01:19 AM]

turning on and off volume rendering of specific parts of the volume without needing to add or
remove style definitions from the volume data node.

 41.4 Node reference

41.4.1 BlendedVolumeStyle
BlendedVolumeStyle : X3DComposableVolumeRenderStyleNode {
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFNode [in,out] renderStyle NULL [X3DComposableVolumeRenderStyleNode]
 SFNode [in,out] voxels NULL [X3DTexture3DNode]
 SFFloat [in,out] weightConstant1 0.5 [0,1]
 SFFloat [in,out] weightConstant2 0.5 [0,1]
 SFString [in,out] weightFunction1 "CONSTANT" ["CONSTANT", "ALPHA0", "ALPHA1", "TABLE",
 "ONE_MINUS_ALPHA0", "ONE_MINUS_ALPHA1"]
 SFString [in,out] weightFunction2 "CONSTANT" ["CONSTANT", "ALPHA0", "ALPHA1", "TABLE",
 "ONE_MINUS_ALPHA0", "ONE_MINUS_ALPHA1"]
 SFNode [in,out] weightTransferFunction1 NULL [X3DTexture2DNode]
 SFNode [in,out] weightTransferFunction2 NULL [X3DTexture2DNode]
}

The BlendedVolumeStyle combines the rendering of the parent volume data set and the
rendering of a second specified volume data set into one by blending the values according to a
weight function. The first data set is the data set that is specified by the parent VolumeData or
SegmentedVolumeData node. The second data set and its render style is defined by the voxels
and renderStyle fields specified by this BlendedVolumeStyle node. For the latter case, the value
specified by the renderStyle field is applied to the voxels specified by the voxels field. The
result is blended with the current state of voxels from the parent VolumeData or
SegmentedVolumeData node. Those voxels are either the original parent voxels with default
OpacityMapVolumeStyle applied or the result of any previous renderStyles having been applied
by a ComposedVolumeStyle node.

The final colour is determined by:

Cg = clamp[0-1](Cv × w1 + Cblend × w2)
Og = clamp[0-1](Ov × w1 + Oblend × w2)

where Cblend and Oblend is the color and alpha value of the second data set after the rendering
style has been applied. The values of w1 and w2 depend on the weightFunction1 and
weightFunction2 fields, respectively, as defined in Table 41.3.

 Table 41.3 — Weight function types

Value Description of
weightFunction1

Description of
weightFunction2

"CONSTANT" Use weightConstant1. Use weightConstant2.

"ALPHA1" Use Ov. Use Ov.

"ALPHA2" Use Oblend. Use Oblend.

"ONE_MINUS_ALPHA1" Use 1 - Ov. Use 1 - Ov.

"ONE_MINUS_ALPHA2" Use 1 - Oblend. Use 1 - Oblend.

"TABLE"

Use the lookup value for texture
coordinate (Ov, Oblend) in
weightTransferFunction1 and map

Use the lookup value for texture
coordinate (Ov, Oblend) in
weightTransferFunction2 and map

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 41 Volume rendering component

volume.html[8/1/2020 10:01:19 AM]

to weight value according to Table
41.4 or use Ov if
weightTransferFunction1 is NULL.

to weight value according to Table
41.4 or use Ov if
weightTransferFunction2 is NULL.

The weightTransferFunction1 and weightTransferFunction2 fields specify two-dimensional
textures that are used to determine the weight values when the weight function is set to
"TABLE". The output weight value depends on the number of components in the textures as
specified in Table 41.4.

Table 41.4 — Transfer function to weight mapping

Number of Texture
Components

Texel
Components Weight

1 Luminance (L) Luminance component
(L)

2 Luminance Alpha
(LA)

Luminance component
(L)

3 RGB Red component (R)

4 RGBA Red component (R)

Figure 41.1 depicts a human torso and part of a skull (OpacityMapRenderStyle) blended with a
blue/yellow tone-mapped volume of the internal organs. The image shows how
BlendedVolumeStyle allows two different volumes to be combined, each with its own render
style.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 41 Volume rendering component

volume.html[8/1/2020 10:01:19 AM]

Figure 41.1 — Torso in BlendedVolumeStyle

41.4.2 BoundaryEnhancementVolumeStyle
BoundaryEnhancementVolumeStyle : X3DComposableVolumeRenderStyleNode {
 SFFloat [in,out] boundaryOpacity 0.9 [0,1]
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFFloat [in,out] opacityFactor 2 [0,∞)
 SFFloat [in,out] retainedOpacity 0.2 [0,1]
}

The BoundaryEnhancementVolumeStyle node provides boundary enhancement for the volume
rendering style. In this rendering style, the colour rendered is based on the gradient
magnitude. Faster-changing gradients (surface normals) are darker than slower-changing
gradients. Thus, regions of different density are made more visible relative to parts that are of
relatively constant density.

The surfaceNormals field is used to provide pre-calculated surface normal information for each
voxel. If provided, this shall be used for all lighting calculations. If not provided, the
implementation shall automatically generate surface normals using an implementation-specific
method. If a value is provided, it shall be exactly the same voxel dimensions as the base
volume data that it represents. If the dimensions are not identical, the browser shall generate a
warning and automatically generate its own internal normals as though no value was provided
for this field.

The output opacity for this rendering style is obtained by combining a fraction of the volume's
original opacity with an enhancement based on the local boundary strength (i.e., magnitude of
the gradient between adjacent voxels). Colour components from the input are transferred
unmodified to the output. The function used is:

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 41 Volume rendering component

volume.html[8/1/2020 10:01:19 AM]

Og = Ov (kgc + kgs(|Δf|)^kge)

where

the operator "^" means "to the power"
Og is the computed opacity of the voxel
Ov is the original opacity of the voxel
kgc is the amount of initial opacity to mix into the output (retainedOpacity).
kgs is the factored amount of the gradient enhancement to use (boundaryOpacity).
kge is the power function to control the slope of the opacity curve to highlight the set of
data (opacityFactor).
|Δf| is the absolute value of the forward difference between the current and next voxel.

Figure 41.2 shows a basic image of ventricles of the brain on the left and an image of ventricles
of the brain using BoundaryEnhancementVolumeStyle on the right.

Figure 41.2 — On the left, the ventricle with default render style and default field
values. On the right, the ventricle using BoundaryEnhancementVolumeStyle with
default values: boundaryOpacity=0.9, opacityFactor=2, and retainedOpacity=0.2.

41.4.3 CartoonVolumeStyle
CartoonVolumeStyle : X3DComposableVolumeRenderStyleNode {
 SFInt32 [in,out] colorSteps 4 [1,64]
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFColorRGBA [in,out] orthogonalColor 1 1 1 1 [0,1]
 SFColorRGBA [in,out] parallelColor 0 0 0 1 [0,1]
 SFNode [in,out] surfaceNormals NULL [X3DTexture3DNode]
}

The CartoonVolumeStyle generate a cartoon-style non-photorealistic rendering of the
associated volumetric data. Cartoon rendering uses two colours that are rendered in a series of
distinct flat-shaded sections based on the local surface normal's closeness to the average

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 41 Volume rendering component

volume.html[8/1/2020 10:01:19 AM]

normal with no gradients in between.

The surfaceNormals field contains a 3D texture with at least three component values. Each
voxel in the texture represents the surface normal direction for the corresponding voxel in the
base data source. This texture should be identical in dimensions to the source data. If not, the
implementation may interpolate or average between adjacent voxels to determine the average
normal at the voxel required. If this field is empty, the implementation shall automatically
determine the surface normal using algorithmic means.

The parallelColor field specifies the colour to be used for surface normals that are orthogonal to
the viewer's current location (where the plane of the surface itself is parallel to the user's view
direction).

The orthogonalColor field specifies the colour to be used for surface normals that are parallel to
the viewer's current location (the plane of the surface itself is orthogonal to the user's view
direction). Surfaces that are backfacing are not rendered and shall have no colour calculated
for them.

The colorSteps field indicates how many distinct colours are taken from the interpolated colours
and used to render the object. If the value is 1, no colour interpolation takes place and only the
orthogonal colour is used to render the surface. For any other value, the colours are
interpolated between parallelColor and orthogonalColor in HSV colour space for the RGB
components, and linearly for the alpha component.

To determine the colours to be used, the angles for the surface normal relative to the view
position are used. The range [0, π/2] is divided by colourSteps. (The two ends of the spectrum
are not interpolated in this way and shall use the specified field values). For each of the
interpolated ranges, other than the two ends, the midpoint angle is determined and the
interpolated colour value is computed using that point.

EXAMPLE Using the default field values for CartoonVolumeStyle, the following RGBA colour are computed:

1,1,1,1 for angles [0, π/8)

0.625,0.625,0.625,1 for angles [π/8, π/4),

0.375,0.375,0.375,1 for angles [π/4, 3π/8),

0,0,0,1 for angles [3π/8, π/2]

Figure 41.3 shows a basic image of a backpack on the left and an image of the backpack using
CartoonVolumeStyle on the right.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 41 Volume rendering component

volume.html[8/1/2020 10:01:19 AM]

Figure 41.3 — Default volume style on left and CartoonVolumeStyle on right

41.4.4 ComposedVolumeStyle
ComposedVolumeStyle : X3DComposableVolumeRenderStyleNode {
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFNode [in,out] renderStyle [] [X3DComposableVolumeRenderStyleNode]
}

The ComposedVolumeStyle node is a rendering style node that allows compositing multiple
rendering styles together into a single rendering pass.

EXAMPLE ComposedVolumeStyle is used to render a simple volume with both edge and silhouette rendering styles.

The renderStyle field contains a list of contributing rendering style nodes or node references
that can be applied to the object. The implementation shall apply each rendering style strictly
in the order declared starting with the first rendering style in the renderStyle field.

Figure 41.4 shows a basic image of a backpack on the left and an image of the backpack using
ComposedVolumeStyle on the right that combines EdgeEnhancementVolumeStyle with
SilhouetteEnhancementVolumeStyle.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 41 Volume rendering component

volume.html[8/1/2020 10:01:19 AM]

Figure 41.4 — Default volume style on left and ComposedVolumeStyle on right

41.4.5 EdgeEnhancementVolumeStyle
EdgeEnhancementVolumeStyle : X3DComposableVolumeRenderStyleNode {
 SFColorRGBA [in,out] edgeColor 0 0 0 1 [0,1]
 SFBool [in,out] enabled TRUE
 SFFloat [in,out] gradientThreshold 0.4 [0,π]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFNode [in,out] surfaceNormals NULL [X3DTexture3DNode]
}

The EdgeEnhancementVolumeStyle node specifies edge enhancement for the volume rendering
style. Enhancement of the basic volume is provided by darkening voxels based on their
orientation relative to the view direction. Perpendicular voxels are coloured according to the
edgeColor while voxels parallel are not changed at all. A threshold can be set where the
proportion of how close to parallel the direction needs to be before no colour changes are
made.

The gradientThreshold field defines the minimum angle (in radians) away from the view
direction vector for the surface normal before any enhancement is applied.

The edgeColor field defines the colour to be used to highlight the edges.

The surfaceNormals field contains a 3D texture with at least three component values. Each
voxel in the texture represents the surface normal direction for the corresponding voxel in the
base data source. This texture should be identical in dimensions to the source data. If not, the
implementation may interpolate or average between adjacent voxels to determine the average
normal at the voxel required. If the surfaceNormals field is empty, the implementation shall
automatically determine the surface normal using algorithmic means.

The final colour is determined by:

Cg = Cv if (|n . V|) ≥ cos(gradientThreshold);
 Cv × (|n . V|) + edgeColor × (1 - (|n . V|)) otherwise.

O = O

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 41 Volume rendering component

volume.html[8/1/2020 10:01:19 AM]

g v

Figure 41.5 shows a basic image of a human brain on the left and an image of the human brain
using EdgeEnhancementVolumeStyle on the right.

Figure 41.5 — Default volume style on left and EdgeEnhancementVolumeStyle on
right

41.4.6 IsoSurfaceVolumeData
IsoSurfaceVolumeData : X3DVolumeDataNode {
 SFFloat [in,out] contourStepSize 0 (-∞,∞)
 SFVec3f [in,out] dimensions 1 1 1 (0,∞)
 SFBool [in out] bboxDisplay FALSE
 SFNode [in,out] gradients NULL [X3DTexture3DNode]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFNode [in,out] renderStyle [] [X3DVolumeRenderStyleNode]
 SFFloat [in,out] surfaceTolerance 0 [0,∞)
 MFFloat [in,out] surfaceValues [] (-∞,∞)
 SFNode [in,out] voxels NULL [X3DTexture3DNode]
 SFBool [in out] visible TRUE
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or -1 -1 -1
}

The IsoSurfaceVolumeData node specifies one or more surfaces extracted from a voxel data
set. A surface is defined as the boundary between regions in the volume where the voxel
values are larger than a given value (the iso value) on one side of the boundary and smaller on
the other side and the gradient magnitude is larger than surfaceTolerance. The gradients field
may be used to provide explicit per-voxel gradient direction information for determining surface
boundaries rather than having it implicitly calculated by the implementation.

This data representation has one of three possible modes of operation based on the values of
the two fields surfaceValues and contourStepSize.

1. If surfaceValues has a single value defined, render the isosurface that corresponds to that
value.

2. If the surfaceValues field has a single defined contourStepSize that is non-zero, also
render all isosurfaces that are multiples of that step size from the initial surface value.

EXAMPLE With a surface value of 0.25 and a step size of 0.1, any additional isosurfaces at 0.05, 0.15, 0.35,
0.45, ... shall also be rendered. If contourStepSize is left at the default value of zero, only that single isovalue is
rendered as a surface.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 41 Volume rendering component

volume.html[8/1/2020 10:01:19 AM]

NOTE The contourStepSize is allowed to be negative so that stepping proceeds in a negative direction.

3. If surfaceValues has more than a single value defined, the contourStepSize field is ignored
and surfaces corresponding to the listed surfaceValues amounts are rendered.

For each isosurface extracted from the data set, a separate render style may be assigned using
the renderStyle node. The rendering styles are taken from the renderStyles field corresponding
to the index of the surface value defined. In the case where automatic contours are being
extracted using the step size, the explicit surface value shall use the first declared render style.
Then render styles are assigned starting from the smallest iso-value. In all cases, if there are
insufficient render styles defined for the number of isosurfaces to be rendered, the last style
shall be used for all surfaces that do not have an explicit style assigned.

Ov is defined to be 1 for this volume data regardless of the number of components in the
provided volume data texture.

Figure 41.6 shows an IsoSurfaceVolume image of a skull using CartoonVolumeStyle.

Figure 41.6 — IsoSurface volume data using CartoonVolumeStyle

41.4.7 OpacityMapVolumeStyle
OpacityMapVolumeStyle : X3DComposableVolumeRenderStyleNode {
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFNode [in,out] transferFunction NULL [X3DTexture2DNode,X3DTexture3DNode]
}

The OpacityMapVolumeStyle specifies that the associated volumetric data is to be rendered
using the opacity mapped to a transfer function texture. This is the default rendering style if no
other X3DComposableVolumeRenderStyleNode is defined for the volume data.

The transferFunction field holds a single texture representation in either two or three
dimensions that maps the voxel data values to a specific colour output. If no value is supplied
for this field, the default implementation shall generate a 256x1 alpha-only image that blends
from completely transparent at pixel 0 to fully opaque at pixel 255.The texture may be any

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 41 Volume rendering component

volume.html[8/1/2020 10:01:19 AM]

number of dimensions and any number of components. The voxel values are used as a lookup
coordinates into the transfer function texture, where the texel value represents the output
colour.

Components are mapped from the voxel data to the transfer function in a component-wise
fashion. The first component of the voxel data is an index into the first dimension of the
transferFunction texture (S). Similarly, T, R, and Q are indices into the second, third, and
fourth dimensions of the transferFunction texture (see Table 41.5). If there are more
components defined in the voxel data than there dimensions in the transfer function, the extra
components are ignored. If there are more dimensions in the transfer function texture than the
voxel data, the extra dimensions in the transfer function are ignored (effectively treating the
voxel component data as a value of zero for the extra dimension). This mapping locates the
texel value in the texture, which is then used as the output for this style.

Table 41.5 — Transfer function mapping from texture type to texture coordinate

Number of Texture
Components

Texture
Components

Transfer Function Texture
Coordinates

1 Luminance S ← luminance (L)

2 Luminance Alpha S, T ← luminance, alpha (LA)

3 RGB S, T, R ← red, green, blue (RGB)

4 RGBA S, T, R, Q ← red, green, blue, alpha
(RGBA)

 The colour value is treated like a normal texture with the colour mapping as defined in Table
41.6.

Table 41.6 — Transfer function mapping from texture type to output colour

Texture Components Red Green Blue Alpha

Luminance (L) L L L 1

Luminance Alpha (LA) L L L A

RGB R G B 1

RGBA R G B A

Figure 41.7 shows a basic image of a backpack on the left and an image of the backpack using
OpacityMapVolumeStyle on the right.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 41 Volume rendering component

volume.html[8/1/2020 10:01:19 AM]

Figure 41.7 — Default volume style on left and OpacityMapVolumeStyle on right

41.4.8 ProjectionVolumeStyle
ProjectionVolumeStyle : X3DVolumeRenderStyleNode {
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFFloat [in,out] intensityThreshold 0 [0,1]
 SFString [in,put] type "MAX" ["MAX", "MIN", "AVERAGE"]
}

The ProjectionVolumeStyle volume style node uses the voxel data directly to generate output
colour based on the values of voxel data along the viewing rays from the eye point.

If the value of type is "MAX", The Maximum Intensity Projection (MIP) algorithm is used to
generate the output colour. This rendering style also includes the option to use the extended
form of Local Maximum Intensity Projection (LMIP, see [LMIP]). The output colour is
determined by projecting rays into the voxel data from the viewer location and finding the
maximum voxel value found along that ray. If the intensityThreshold value is non-zero,
rendering will use the first maximum value encountered that exceeds the threshold rather than
the maximum found along the entire ray. Figure 41.8 illustrates the difference in rendered
value between LMIP and MIP.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 41 Volume rendering component

volume.html[8/1/2020 10:01:19 AM]

Figure 41.8 — Illustration of values selected when using MIP or LMIP volume
rendering styles

If the value of type is "MIN", Minimum Intensity Projection is used. This works similar to
Maximum Intensity Projection with the difference that the minimum voxel value along the ray
is used.

If the value of type is "AVERAGE", Average Intensity Projection is used. In this case the average
value of all voxels along the ray is used as the output colour. The intensityThreshold field is
ignored. This is a simple approximation of X-Ray.

Since the output of this node is a set of intensity values, all colour components have the same
value. The intensity is derived from the average of all colour components of the voxel data
(though typical usage will only use single component textures). The Alpha channel is passed
through as-is from the underlying data. If there is no alpha channel provided, a default alpha
value of 1 is used.

Figure 41.9 shows a basic image of ventricles of the brain on the left and an image of the
ventricles of the brain using MIP ProjectionVolumeStyle on the right.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 41 Volume rendering component

volume.html[8/1/2020 10:01:19 AM]

Figure 41.9 — Default volume style on left and MIP ProjectionVolumeStyle on right

41.4.9 SegmentedVolumeData
SegmentedVolumeData : X3DVolumeDataNode {
 SFVec3f [in,out] dimensions 1 1 1 (0,∞)
 SFBool [in out] bboxDisplay FALSE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFNode [in,out] renderStyle [] [X3DVolumeRenderStyleNode]
 MFBool [in,out] segmentEnabled []
 SFNode [in,out] segmentIdentifiers NULL [X3DTexture3DNode]
 SFNode [in,out] voxels NULL [X3DTexture3DNode]
 SFBool [in out] visible TRUE
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or -1 -1 -1
}

The SegmentedVolumeData node specifies a segmented volume data set that allows for
representation of different rendering styles for each segment identifier.

The renderStyle field optionally describes a particular rendering style to be used. If this field
has a non-zero number of values, the defined rendering style is to be applied to the object. If
the object is segmented, the index of the segment shall look up the rendering style at the
given index in this array of values and apply that style to data described by that segment
identifier. If the renderStyle field is not specified, the implementation shall use an
OpacityMapVolumeStyle node (see 41.4.7 OpacityMapVolumeStyle) with default values.

The voxels field holds a 3D texture with the data for each voxel. For each voxel, there is a
corresponding segment identifier supplied in the segmentIdentifiers field, which contains a
single component texture. If the segmentIdentifiers texture is not identical in size to the main
voxels, it shall be ignored. If it contains more than one colour component, only the initial
component of the colour shall be used to define the segment identifier.

The segmentEnabled field specifies whether a segment is rendered or not. The indices of this
array corresponds to the segment identifier. A value at index i of FALSE marks any data with the
corresponding segment identifier to not be rendered. If a segment identifier is used that is
greater than the length of the array, the value is assumed to be TRUE.

Figure 41.10 shows a segmented volume image of ventricles of the brain using both
OpacityMapVolumeStyle for some segments ToneMappedVolumeStyle for the highlighted
segments.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 41 Volume rendering component

volume.html[8/1/2020 10:01:19 AM]

Figure 41.10 — Segmented volume data using OpacityMapVolumeStyle and
ToneMappedVolumeStyle

41.4.10 ShadedVolumeStyle
ShadedVolumeStyle : X3DComposableVolumeRenderStyleNode {
 SFBool [in,out] enabled TRUE
 SFBool [in,out] lighting FALSE
 SFNode [in,out] material NULL [X3DMaterialNode]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [in,out] shadows FALSE
 SFNode [in,out] surfaceNormals NULL [X3DTexture3DNode]
 SFString [] phaseFunction "Henyey-Greenstein" ["Henyey-Greenstein","NONE",...]
}

The ShadedVolumeStyle node applies the Blinn-Phong illumination model ([BLINN], [PHONG])
to volume rendering. This is similar to the model used for polygonal surfaces.

Colour and opacity is determined based on whether a value has been specified for the material
field. If a material field value is provided, this voxel is considered to be lit using the lighting
equations below. If no material field value is provided, Oc is used as diffuse color in the same
lighting equations and the specular and ambient parts are ignored.

The lighting field controls whether the rendering should calculate and apply shading effects to
the visual output. If lighting is enabled the lighting equation is defined as:

Cg = IFrgb × (1 -f0)
 + f0 × (CE rgb + SUM(oni × attenuationi × spoti × ILrgb

 × (ambienti + diffusei + specular i)))

Og = Ov × Om

where:

attenuationi = 1 / max(a1 + a2 × dL + a3 × dL
² , 1)

ambienti = Iia × CDrgb × Ca

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 41 Volume rendering component

volume.html[8/1/2020 10:01:19 AM]

diffusei = Ii × CDrgb × (N · L)
specular i = Ii × CSrgb × (N · ((L + V) / |L + V|))shininess × 128

and:

· = modified vector dot product:
 if dot product < 0, then 0.0, otherwise, dot product
a1 , a2, a3 = light i attenuation
dV = distance from this voxel to viewer's position, in coordinate system of current fog
node
dL = distance from light to voxel, in light's coordinate system
f0 = fog interpolant, see Table 17.5 for calculation
IFrgb = currently bound fog's color
I Lrgb = light i color
Ii = light i intensity
Iia = light i ambientIntensity
L = (PointLight/SpotLight) normalized vector from this voxel to light source i position
L = (DirectionalLight) -direction of light source i
N = normalized normal vector at this voxel (interpolated from vertex normals
specified by the surfaceNormals field or automatically calculated.
Om = (1 - X3DMaterialNode transparency) if material specified, 1 otherwise
Ca = X3DMaterialNode ambientIntensity if material specified, 0 otherwise
CDrgb = diffuse colour, from a node derived from X3DMaterialNode if specified, Oc
otherwise
CErgb = X3DMaterialNode emissiveColor if material specified, RGB(0,0,0) otherwise
CSrgb = X3DMaterialNode specularColor if material specified, RGB(0,0,0) otherwise
on i = 1, if light source i affects this voxel,
 0, if light source i does not affect this voxel.

The following conditions indicate that light source i does not affect this
voxel:

1. if the voxel is farther away than radius for PointLight or SpotLight;
2. if the volume is outside the enclosing X3DGroupingNode and/or if the

on field is FALSE;
3. if the lighting field of this volume is FALSE.

shininess = X3DMaterialNode shininess if material specified, 0 otherwise
spotAngle = arccosine(-L · spotDiri)
spot BW = SpotLight i beamWidth
spot CO = SpotLight i cutOffAngle
spot i = spotlight factor, see Table 17.4 for calculation
spotDiri = normalized SpotLight i direction
SUM: sum over all light sources i
V = normalized vector from the voxel to viewer's position

If the lighting field is FALSE, the diffuse color is used without any shading effects.

Cg = CD rgb

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 41 Volume rendering component

volume.html[8/1/2020 10:01:19 AM]

Og = Ov × Om

The surfaceNormals field contains a 3D texture with at least three component values. Each
voxel in the texture represents the surface normal direction for the corresponding voxel in the
base data source to be used in the lighting equation. This texture should be identical in
dimensions to the source data. If not, the implementation may interpolate or average between
adjacent voxels to determine the average normal at the voxel required. If this field is empty,
the implementation shall automatically determine the surface normal using algorithmic means.

The shadows field controls whether the rendering should calculate and apply shadows to the
visual output (using global illumination model). A value of FALSE requires that no shadowing be
applied. A value of TRUE requires that shadows be applied to the object. If the lighting field is set
to FALSE, this field shall be ignored and no shadows generated.

The phaseFunction field is used to define the scattering model for use in an implementation
using global illumination. The name defines the model type, based on standard algorithms
externally defined to this specification. The valid values are "NONE"(which means no
scattering) and "Henyey-Greenstein" which is the Henyey-Greenstein phase function defined in
[HENYEY]. Browsers may choose to support other values. If a value is specified that is not
supported by the browser, "Henyey-Greenstein" shall be used.

Figure 41.11 shows a basic image of a human brain on the left and an image of the human
brain using ShadedVolumeStyle on the right.

Figure 41.11 — Default volume style on left and ShadedVolumeStyle on right

41.4.11 SilhouetteEnhancementVolumeStyle
SilhouetteEnhancementVolumeStyle : X3DComposableVolumeRenderStyleNode {
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFFloat [in,out] silhouetteBoundaryOpacity 0 [0,1]
 SFFloat [in,out] silhouetteRetainedOpacity 1 [0,1]
 SFFloat [in,out] silhouetteSharpness 0.5 [0,∞)
 SFNode [in,out] surfaceNormals NULL [X3DTexture3DNode]
}

The SilhouetteEnhancementVolumeStyle specifies that the associated volumetric data shall be
rendered with silhouette enhancement. Enhancement of the basic volume is provided by
darkening voxels based on their orientation relative to the view direction. This orientation is

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 41 Volume rendering component

volume.html[8/1/2020 10:01:19 AM]

determined by the surfaceNormals value corresponding to each voxel. Perpendicular voxels are
coloured according to the edgeColor while parallel voxels are not changed at all. A threshold
can be set where the proportion of how close to perpendicular the direction shall be before the
values are made more opaque:

Og = Ov × (ksc + kss(1 - |n . V|) ^ kse)

where

Og is the computed opacity of the voxel
Ov is the original opacity of the voxel
n is the surface normal
V is the view vector
ksc controls the scaling of non-silhouette regions (silhouetteRetainedOpacity)
kss is the amount of the silhouette enhancement to use (silhouetteBoundaryOpacity)
kse is a power function to control the sharpness of the silhouette. (silhouetteSharpness)

The surfaceNormals field contains a 3D texture with at least three component values. Each
voxel in the texture represents the surface normal direction for the corresponding voxel in the
base data source. This texture should be identical in dimensions to the source data. If not, the
implementation may interpolate or average between adjacent voxels to determine the average
normal at the voxel required. If the surfaceNormals field is empty, the implementation shall
automatically determine the surface normal using algorithmic means.

Figure 41.12 shows a basic image of a skull on the left and an image of the skull using
SilhouetteEnhancementVolumeStyle on the right.

Figure 41.12 — Default volume style on left and SilhouetteEnhancementVolumeStyle
on right

41.4.12 ToneMappedVolumeStyle

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 41 Volume rendering component

volume.html[8/1/2020 10:01:19 AM]

ToneMappedVolumeStyle : X3DComposableVolumeRenderStyleNode {
 SFColorRGBA [in,out] coolColor 0 0 1 0 [0,1]
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFNode [in,out] surfaceNormals NULL [X3DTexture3DNode]
 SFColorRGBA [in,out] warmColor 1 1 0 0 [0,1]
}

The ToneMappedVolumeStyle node specifies that the associated volumetric data is to be
rendered using the Gooch shading model of two-toned warm/cool colouring (see [GOOCH1],
[GOOCH2]). Two colours are defined, a warm colour and a cool colour. The renderer shades
between them based on the orientation of the voxel relative to the user. This is not the same
as the basic isosurface shading and lighting. The following colour formula is used:

cc = (1 + Li . n) × 0.5
Cg = Σ(all i) (cc × warmColor + (1 - cc) × coolColor)

where

Li is the vector to light source i
n is the surface normal
Cg is the resulting colour that is to be used to represent the voxel

The warmColor and coolColor fields specify the two colours to be used at the limits of the
spectrum. The warmColor field is used for surfaces facing towards the light, while the coolColor
is used for surfaces facing away from the light direction.

The surfaceNormals field contains a 3D texture with at least three component values. Each
voxel in the texture represents the surface normal direction for the corresponding voxel in the
base data source. This texture should be identical in dimensions to the source data. If not, the
implementation may interpolate or average between adjacent voxels to determine the average
normal at the voxel required. If the surfaceNormals field is empty, the implementation shall
automatically determine the surface normal using algorithmic means.

The final output colour is determined by combining the interpolated colour value Cg with the
opacity of the corresponding voxel. Colour components of the voxel are ignored.

Figure 41.13 shows a basic image of ventricles of the brain on the left and an image of the
ventricles of the brain using ToneMappedVolumeStyle on the right.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 41 Volume rendering component

volume.html[8/1/2020 10:01:19 AM]

Figure 41.13 — Default volume style on left and ToneMappedVolumeStyle on right

41.4.13 VolumeData
VolumeData : X3DVolumeDataNode {
 SFVec3f [in,out] dimensions 1 1 1 (0,∞)
 SFBool [in out] bboxDisplay FALSE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFNode [in,out] renderStyle NULL [X3DVolumeRenderStyleNode]
 SFNode [in,out] voxels NULL [X3DTexture3DNode]
 SFBool [in out] visible TRUE
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or -1 -1 -1
}

The VolumeData node specifies a simple non-segmented volume data set that uses a single
rendering style node for the complete volume.

The renderStyle field allows the user to specify a single specific rendering technique to be used
on this volumetric object. If the renderStyle field is not specified, the implementation shall use
an OpacityMapVolumeStyle node (see 41.4.7 OpacityMapVolumeStyle) with default values.

The voxels field provides the raw voxel information to be used by the corresponding rendering
styles. The value is any X3DTexture3DNode type and may have any number of colour
components defined. The specific interpretation for the values at each voxel shall be defined by
the value of the renderStyle field.

Figure 41.14 shows a basic volume image of a backpack using the default rendering style.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 41 Volume rendering component

volume.html[8/1/2020 10:01:19 AM]

Figure 41.14 — Volume data using default volume style

 41.5 Support levels
The Volume Rendering component provides three levels of support as specified in Table 41.7.

Table 41.7 — Volume rendering component support levels

Level Prerequisites Nodes/Features Support

1

Core 1
Grouping 1
Shape 1
Rendering 1

 X3DComposableVolumeRenderStyleNode n/a

 X3DVolumeRenderStyleNode n/a

 X3DVolumeNode n/a

 OpacityMapVolumeStyle

Only 2D texture
transfer
functions need
be supported. All
other fields fully
supported.

 VolumeData All fields fully
supported.

2

Core 1
Grouping 1
Shape 1

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 41 Volume rendering component

volume.html[8/1/2020 10:01:19 AM]

Rendering 1

 All Level 1 nodes All fields fully
supported.

 BoundaryEnhancementVolumeStyle All fields fully
supported.

 ComposedVolumeStyle

ordered field is
always treated
as FALSE. All other
fields fully
supported.

 EdgeEnhancementVolumeStyle All fields fully
supported.

 IsoSurfaceVolumeData All fields fully
supported.

 OpacityMapVolumeStyle

All fields fully
supported. 3D
transfer
functions shall
be supported.

 ProjectionVolumeStyle All fields fully
supported

 SegmentedVolumeData All fields fully
supported.

 SilhouetteEnhancementVolumeStyle All fields fully
supported.

 ToneMappedVolumeStyle All fields fully
supported.

3

Core 1
Grouping 1
Shape 1
Rendering 1

 All Level 2 nodes All fields fully
supported.

 BlendedVolumeStyle All fields fully
supported.

 CartoonVolumeStyle All fields fully
supported.

 CompositeVolumeStyle
ComposedVolumeStyle

All fields fully
supported.

 ShadedVolumeStyle

All fields fully
supported
except shadows.
Shadows

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 41 Volume rendering component

volume.html[8/1/2020 10:01:19 AM]

supported with
at least Phong
shading.

4

Core 1
Grouping 1
Shape 1
Rendering 1

 All Level 3 nodes All fields fully
supported.

 ShadedVolumeStyle

All fields fully
supported with
at least Phong
shading and
Henyey-
Greenstein
phase function.
Shadows fully
supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 21 Key device sensor component

keyDeviceSensor.html[8/1/2020 10:01:24 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

21 Key device sensor component

 21.1 Introduction

21.1.1 Name

The name of this component is "KeyDeviceSensor". This name shall be used when
referring to this component in the COMPONENT statement (see 7.2.3.4 Component
statement).

21.1.2 Overview

This clause describes the Key Device Sensor component of this part of ISO/IEC 19775.
This includes how individual keystrokes and a series of keystrokes are inserted into an
X3D world. Table 21.1 provides links to the major topics in this clause.

 Table 21.1 — Topics

21.1 Introduction
21.1.1 Name
21.1.2 Overview

21.2 Concepts
21.3 Abstract types

21.3.1 X3DKeyDeviceSensorNode
21.4 Node reference

21.4.1 KeySensor
21.4.2 StringSensor

21.5 Support levels

Table 21.1 — Topics
Table 21.2 — Action key values
Table 21.3 — Key Device Sensor component support levels

 21.2 Concepts

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 21 Key device sensor component

keyDeviceSensor.html[8/1/2020 10:01:24 AM]

The following node types are keydevice sensors:

KeySensor
StringSensor

KeySensors generate an event whenever the state of a key associated with the physical
key device changes while the KeySensor is active. The identification of the key whose
state has changed is returned by the event.

StringSensors generate an event whenever the termination string specified for the
StringSensor is identified. The UTF-8 characters preceding the termination string are
returned by the event. StringSensors also generate interim events whenever the string
under construction changes. This allows prompting of the string during construction.

One keyboard-style key device is assumed to be available either as a physical device or
through emulation whenever the sensor component is supported. For a key device to
generate input to a key device sensor, the key device shall be active. Key devices are
active when:

a. The X3D world has focus in the supporting user interface; and
b. The key device sensor has its isActive field set to TRUE.

The isActive event generated by a change of the state of the isActive field can be used
for prompting.

A key device sensor is enabled when its enabled field is set to TRUE. This causes the
isActive field of the keydevice sensor to be set to TRUE. Also, any other key device
sensor which may be active will be sent an enabled event with value FALSE. Only one
key device sensor may be active at a time

 21.3 Abstract types

 21.3.1 X3DKeyDeviceSensorNode
X3DKeyDeviceSensorNode : X3DSensorNode {
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFBool [out] isActive
}

This abstract node type is the base type for all sensor node types that operate using
key devices.

 21.4 Node reference

 21.4.1 KeySensor
KeySensor : X3DKeyDeviceSensorNode {
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFInt32 [out] actionKeyPress
 SFInt32 [out] actionKeyRelease
 SFBool [out] altKey
 SFBool [out] controlKey
 SFBool [out] isActive
 SFString [out] keyPress

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 21 Key device sensor component

keyDeviceSensor.html[8/1/2020 10:01:24 AM]

 SFString [out] keyRelease
 SFBool [out] shiftKey
}

A KeySensor node generates events when the user presses keys on the keyboard. A
KeySensor node can be enabled or disabled by sending it an enabled event with a value
of TRUE or FALSE. If the KeySensor node is disabled, it does not track keyboard input or
send events.

keyPress and keyRelease events are generated as keys which produce characters are
pressed and released on the keyboard. The value of these events is a string of length 1
containing the single UTF-8 character associated with the key pressed. The set of UTF-8
characters that can be generated will vary between different keyboards and different
implementations.

actionKeyPress and actionKeyRelease events are generated as 'action' keys are pressed
and released on the keyboard. The value of these events are in Table 21.2:

 Table 21.2 — Action key values

KEY VALUE KEY VALUE KEY VALUE

HOME 13 END 14 PGUP 15

PGDN 16 UP 17 DOWN 18

LEFT 19 RIGHT 20 F1-F12 1-12

shiftKey, controlKey, and altKey events are generated as each of the shift, control, and
alt keys on the keyboard is respectively pressed and released. Their value is TRUE when
the key is pressed and FALSE when the key is released.

When a key is pressed, the KeySensor sends an isActive event with value TRUE. Once the
key is released, the KeySensor sends an isActive event with value FALSE.

The KeySensor is not affected by its position in the transformation hierarchy.

Recommended default key mappings for navigation are described in Annex G
Recommended navigation behaviours.

 21.4.2 StringSensor
StringSensor : X3DKeyDeviceSensorNode {
 SFBool [in,out] deletionAllowed TRUE
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFString [out] enteredText
 SFString [out] finalText
 SFBool [out] isActive
}

A StringSensor node generates events as the user presses keys on the keyboard. A
StringSensor node can be enabled or disabled by sending it an enabled event with a
value of TRUE or FALSE. If the StringSensor node is disabled, it does not track keyboard
input or send events.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 21 Key device sensor component

keyDeviceSensor.html[8/1/2020 10:01:24 AM]

enteredText events are generated as keys which produce characters are pressed on the
keyboard. The value of this event is the UTF-8 string entered including the latest
character struck. The set of UTF-8 characters that can be generated will vary between
different keyboards and different implementations.

If a deletionAllowed has value TRUE, the previously entered character in the enteredText
is removed when the browser-recognized value for deleting the preceding character of a
string is entered. Typically, this value is defined by the local operating system. If
deletionAllowed has value FALSE, characters may only be added to the string; deletion of
characters shall not be allowed. Should the browser-recognized value for deleting the
preceding character is entered, it shall be ignored.

The finalText event is generated whenever the browser-recognized value for
terminating a string is entered. Typically, this value is defined by the local operating
system. When this recognition occurs, the finalText field generates an event with value
equal to that of enteredText. After the finalText field event has been generated, the
enteredText field is set to the empty string but no event is generated.

When the user begins typing, the StringSensor sends an isActive event with value TRUE.
When the string is terminated, the StringSensor sends an isActive event with value
FALSE.

The StringSensor is not affected by its position in the transformation hierarchy.

 21.5 Support levels
The Key Device Sensor component provides 2 levels of support as specified in Table
21.3.

 Table 21.3 — Key device sensor component support levels

Level Prerequisites Nodes/Features Support

1 Core 1

X3DKeyDeviceSensorNode
(abstract) n/a

KeySensor All fields fully
supported.

2 Core 1

All Level 1 Key Device
Sensor nodes

All fields as supported
in Level 1.

StringSensor All fields fully
supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 21 Key device sensor component

keyDeviceSensor.html[8/1/2020 10:01:24 AM]

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 42 Projective Texture Mapping component

ProjectiveTextureMapping.html[8/1/2020 10:01:26 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

42 Projective Texture Mapping (PTM) Component

 42.1 Introduction

42.1.1 Name

The name of this component is "ProjectiveTextureMapping". This name shall be used
when referring to this component in the COMPONENT statement (see 7.2.5.4
Component statement).

42.1.2 Overview

This clause describes the projective texture mapping component of this part of ISO/IEC
19775. This includes how projective texture maps are specified and how they are
positioned on the 3D scene. Table 42.1 provides links to the major topics in this clause.

 Table 42.1 — Topics

42.1 Introduction
42.1.1 Name
42.1.2 Overview

42.2 Concepts
42.2.1 Overview
42.2.2 Projective texture mapping concepts
42.2.3 Texture map image formats

42.3 Abstract types
42.3.1 X3DTextureProjectorNode

42.4 Node reference
42.4.1 TextureProjectorParallel
42.4.2 TextureProjectorPerspective

42.5 Support levels

Figure 42.1 — Concept of projective texture mapping
Figure 42.2 — Application of projective texture mapping for reconstructing a 3D
terrain

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 42 Projective Texture Mapping component

ProjectiveTextureMapping.html[8/1/2020 10:01:26 AM]

Figure 42.3 — Application of projective texture mapping for reconstructing an
endoscope 3D model
Figure 42.4 — Description of 3D perspective texture mapping
Figure 42.5 — Description of 3D parallel texture mapping

Table 42.1 — Topics
Table 42.2 — Support levels

 42.2 Concepts

42.2.1 Overview

This component provides additional texturing extensions to the basic capabilities
defined in X3D. Generally, 2D and 3D texture mapping (see Clauses 18 and 33) has
been used to enhance the quality of an image generated with a camera or to speed up
the generation of an image with respect to a given scene including several geometric
models. However, there are some constraints for mapping region and shape of textures
over objects. As an extension of texture mapping, the texture image can be projected
onto a 3D scene within the projection volume which is constructed from projection
parameters such as a projection point, a projection direction and a projection aspect
ratio. Figire 1 shows an example screen shot by applying a projective texture mapping
to a 3D virtual scene. The texture mapping of this type is called a projective texture
mapping. .

Figure 42.1 — Concept of projective texture mapping

This projective texture mapping is essential for enhanced rendering effects in a 3D
scene such as rendering of beam projection images, visualization of a terrain surface in
GIS applications, and medical visualization.

42.2.2 Projective texture mapping concepts

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 42 Projective Texture Mapping component

ProjectiveTextureMapping.html[8/1/2020 10:01:26 AM]

The projective texture mapping allows a texture image to be projected onto a 3D virtual
scene inside the projection volume visible from a specific position called a projection
point. The projection volume is determined by projection parameters depending on two
types: parallel and perspective projections. In a parallel projection, the parallel volume
will become a parallel volume and in a perspective projection, the projection volume will
become the shape of the frustum.

The parallel projection can be distinguished into orthographic and oblique according to
the defined projection direction. If all the projection lines are orthogonal to the
projection plane, the projection is called orthographic projection. All the projection lines
in oblique projection will intersect the projection plane at an oblique angle. In order to
describe the types of parallel projection, the projection point and projection direction
will be given as a point and a vector, respectively. The projection volume in parallel
projection can be defined as a parallelepiped.

The perspective projection can be defined as a field of view angle from a projection
point, an aspect ratio of width and height, near and far planes. In a projective texture
mapping, generally, single texture as well as several texture images can be projected
onto a scene in a 3D virtual world. Furthermore, multiple projective texture mapping
can be performed over a common scene with specific objectives such as
photogrammetry or reconstruction of endoscope images. As shown Figure 2, assume
that several images are provided, each of which is taken with a different camera.
Construction of a terrain surface from those images can be performed by displaying
overlapping images obtained after applying several projective textures to the surface
model.

Figure 42.2 — Application of perspective texture mapping for reconstructing a
3D terrain

Figure 3 describes an example for reconstructing endoscope images over a cylinder by
applying projective texture mapping. In a similar manner, each image is captured from
an endoscope with perspective view information inside human body.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 42 Projective Texture Mapping component

ProjectiveTextureMapping.html[8/1/2020 10:01:26 AM]

Figure 42.3 — Application of perspective texture mapping for reconstructing an
endoscope 3D model.

 42.2.3 Image formats for projective texture mapping

Node types specifying images for projective texture mapping may supply data with a
number of color components between one and four. The valid types and interpretations
of 3D textures are identical to that for 2D textures. The definition of texture formats is
defined in 18.2.1 Texture map formats.

 42.3 Abstract types

42.3.1 X3DTextureProjectorNode
X3DTextureProjectorNode : X3DChildNode {
 SFString [in,out] description ""
 SFVec3f [in,out] direction 0 0 1 (-∞,∞)
 SFFloat [in,out] farDistance 10
 SFBool [in,out] global TRUE
 SFVec3f [in,out] location 0 0 0 (-∞,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFFloat [in,out] nearDistance 1
 SFBool [in,out] on TRUE
 SFNode [in,out] texture NULL [X3DTexture2DNode]
 SFFloat [out] aspectRatio (0,∞)
}

This abstract node type is the base type for all node types that specify projective
texture mapping.

The description field of this node tells the name of the projector, and makes the division
of different projectors possible.

The location shows the position of the projector, and this implies projection point.

The direction is the way the projector is heading, and this implies to projection
direction.

The aspectRatio is the aspect ratio of the width and length which refers to projection

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 42 Projective Texture Mapping component

ProjectiveTextureMapping.html[8/1/2020 10:01:26 AM]

spect ratio.

The nearDistance and farDistance is the minimum and maximum distance that is shown
on the screen, respectively.

Each projective texture mapping type defines a global field that determines whether the
projective texture mapping is global or scoped. Global projective texture mapping
performs the texture mappings for all objects that fall within their volume of projective
texture mapping influence. Scoped projective texture mapping only performs the
texture mappings for objects that are in the same transformation hierarchy as the
projective texture mapping; i.e., only the children and descendants of its enclosing
parent group are illuminated.

The on field specifies whether the projective texture mapping is performed or not. If on
is TRUE, the projective texture mapping is performed for geometry objects in the scene.
If on is FALSE, the projective texture mapping is not performed for any geometry in the
scene.

See 18 Texturing component for a general description of the X3DTexture2DNode
abstract type and interpretation of rendering for 2D images.

 42.4 Node reference

42.4.1 TextureProjectorParallel
TextureProjectorParallel : X3DTextureProjectorNode {
 SFString [in,out] description ""
 SFVec3f [in,out] direction 0 0 1 (-∞,∞)
 SFFloat [in,out] farDistance 10
 SFVec4f [in,out] fieldOfView -1 -1 1 1 (-∞,∞)
 SFBool [in,out] global TRUE
 SFVec3f [in,out] location 0 0 0 (-∞,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFFloat [in,out] nearDistance 1
 SFBool [in,out] on TRUE
 SFNode [in,out] texture NULL [X3DTexture2DNode]
 SFFloat [out] aspectRatio (0,∞)
}

Parallel texture mapping is shown in the following figure.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 42 Projective Texture Mapping component

ProjectiveTextureMapping.html[8/1/2020 10:01:26 AM]

Figure 42.5 — Description of 3D parallel texture mapping

The description field of this node tells the name of the persepective projector, and
makes the division of different perspective projectors possible.

The location shows the position of the perspective projector, and this implies
perspective projection point.

The direction is the way the perspective projector is heading, and this implies to
perspective projection direction.

The fieldOfView is the extent of the observable world that is parallely seen on the
display at any given moment. This value may change depending on the aspect ratio of
the rendering resolution. The default value of this field is (-1 -1 1 1).

The aspectRatio is the aspect ratio of the width and length which refers to perspective
projection spect ratio.

The nearDistance and farDistance is the minimum and maximum distance that is shown
on the screen, respectively.

global, on and texture fields are the same as illustrated in the Abstract node.

TODO: convert to ClassicVRML syntax

<X3D profile="Interactive" version="3.3">
<Scene>

<TextureProjectorPerspective
 description='pt1' location='3 3 3' direction='-1 0 -1'
 fieldOfView=‘0.26' nearDistance='1' farDistance='10'
 upVector='0 1 0' global= 'true' on= 'true'>

 <ImageTexture url='C:/image/apple.jpg' repeatS='false' repeatT='false'/>
</TextureProjectorPerspective>

<Shape>
 <Appearance>
 <Material diffuseColor='0.5 0.5 0.5'/>
 </Appearance>

 <IndexedFaceSet solid='false' coordIndex="3 2 1 0 -1, 4 5 2 3-1, 5 6 1 2 -1">
 <Coordinate point="1 0 1, -1 0 1, -1 0 -1, 1 0 -1, 1 1 -1, -1 1 -1, -1 1 1 "/>
 </IndexedFaceSet>
</Shape>
</Scene>
</X3D>

42.4.2 TextureProjectorPerspective
TextureProjectorPerspective : X3DTextureProjectorNode {
 SFString [in,out] description ""
 SFVec3f [in,out] direction 0 0 1 (-∞,∞)
 SFFloat [in,out] farDistance 10
 SFFloat [in,out] fieldOfView π/4 (0,π)
 SFBool [in,out] global TRUE
 SFVec3f [in,out] location 0 0 0 (-∞,∞)
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFFloat [in,out] nearDistance 1
 SFBool [in,out] on TRUE
 SFNode [in,out] texture NULL [X3DTexture2DNode]
 SFVec3f [in,out] upVector 0 0 1
 SFFloat [out] aspectRatio (0,∞)
}

Perspective texture mapping is shown in the following figure.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 42 Projective Texture Mapping component

ProjectiveTextureMapping.html[8/1/2020 10:01:26 AM]

Figure 42.4 — Description of 3D perspective texture mapping

The description field of this node tells the name of the persepective projector, and
makes the division of different perspective projectors possible.

The location shows the position of the perspective projector, and this implies
perspective projection point.

The direction is the way the perspective projector is heading, and this implies to
perspective projection direction.

The fieldOfView is the extent of the observable world that is perspectively seen on the
display at any given moment. This value may change depending on the aspect ratio of
the rendering resolution. The default value of this field is π/4.

The aspectRatio is the aspect ratio of the width and length which refers to perspective
projection spect ratio.

The upVector describes the roll of the camera by saying which point is "up" in the
camera's orientation. The default value of this field is (0 0 1).

The nearDistance and farDistance is the minimum and maximum distance that is shown
on the screen, respectively.

global, on and texture fields are the same as illustrated in the Abstract node.

 42.5 Support levels
The projective texture mapping component defines levels of support as specified in
Table 42.2.

 Table 42.2 — Projective texture mapping component support levels

Level Prerequisites Nodes/Features Support

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 42 Projective Texture Mapping component

ProjectiveTextureMapping.html[8/1/2020 10:01:26 AM]

1

Core 1
Grouping 1
Shape 1
Rendering 1
Texturing 1

X3DTextureProjectorNode n/a

TextureProjectorPerspective All fields fully
supported.

2

Core 1
Grouping 1
Shape 1
Rendering 1
Texturing 1

TextureProjectorParallel All fields fully
supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 43 Annotation component

annotation.html[8/1/2020 10:01:28 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

43 Annotation component

 43.1 Introduction

43.1.1 Name

The name of this component is "Annotation". This name shall be used when referring to
this component in the COMPONENT statement (see 7.2.5.4 Component statement).

43.1.2 Overview

This clause describes the Annotation component of this part of ISO/IEC 19775. This
component specifies how to include additional information as part of an X3D file that is
beyond basic metadata, and some or all of which may be displayed externally to the
scene. Table 43.1 provides links to the major topics in this clause.

 Table 43.1 — Topics

43.1 Introduction
43.1.1 Name
43.1.2 Overview

43.2 Concepts
43.2.1 Overview
43.2.2 Representing annotations

43.2.2.1 Parts of an annotation
43.2.2.2 Coordinate system

43.3 Abstract types
43.3.1 X3DAnnotationNode

43.4 Node reference
43.4.1 AnnotationLayer
43.4.2 AnnotationTarget
43.4.3 GroupAnnotation
43.4.4 IconAnnotation
43.4.5 TextAnnotation
43.4.6 URLAnnotation

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 43 Annotation component

annotation.html[8/1/2020 10:01:28 AM]

43.5 Support levels

Table 43.1 — Topics
Table 43.2 — Display policies
Table 43.3 — Layout policies
Table 43.4 — Annotation component support levels

 43.2 Concepts

43.2.1 Overview

Annotations occupy the information space between metadata provided by the core
specification and the rendered visuals presented by the rest of the X3D specification.
The goal is to provide the ability to include or give reference to large amounts of
information that may be available in scene or, optionally at the browser implementer's
choice, externally to the scene. Another term for annotations is "labelling" which implies
purely in-scene information, where this specification seeks to provide both in-scene and
out-of-scene information display capabilities.

43.2.2 Representing annotations

43.2.2.1 Parts of an annotation

An annotation is comprised of three parts:

1. the object that is being annotated,
2. the information to be associated with that object, and
3. a visual connection between the two, such as a leadline.

The leadline and information may be optionally presented by the browser.

EXAMPLE A hide-away panel may be used to display annotations that are available for currently visible objects.

In addition, the user is provided with an ability to describe the preferred policy for the
browser to show annotations that are not currently visible, such as when they are
behind the current viewpoint.

43.2.2.2 Coordinate system

The object that is being annotated will have the AnnotationTarget node associated with
the containing grouping node. This node is not renderable, but provides a point in the
local coordinate system that forms the end point of the annotation's leadline connecting
that object.

Annotations themselves are not part of the renderable scene graph. They may,
optionally, exist anywhere and are not effected by the parent transformation hierarchy,
such as Switch or LOD nodes. The AnnotationTarget node is effected by parent
transformation hierarchy changes, including those that disable parts of the visible scene
graph. When the parent hierarchy hides the renderable parts, the target and any

file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/components/annotation_justin.html#AnnotationTarget

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 43 Annotation component

annotation.html[8/1/2020 10:01:28 AM]

associated leadlines are also hidden.

 43.3 Abstract types

43.3.1 X3DAnnotationNode
X3DAnnotationNode : X3DChildNode {
 SFString [in,out] annotationGroupID ""
 SFString [in,out] displayPolicy "NEVER" ["POINTER_OVER", "POINTER_ACTIVATE",
 "ALWAYS", "WHEN_VISIBLE", "NEVER"]
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
}

This abstract node type is the base type for all node types that contain annotation
information. The abstract type provides the facility to control the policy of when the
annotation should be displayed to the user through the displayPolicy field. Additionally,
a grouping label can be assigned to each annotation through the use of the
annotationGroupID field.

Large files with many annotations can become unwieldy to view. Two options are
available to control how and when annotations are to be made visible. The first option is
to create a global filter list through the use of the annotationGroupID field. This is a text
string that can be used to group sets of similar annotations together. It is
recommended that plain, readable text be used for this field as a browser may present
the values of these fields in a list of filter options. The second option controls when an
individual annotation will show based on user actions. These provide basic shortcuts
without the user needing to use combinations of touch sensors and scripting. Available
basic behaviours are in Table 43.2:

Table 43.2 — Display policies

POINTER_OVER
Show the annotation when the pointing device is over the targets that reference
this node.

POINTER_ACTIVATE
Show this annotation when the pointing device has clicked on the target of this
node. It will remain active until replaced by another annotation.

WHEN_VISIBLE Show this annotation when it is visible.

ALWAYS Always show this annotation.

NEVER Never show this annotation.

The enabled field determines if the annotation is displayed. If enabled is TRUE, the
annotation is displayed as described. If enabled is FALSE, no action is performed.

 43.4 Node reference

43.4.1 AnnotationLayer
AnnotationLayer : X3DLayerNode {
 MFString [in,out] layoutPolicy "" ["circular", "edges", ...]
 SFNode [in,out] metadata NULL [X3DMetadataObject]

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 43 Annotation component

annotation.html[8/1/2020 10:01:28 AM]

 SFBool [in,out] pickable TRUE
 MFString [in,out] shownGroupID []
 SFNode [in,out] viewport NULL [X3DViewportNode]
}

The AnnotationLayer node is custom layer version that provides automated layout of
currently visible annotations and display of them within the currently running scene.

The layer shows annotations directly in the scene and lays them out around the target
object's reference point according to one of the pre-defined layout policies that are
defined in the layoutPolicy field. This field contains a list of policies in priority order
based on what the browser implementation supports. Browsers may also define
implementation-specific policies in addition to the required policies. The reference point
is projected into the layer's space and used as the location to base the annotations
around. The defined policies are specified in Table 43.3:

Table 43.3 — Layout policies

CIRCULAR
Show the annotation when the pointing device is over the targets that reference
this node.

DISPLAY_EDGE
Show this annotation when the pointing device has clicked on the target of this
node. It will remain active until replaced by another annotation.

43.4.2 AnnotationTarget
AnnotationTarget : X3DChildNode {
 MFNode [in,out] annotations [] [X3DAnnotationNode]
 SFNode [in,out] leadLineStyle NULL [X3DLinePropertiesNode]
 SFNode [in,out] marker NULL [X3DShapeNode]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFVec3f [in,out] referencePoint 0, 0, 0 (-∞,∞)
}

The AnnotationTarget node specifies the target with which annotations are associated.
A target applies to all siblings of the parent grouping node. If the parent or target has
more than one parent transformation hierarchy, each shall be rendered individually,
including leader lines and markers to each visual object.

Each target may have zero or more annotation nodes associated with it as specified by
the annotations field. All nodes referenced in this field are effected the position of this
node's parent group in the world coordinates.

A grouping node may have more than one AnnotationTarget specified, each with
different sets of annotations.

Annotations are visually connected to the target through the use of a lead line if a node
is defined for the leadLineStyle field. If no style is defined, a lead line is not shown and
the annotation is shown with no connecting line. When a LineProperties node is
provided and line ends are defined, the source end will be the target and the
destination end will be the annotation.

43.4.3 GroupAnnotation
GroupAnnotation : X3DGroupingNode, X3DAnnotationNode {
 MFNode [in] addChildren [X3DChildNode]

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 43 Annotation component

annotation.html[8/1/2020 10:01:28 AM]

 MFNode [in] removeChildren [X3DChildNode]
 SFString [in,out] annotationGroupID ""
 MFNode [in,out] children [] [X3DChildNode]
 SFString [in,out] displayPolicy "NEVER" ["POINTER_OVER", "POINTER_ACTIVATE",
 "ALWAYS", "WHEN_VISIBLE", "NEVER"]
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or −1 −1 −1
}

The GroupAnnotation node specifies annotation that is specified in the form of an X3D
grouping node.

The annotation to be displayed is specified in the children field. The coordinate system
established for this group is one in which the origin is at the end of the offset sequence
with the XY-plane parallel with the screen plane. From this coordinate system the nodes
in the children field may apply further transformations. See 4.3.5, Transformation
hierarchy, and 4.3.6, Standard units and coordinate system, for a description of
coordinate systems and transformations.

10.2.1, Grouping and children node types, provides a description of the children,
addChildren, and removeChildren fields.

The bboxCenter and bboxSize fields specify a bounding box that encloses the children
of the GroupAnnotation node. This is a hint that may be used for optimization purposes.
The results are undefined if the specified bounding box is smaller than the actual
bounding box of the children at any time. A default bboxSize value, (-1, -1, -1), implies
that the bounding box is not specified and, if needed, shall be calculated by the
browser. The bounding box shall be large enough at all times to enclose the union of
the group's children's bounding boxes; it shall not include any transformations
performed by the group itself (i.e., the bounding box is defined in the local coordinate
system of the children). The results are undefined if the specified bounding box is
smaller than the true bounding box of the group. A description of the bboxCenter and
bboxSize fields is provided in 10.2.2 Bounding boxes.

43.4.4 IconAnnotation
IconAnnotation : X3DAnnotationNode, X3DURLObject {
 SFString [in,out] annotationGroupID ""
 SFString [in,out] displayPolicy "NEVER" ["POINTER_OVER", "POINTER_ACTIVATE",
 "ALWAYS", "WHEN_VISIBLE", "NEVER"]
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFString [in,out] url []
}

The IconAnnotation node specifies annotation that is iconic in form using an image
specified by the URL field.

The icon to be displayed is read from location specified by the url field. When the url
field contains no satisfiable values, the browser implementation shall substitute a
default icon in its place. Browsers shall support the JPEG (see 2.[JPEG]) and PNG (see
ISO/IEC 15948) image file formats. Browsers may support other image file formats.
Details on the url field can be found in 9.2.1 URLs.

43.4.5 TextAnnotation
TextAnnotation : X3DAnnotationNode {
 SFString [in,out] annotationGroupID ""
 SFString [in,out] contentType "text/plain"
 SFString [in,out] displayPolicy "NEVER" ["POINTER_OVER", "POINTER_ACTIVATE",

file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/references#JPEG
file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/references#I15948
file:///C|/x3d-github/github.Web3dConsortium.member/X3D/ISO-IEC19775/ISO-IEC19775-1/ISO-IEC19775-1v4.0/ISO-IEC19775-1v4-WD2/Part01/components/Networking#URLs

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 43 Annotation component

annotation.html[8/1/2020 10:01:28 AM]

 "ALWAYS", "WHEN_VISIBLE", "NEVER"]
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFString [in,out] text ""
}

The TextAnnotation node specifies an annotation that contains in-lined formatted text.
The text may be one of several formats based on the defined MIME type in the
contentType field. All browsers shall support the default plain text content type, and
may support other content types (e.g., HTML).

43.4.6 URLAnnotation
URLAnnotation : X3DAnnotationNode {
 SFString [in,out] annotationGroupID ""
 SFString [in,out] displayPolicy "NEVER" ["POINTER_OVER", "POINTER_ACTIVATE",
 "ALWAYS", "WHEN_VISIBLE", "NEVER"]
 SFBool [in,out] enabled TRUE
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 MFString [in,out] url []
}

The URLAnnotation node specifies an annotation that defines its content in another file.

The location of the other file is defined by the url field. This annotation is not required
to be immediately loaded. A browser may choose to load the URL or just display the
URL for the user to select and load externally.

 43.5 Support levels
The Volume Rendering component provides two levels of support as specified in Table
43.4.

 Table 43.4 — Annotation component support levels

Level Prerequisites Nodes/Features Support

1

Core 1
Grouping 1
Shape 1
Rendering 1
Networking 1

X3DAnnotationNode n/a

AnnotationTarget All fields fully supported.

IconAnnotation All fields fully supported.

TextAnnotation All fields fully supported.

 URLAnnotation All fields fully supported.

2

Core 1
Grouping 1
Shape 1
Rendering 1
Networking 1,

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 43 Annotation component

annotation.html[8/1/2020 10:01:28 AM]

Layering 1

 All Level 1 nodes All fields fully supported.

 AnnotationLayer All fields fully supported.

 GroupAnnotation All fields fully supported.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

Concepts.html[8/1/2020 10:01:30 AM]

Extensible 3D (X3D)
Part 1: Architecture and base components

4 Concepts
Editors note: multiple sections in the Concepts clause will receive additions and
modifications to describe how X3D models are included and interact with external
surfaces such as HTML5/DOM Web-page presentations. Current focus is on open-source
implementation and evaluation using X3DOM and X_ITE.

 4.1 General

4.1.1 Topics in this clause

This clause describes the X3D core concepts, including how X3D scenes are authored
and played back, the run-time semantics of the X3D scene, modularization through
components and profiles, conformance via support levels, data encoding semantics,
programmatic access, and networking considerations.

Table 4.1 provides links to the major topics in this clause.

 Table 4.1 — Topics

4.1 General
4.1.1 Topics in this clause
4.1.2 Overview
4.1.3 Conventions used

4.2 Authoring and playback
4.2.1 X3D browsers
4.2.2 X3D generators
4.2.3 X3D loaders

4.3 The scene graph
4.3.1 Overview
4.3.2 Root nodes
4.3.3 Scene graph hierarchy
4.3.4 Descendant and ancestor nodes
4.3.5 Transformation hierarchy
4.3.6 Standard units and coordinate system

https://www.x3dom.org/
http://create3000.de/x_ite/getting-started

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

Concepts.html[8/1/2020 10:01:30 AM]

4.3.7 Behaviour graph
4.4 Run-time environment

4.4.1 Overview
4.4.2 Object model

4.4.2.1 Overview
4.4.2.2 Field semantics
4.4.2.3 Interface hierarchy
4.4.2.4 Modifying objects

4.4.2.4.1 Routes
4.4.2.4.2 Modifying objects via programmatic access

4.4.2.5 Object life cycle
4.4.3 DEF/USE semantics
4.4.4 Prototype semantics

4.4.4.1 Introduction
4.4.4.2 PROTO interface declaration semantics
4.4.4.3 PROTO definition semantics
4.4.4.4 Prototype scoping rules

4.4.5 External prototype semantics
4.4.5.1 Introduction
4.4.5.2 EXTERNPROTO interface semantics
4.4.5.3 EXTERNPROTO URL semantics

4.4.6 Import/Export semantics
4.4.7 Run-time name scope
4.4.8 Event model

4.4.8.1 Events
4.4.8.2 Routes
4.4.8.3 Execution model
4.4.8.4 Loops
4.4.8.5 Fan-in and fan-out
4.4.8.6 Internal/external event passing

4.5 Components
4.5.1 Overview
4.5.2 Defining components
4.5.3 Base components

4.6 Profiles
4.6.1 Overview
4.6.2 Defining profiles
4.6.3 Relationship between profiles and components

4.7 Support levels
4.8 Data encodings
4.9 Scene access interface (SAI)
4.10 Component and profile registration

Figure 4.1 — X3D Architecture
Figure 4.2 — Interface hierarchy
Figure 4.3 — Conceptual execution model

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

Concepts.html[8/1/2020 10:01:30 AM]

Table 4.1 — Topics
Table 4.2 — Standard units
Table 4.3 — Derived units
Table 4.4 — Rules for mapping PROTOTYPE declarations to node instances
Table 4.5 — Example support level table

 4.1.2 Overview

Conceptually, each X3D application is a 3D time-based space that contains graphic and
aural objects that can be loaded over a network and dynamically modified through a
variety of mechanisms. The semantics of X3D describe an abstract functional behaviour
of time-based, interactive 3D, multimedia information. X3D does not define physical
devices or any other implementation-dependent concepts (e.g., screen resolution and
input devices). X3D is intended for a wide variety of devices and applications, and
provides wide latitude in interpretation and implementation of the functionality. For
example, X3D does not assume the existence of a mouse or 2D display device.

Each X3D application:

a. implicitly establishes a world coordinate space for all objects defined, as well as all
objects included by the application;

b. explicitly defines and composes a set of 2D, 3D and multimedia objects;
c. can specify hyperlinks to other files and applications;
d. can define object behaviours;
e. can connect to external modules or applications via programming and scripting

languages.

The X3D system architecture is shown in Figure 4.1.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

Concepts.html[8/1/2020 10:01:30 AM]

Figure 4.1 — X3D architecture

The abstract structure of the sequence of statements that form an X3D world is
specified in 7.2.5 Abstract X3D structure.

 4.1.3 Conventions used

The following conventions are used throughout this part of ISO/IEC 19775:

Italics are used for field names, and are also used when new terms are introduced and
equation variables are referenced.

A fixed-space font is used for URL addresses and source code examples.

Node type names are appropriately capitalized (e.g., "The Billboard node is a grouping
node..."). However, the concept of the node is often referred to in lower case in order
to refer to the semantics of the node, not the node itself (e.g., "To rotate the
billboard...").

The form "0xhh" expresses a byte as a hexadecimal number representing the bit
configuration for that byte.

Throughout this part of ISO/IEC 19775, references to International Standards cite the
number of the standard and hyperlinks to the reference in 2 Normative references.
References to portions of this International Standard consist of the clause or subclause
number followed by the title of the clause or subclause. The text consisting of the
number and title is hyperlinked to the referenced material. References to external
documents that are not International Standards are denoted using the "x.[ABCD]"
notation, where "x" denotes in which clause the reference is described and "[ABCD]" is

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

Concepts.html[8/1/2020 10:01:30 AM]

an abbreviation of the reference title. For the Bibliography, the "x." is omitted.

In addition, the first reference to a node or node type in a subclause will be hyperlinked
to the definition of that node or node type.

EXAMPLE "2.[ABCD]" refers to a reference described in 2 Normative references and [ABCD] refers to a reference
described in the Bibliography.

 4.2 Authoring and playback

 4.2.1 X3D browsers

The interpretation, execution, and presentation of X3D files occurs using a mechanism
known as a browser, which displays the shapes and sounds in the scene graph. This
presentation is known as a virtual world and is navigated in the browser by a human or
mechanical entity, known as a user. The world is displayed as if experienced from a
particular location; that position and orientation in the world is known as the viewer.
The browser may provide navigation paradigms (such as walking or flying) that enable
the user to move the viewer through the virtual world.

In addition to navigation, the browser provides a limited mechanism allowing the user
to interact with the world through sensor nodes in the scene graph hierarchy. Sensors
respond to user interaction with geometric objects in the world, the movement of the
user through the world, or the passage of time. Additionally, the X3D Scene Access
Interface (SAI) defined in Part 2 of this International Standard provides mechanisms for
getting user input, and for getting and setting the current viewpoint. To provide
navigation capabilities, a viewer may use the SAI to provide the user with the ability to
navigate. Additionally, authors may use scripting or programming languages with
bindings to the SAI to implement their own navigation algorithms. Other profiles may
specify navigation capabilities as a requirement of the viewer; implementations of such
viewers will typically do so by making use of the SAI.

The visual presentation of geometric objects in an X3D world follows a conceptual
model designed to resemble the physical characteristics of light. The X3D lighting model
describes how appearance properties and lights in the world are combined to produce
displayed colours (see 17 Lighting component for details).

 4.2.2 X3D generators

A generator is a human or computerized creator of X3D files. It is the responsibility of
the generator to ensure the correctness of the X3D file and the availability of supporting
assets (e.g., images, audio clips, other X3D files) referenced therein. It is also the
responsibility of the generator to insure that the functionality represented in the X3D
file is correctly stated in the profile, component and level information in the header
statement of the file.

4.2.3 X3D loaders

A loader is a program responsible for loading X3D content but does not apply any run-
time execution to the content. Geometry is presented as though time has not run,

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

Concepts.html[8/1/2020 10:01:30 AM]

although the loader is free to load textures and other remotely defined content. A time
zero loader is typically found in modelling tools that intend to construct or modify
existing X3D content without evaluating the run-time aspects of the specification.

A second form of loader may load files and allow run-time execution of content, but it
does so as part of a larger user interface and 3D graphics rendering engine. Such
loaders might be used to load individual models such as trees in a game environment,
but the run-time evaluation of the X3D content is dependent on the external
application, and is not self contained in the same fashion as an X3D browser.

 4.3 The scene graph

4.3.1 Overview

The basic unit of the X3D run-time environment is the scene graph. This structure
contains all the objects in the system and their relationships. Relationships are
contained along several axes of the scene graph. The transformation hierarchy
describes the spatial relationship of rendering objects. The behavior graph describes the
connections between fields and the flow of events through the system. Each scene
graph may also interact with external surfaces such as HTML5/DOM Web-page
presentations.

 4.3.2 Root nodes

An X3D file contains zero or more root nodes. The root nodes for an X3D file are those
nodes defined by the node statements or USE statements that are not contained in
other node or PROTO statements. Root nodes shall be children nodes as specified in 10
Grouping component or the LayerSet node as specified in 35.4.2 LayerSet.

X3D4 goals related to HTML5/DOM:

Usage of either X3D or X3DCanvas capabilities for style, other HTML attributes
url (or src) field to simply refer to an X3D model to load (see current X_ITE
approach)
specifying that multiple encodings are allowed
whether or not multiple distinct scenes can be loaded at once, or require separate
declarations

 4.3.3 Scene graph hierarchy

An X3D scene graph is a directed acyclic graph. Nodes can contain specific fields with
one or more children nodes which participate in the hierarchy. These may, in turn,
contain nodes (or instances of nodes). This hierarchy of nodes is called the scene
graph. Each arc in the graph from A to B means that node A has a field whose value
directly contains node B. See [FOLEY] for details on hierarchical scene graphs.

 4.3.4 Descendant and ancestor nodes

The descendants of a node are all of the nodes in its fields, as well as all of those nodes'

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

Concepts.html[8/1/2020 10:01:30 AM]

descendants. The ancestors of a node are all of the nodes that have the node as a
descendant.

 4.3.5 Transformation hierarchy

The transformation hierarchy includes all of the root nodes and root node descendants
that are considered to have one or more particular locations in the virtual world. X3D
includes the notion of local coordinate systems, defined in terms of transformations
from ancestor coordinate systems. The coordinate system in which the root nodes are
displayed is called the world coordinate system.

An X3D browser's task is to present an X3D file to the user; it does this by presenting
the transformation hierarchy to the user. The transformation hierarchy describes the
directly perceptible parts of the virtual world.

Some nodes, such as sensors and environmental nodes, are in the scene graph but not
affected by the transformation hierarchy. These include CoordinateInterpolator, Script,
TimeSensor, and WorldInfo.

Some nodes, such as Switch or LOD, contain a list of children, of which at most one is
traversed during rendering. However, for the purposes of computing scene position, all
children of these nodes are considered to be part of the transformation hierarchy,
whether they are traversed during rendering or not. For instance, a Viewpoint node
which is a child of a Switch whose whichChoice field is set to -1 (indicating that none of
its children should be traversed during rendering) still uses the local coordinate space of
the Switch to determine its position in the scene.

The transformation hierarchy shall be a directed acyclic graph; a node in the
transformation hierarchy that is its own ancestor is considered invalid and shall be
ignored. The following is an example of a node in the scene graph that is its own
ancestor:

DEF T Transform {
 children [
 Shape { ... }
 USE T
]
}

 4.3.6 Standard units and coordinate system

ISO/IEC 19775 defines the initial base unit of measure of the world coordinate system
to be metres. However, the world coordinate units may be modified by specifying a
different length unit using the UNIT statement. All other coordinate systems are then
built from transformations based upon the specified world coordinate system. Other
measurements used in this International Standard have their own initial base units.

Table 4.2 lists the initial base units for ISO/IEC 19775, including the reference for each
unit in ISO 80000.

 Table 4.2 — Standard units

Category Initial base
unit Reference

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

Concepts.html[8/1/2020 10:01:30 AM]

angle radian ISO 80000-3:2006 item 3-5.a

force newton ISO 80000-4:2006 item 4-9.a and item 4-9.1

length metre ISO 80000-3:2006 item 3-1.a

mass kilogram ISO 80000-4:2006 item 4-1.a

The initial base units for the entire hierarchy of an X3D world may be changed to
another default base unit by using one or more UNIT statements as specified in 7 Core
component. In this International Standard, the initial base units of measure are
assumed. Any ranges specified in initial base units apply to their equivalent limits in the
specified default base unit. The browser shall convert the default base unit to initial
base units as necessary for correct processing.

The base unit of time is seconds and cannot be changed.

Additional units, called derived units are used in this International Standard. A derived
unit depends on the current base units. The value for a derived unit can be calculated
using the appropriate formula from Table 4.3:

Table 4.3 — Derived units

Category Initial base
unit Reference

acceleration length/second2 ISO 80000-3:2006 item 3-9.a

angular_velocity
angular_rate angle/second ISO 80000-3:2006 item 3-10.a

area length2 ISO 80000-3:2006 item 3-3.a

speed length/second ISO 80000-3:2006 item 3-8.a and
item 3-8.1

volume length3 ISO 80000-3:2006 item 3-4.a

The standard colour space used by this International Standard is RGB where each
colour component has the range [0.,1.].

ISO/IEC 19775 uses a Cartesian, right-handed, three-dimensional coordinate system.
By default, the viewer is on the Z-axis looking down the -Z-axis toward the origin with
+X to the right and +Y straight up. A modelling transformation (see the Transform node
definition in 10 Grouping component and the Billboard node definition in 23 Navigation
component) or viewing transformation (see the X3DViewpointNode node type definition
in 23 Navigation component can be used to alter this default projection.

 4.3.7 Behaviour graph

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

Concepts.html[8/1/2020 10:01:30 AM]

The event model of X3D allows the declaration of connections between fields (routes)
and a model for the propagation of events along those connections. The behavior graph
is the collection of these field connections. It can be changed dynamically by rerouting,
adding or breaking connections. Events are injected into the system and propagate
through the behavior graph in a well defined order.

Fields can only be routed to other fields with the same data type, unless a component
supports an extension to this rule.

 4.4 Run-time environment

 4.4.1 Overview

The X3D run-time environment maintains the current state of the scene graph, renders
the scene as needed, receives input from a variety of sources (Sensors) and performs
changes to the scene graph in response to instructions from the behavioral system. The
X3D run-time environment manages the life cycle of objects, including built-in and
user-defined objects and programmatic scripts. The run-time environment coordinates
the processing of Events, the primary means of generating behaviors in X3D. The run-
time environment also manages interoperation between the X3D browser and host
application for file delivery, hyperlinking, page integration and external programmatic
access.

The run-time environment manages objects. X3D supports several types of built-in
objects that contain generally useful functionality in the run-time environment. There
are built-in objects to represent data structures such as an SFVec3f 3D vector value,
nodes such as geometry (e.g., Cylinder), and ROUTEs between nodes. Each node
contains zero or more fields that define storage for data values, and/or zero or more
events for sending messages to/from the object. Nodes are instantiated by declaring
them in a file or by using procedural code at run-time. The author may create new node
types using the prototyping mechanism (see 4.4.4 Prototype semantics). These nodes
become part of the run-time environment and behave exactly like built-in nodes. New
nodes can be created declaratively by including a prototype declaration in a file, by
including an external prototype referencing a prototype declaration in a separate
location, or by using a native prototype declaration provided by the run-time
environment itself. PROTOs may only be used to create other nodes, not fields or
routes.

Events are the primary means of generating behaviors in the X3D run-time
environment. Events are used throughout X3D: driving time-based animations;
handling object picking; detecting user movement and collision; changing the scene
graph hierarchy. The run-time environment manages the propagation of events through
the system and order of evaluation according to a well-defined set of rules.

An author of X3D content can control the creation and management of scenes,
rendering and behavior, and loading of media assets. The loading and incorporation of
authored extensions, which can be written in X3D or an external language, can also be
controlled. The ability to make content-defined extensions is provided in profiles that
support the Prototyping mechanism.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

Concepts.html[8/1/2020 10:01:30 AM]

 4.4.2 Object model

 4.4.2.1 Overview

The X3D system is made up of abstract individual entities called objects. This part of
ISO/IEC 19775 defines a functional specification for each object type but does not
dictate implementation. A compliant implementation of an object shall behave according
to its functional specification as provided in 5 Field type reference, clauses 7 through 40
describing components, Part 2 of ISO/IEC 19775 or additional parts of this standard
that define object, field or node types. An X3D author arranges objects in the scene
graph using one of the declarative X3D encodings described in ISO/IEC 19776 or other
future encoding formats, or at run time using built-in scripting (if the supported profile
provides it) or some other form of programmatic access to the scene graph (see Part 2
of ISO/IEC 19775).

Objects representing lightweight concepts such as data storage and operations on data
of that type are called fields and are derived from the X3DField object. Objects
representing more complete spatial or temporal processing concepts are called nodes
and are derived from the X3DNode object. Nodes contain one or more fields that hold
data values or send or receive events for that node.

Some nodes implement additional functionality by inheritance of interfaces that
represent common properties or functionality, such as bounding boxes for visual objects
and grouping nodes or a specification that a particular object represents metadata. In
addition, X3D defines object types for accessing scene graph information not stored in
fields or nodes, such as ROUTEs, PROTO declarations, Component/Profile information
and world metadata.

A field may contain either a single value of the given type or an array of such types.
Throughout this document, a field type containing a single value is said to be of the
given type and is prefixed by the characters SF (e.g., field a is of type SFVec3f), while a
field containing an array has its type prefixed by the characters MF (e.g., field b is of
type MFVec3f). A field may contain a reference to one or more nodes by using the
SFNode and MFNode field types.

Each object has the following common characteristics:

a. A type name. Examples include SFVec3f, MFColor, SFFloat, Group, Background,
or SpotLight.

b. An implementation. The implementation of each object defines how it reacts to
changes in its property values, what other property values it alters as a result of
these changes, and how it effects the state of the run-time environment. This part
of ISO/IEC 19775 defines the functional semantics of built-in nodes (i.e., nodes
with implementations that are provided by the X3D browser).

An object derived from X3DNode has the following additional characteristics:

d. Zero or more field values. Field values are stored in the X3D file along with the
nodes or fields, and encode the state of the virtual world.

e. Zero or more events that it can receive and send. Each node may receive
events to its fields which will result in some change to the node's state. Each node

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

Concepts.html[8/1/2020 10:01:30 AM]

may also generate events from its fields to report changes in the node's state.
Events generated from one node can be connected to fields of other nodes to
propagate these changes. This is done using the ROUTE statement in the file or
through an SAI service reference.

f. A name. Nodes can be named using either the DEF statement in the file or at run-
time through an SAI service call. This is used by other statements to reference a
specific instantiation of a node. It is also be used to locate a specific named node
within the scene hierarchy.

Node implementations can come from two sources, built-in nodes and prototypes. Built-
in nodes are nodes that are available to the author as specified by the applicable profile
and/or component declarations. Different components define different sets of built-in
nodes.

Additionally, X3D supports content extensions using prototypes. Prototypes are objects
that the author creates using PROTO or EXTERNPROTO statements. These objects are
written in the same declarative notation used to describe nodes in the scene graph.
They add new object types to the system which are only available for the lifetime of the
session into which they are loaded. Some profiles may not include support of these
extension capabilities. The semantics of prototypes are discussed in 4.4.4, Prototype
semantics, and 4.4.5, External prototype semantics.

Both prototypes and built-in nodes are available for instantiation using similar
mechanisms. An object can be instantiated declaratively or at run-time using the SAI
services specified in Part 2 of ISO/IEC 19775. All prototypes inherit from the base node
type X3DPrototypeInstance.

 4.4.2.2 Field semantics

Fields define the persistent state of nodes, and values which nodes may send or receive
in the form of events. X3D supports four types of access to a node's fields:

a. initializeOnly access, which allows content to supply an initial value for the field but
does not allow subsequent changes to its value;

b. inputOnly access, which means that the node may receive an event to change the
value of its field, but does not allow the field's value to be read;

c. outputOnly access, which means that the node may send an event when its value
changes, but does not allow the field's value to be written; and

d. inputOutput access, which allows full access to the field: content may supply an
initial value for the field, the node may receive an event to change the value of its
field, and the node may send an event when its value changes.

An inputOutput field can receive events like an inputOnly field, can generate events like
an outputOnly field, and can be stored in X3D files like an initializeOnly field. An
inputOutput field named zzz can be referred to as 'set_zzz' and treated as an inputOnly,
and can be referred to as 'zzz_changed' and treated as an outputOnly field. Within
ISO/IEC 19775, fields with inputOutput access or inputOnly access are collectively
referred to as input fields, fields with inputOutput access or outputOnly access are
collectively referred to as output fields, and the events these fields receive and send are
called input events and output events, respectively.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

Concepts.html[8/1/2020 10:01:30 AM]

The initial value of an inputOutput field is its value in the X3D file, or the default value
for the node in which it is contained, if a value is not specified. When an inputOutput
field receives an event it shall generate an event with the same value and timestamp.
The following sources, in precedence order, shall be used to determine the initial value
of the inputOutput field:

e. the user-defined value in the instantiation (if one is specified);
f. the default value for that field as specified in the node or prototype definition.

The recommendations for naming initializeOnly fields, inputOutput fields, outputOnly
fields, and inputOnly fields for built-in nodes are as follows:

g. All names containing multiple words start with a lower case letter, and the first
letter of all subsequent words is capitalized (e.g., addChildren), with the exception
of set_ and _changed, as described below.

h. It is recommended that all inputOnly fields have the prefix “set_”, with the
exception of the addChildren and removeChildren fields.

i. Certain inputOnly fields and outputOnly fields of type SFTime do not use the "set_"
prefix or "_changed" suffix.

j. It is recommended that all other outputOnly fields have the suffix “_changed”
appended, with the exception of outputOnly fields of type SFBool.

4.4.2.3 Interface hierarchy

Most object types derive some of their interfaces and functionality from other object
types in the system. These are known as its supertypes, and an object is said to be
derived from these supertypes. Likewise, these supertypes may derive their capabilities
from other object types, forming a chain all the way to a small number of base types
from which all the others are ultimately derived. The graph describing the relationship
between all object types in the system is called the interface hierarchy. In this part of
ISO/IEC 19775, the object hierarchy specifies conceptual relationships between objects
but does not necessarily dictate actual implementation.

Figure 4.2 depicts the object hierarchy for object types defined in this part of ISO/IEC
19775 for all versions. A specification of which object types are available for which
versions may be found in Annex L Version content.

NOTE Not all object types are supported in certain component levels, profiles or versions; refer to the individual
component and profile specifications in this part of ISO/IEC 19775 for details.

X3DField -+------------- X3DArrayField -+
 +- SFBool +- MFBool
 +- SFColor +- MFColor
 +- SFColorRGBA +- MFColorRGBA
 +- SFDouble +- MFDouble
 +- SFFloat +- MFFloat
 +- SFImage +- MFImage
 +- SFInt32 +- MFInt32
 +- SFMatrix3d +- MFMatrix3d
 +- SFMatrix3f +- MFMatrix3f
 +- SFMatrix4d +- MFMatrix4d
 +- SFMatrix4f +- MFMatrix4f
 +- SFNode +- MFNode
 +- SFRotation +- MFRotation
 +- SFString +- MFString
 +- SFTime +- MFTime
 +- SFVec2d +- MFVec2d
 +- SFVec2f +- MFVec2f
 +- SFVec3d +- MFVec3d
 +- SFVec3f +- MFVec3f

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

Concepts.html[8/1/2020 10:01:30 AM]

 +- SFVec4d +- MFVec4d
 +- SFVec4f +- MFVec4f

 X3DBoundedObject

 X3DFogObject

 X3DPickableObject

 X3DProgrammableShaderObject

 X3DMetadataObject

 X3DUrlObject

 X3DNode
 |
 +- Contact
 +- Contour2D
 +- EaseInEaseOut
 +- GeoOrigin (deprecated)
 +- LayerSet
 +- MetadataBoolean (X3DMetadataObject)*
 +- MetadataDouble (X3DMetadataObject)*
 +- MetadataFloat (X3DMetadataObject)*
 +- MetadataInteger (X3DMetadataObject)*
 +- MetadataSet (X3DMetadataObject)*
 +- MetadataString (X3DMetadataObject)*
 +- NurbsTextureCoordinate
 +- RigidBody
 +- ShaderPart (X3DUrlObject)*
 +- ShaderProgram (X3DUrlObject, X3DProgrammableShaderObject)*
 +- TextureProperties
 |
 +- X3DAppearanceNode -+- Appearance
 |
 +- X3DAppearanceChildNode -+- AcousticProperties
 | +- FillProperties
 | +- LineProperties
 | +- PointProperties
 | |
 | +- X3DMaterialNode -+- X3DOneSidedMaterialNode -+- Material
 | | | +- PhysicalMaterial
 | | | +- UnlitMaterial
 | | +- TwoSidedMaterial (deprecated)

 | +- X3DMaterialNode -+- Material
 | | +- TwoSidedMaterial
 | |
 | +- X3DShaderNode -+- ComposedShader (X3DProgrammableShaderObject)*
 | | +- PackagedShader (X3DUrlObject,
X3DProgrammableShaderObject)*
 | | +- ProgramShader
 | |
 | +- X3DTextureNode -+- MultiTexture
 | | |
 | | + X3DSingleTextureNode -+- X3DEnvironmentTextureNode -
+- ComposedCubeMapTexture
 | | |
+- GeneratedCubeMapTexture
 | | |
+- ImageCubeMapTexture (X3DUrlObject)*
 | | |
 | | +- X3DTexture2DNode -+-
ImageTexture (X3DUrlObject)*
 | | | +-
MovieTexture (X3DSoundSourceNode, X3DUrlObject)*
 | | | +-
PixelTexture
 | | |
 | | +- X3DTexture3DNode -+-
ComposedTexture3D
 | | +-
ImageTexture3D (X3DUrlObject)*
 | | +-
PixelTexture3D

 | | +- X3DEnvironmentTextureNode -
+- ComposedCubeMapTexture
 | | |
+- GeneratedCubeMapTexture
 | | |
+- ImageCubeMapTexture (X3DUrlObject)*
 | | |
 | | +- X3DTexture2DNode -+-
ImageTexture (X3DUrlObject)*
 | | | +-
MovieTexture (X3DSoundSourceNode, X3DUrlObject)*
 | | | +-
PixelTexture
 | | |
 | | +- X3DTexture3DNode -+-
ComposedTexture3D
 | | +-
ImageTexture3D (X3DUrlObject)*
 | | +-
PixelTexture3D

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

Concepts.html[8/1/2020 10:01:30 AM]

 | |
 | +- X3DTextureTransformNode +- MultiTextureTransform
 | +- X3DSingleTextureTransformNode -+-
TextureTransform
 | +-
TextureTransformMatrix3D
 | +-
TextureTransform3D

 | +-
TextureTransform
 | +-
TextureTransformMatrix3D
 | +-
TextureTransform3D

 |
 |
 +- X3DFontStyleNode -+- FontStyle
 | +- ScreenFontStyle
 |
 +- X3DGeometryNode -+- Arc2D
 | +- ArcClose2D
 | +- Box
 | +- Circle2D
 | +- Cone
 | +- Cylinder
 | +- Disk2D
 | +- ElevationGrid
 | +- Extrusion
 | +- GeoElevationGrid
 | +- IndexedLineSet
 | +- LineSet
 | +- PointSet
 | +- Polyline2D
 | +- Polypoint2D
 | +- Rectangle2D
 | +- Sphere
 | +- Text
 | +- TriangleSet2D
 | |
 | +- X3DComposedGeometryNode -+- IndexedFaceSet
 | | +- IndexedTriangleFanSet
 | | +- IndexedTriangleSet
 | | +- IndexedTriangleStripSet
 | | +- IndexedQuadSet
 | | +- QuadSet
 | | +- TriangleFanSet
 | | +- TriangleSet
 | | +- TriangleStripSet
 | |
 | +- X3DParametricGeometryNode -+- NurbsCurve
 | +- NurbsSweptSurface
 | +- NurbsSwungSurface
 | |
 | +- X3DNurbsSurfaceGeometryNode -+-
NurbsPatchSurface
 | +-
NurbsTrimmedSurface
 |
 +- X3DGeometricPropertyNode -+- FogCoordinate
 | +- HAnimDisplacer
 | |
 | |+- X3DColorNode -+- Color
 | | +- ColorRGBA
 | |
 | +- X3DCoordinateNode -+- Coordinate
 | | +- CoordinateDouble
 | | +- GeoCoordinate
 | |
 | +- X3DNormalNode -+- Normal
 | |
 | +- X3DTextureCoordinateNode -+- MultiTextureCoordinate
 | | +- X3DSingleTextureCoordinateNode -+-
TextureCoordinate
 | | +-
TextureCoordinate3D
 | | +-
TextureCoordinate4D
 | | +-
TextureCoordinateGenerator

 | | +-
TextureCoordinate
 | | +-
TextureCoordinate3D
 | | +-
TextureCoordinate4D
 | | +-
TextureCoordinateGenerator
 | |
 | +- X3DVertexAttributeNode -+- FloatVertexAttribute
 | +- Matrix3VertexAttribute
 | +- Matrix4VertexAttribute
 |
 +- X3DLayerNode -+- Layer
 | +- LayoutLayer

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

Concepts.html[8/1/2020 10:01:30 AM]

 |
 +- X3DNBodyCollisionSpaceNode (X3DBoundedObject)* -+- CollisionSpace
 |
 +- X3DNurbsControlCurveNode -+- ContourPolyline2D
 | +- NurbsCurve2D
 |
 +- X3DParticleEmitterNode -+- ConeEmitter
 | +- ExplosionEmitter
 | +- PointEmitter
 | +- PolylineEmitter
 | +- SurfaceEmitter
 | +- VolumeEmitter
 |
 +- X3DParticlePhysicsModelNode -+- BoundedPhysicsModel
 | +- ForcePhysicsModel
 | +- WindPhysicsModel
 |
 +- X3DProtoInstance
 |
 +- X3DRigidJointNode -+- BallJoint
 | +- DoubleAxisHingeJoint
 | +- MotorJoint
 | +- SingleAxisHingeJoint
 | +- SliderJoint
 | +- UniversalJoint
 |
 +- X3DVolumeRenderStyleNode -+- ProjectionVolumeStyle
 | |
 | +- X3DComposableVolumeRenderStyle -+- BlendedVolumeStyle
 | +- BoundaryEnhancementVolumeStyle
 | +- CartoonVolumeStyle
 | +- ComposedVolumeStyle
 | +- EdgeEnhancementVolumeStyle
 | +- OpacityMapVolumeStyle
 | +- ProjectionVolumeStyle
 | +- ShadedVolumeStyle
 | +- SilhouetteEnhancementVolumeStyle
 | +- ToneMappedVolumeStyle
 |
 +- X3DChildNode -+- BooleanFilter
 +- BooleanToggle
 +- ClipPlane
 +- CollisionCollection
 +- DISEntityManager
 +- GeoLOD (X3DBoundedObject)*
 +- HAnimHumanoid (X3DBoundedObject)*
 +- HAnimMotion
 +- Inline (X3DUrlObject, X3DBoundedObject)*
 +- LocalFog (X3DFogObject)*
 +- NurbsOrientationInterpolator
 +- NurbsPositionInterpolator
 +- NurbsSet (X3DBoundedObject)*
 +- NurbsSurfaceInterpolator
 +- RigidBodyCollection
 +- StaticGroup (X3DBoundedObject)*
 +- ViewpointGroup
 |
 +- X3DBindableNode -+- Fog (X3DFogObject)*
 | +- GeoViewpoint
 | +- NavigationInfo
 | +- ListenerPoint
 | |
 | +- X3DBackgroundNode -+- Background
 | | +- TextureBackground
 | |
 | +- X3DViewpointNode -+- GeoViewpoint
 | +- OrthoViewpoint
 | +- Viewpoint
 | +- ViewpointGroup
 |
 +- X3DFollowerNode -+- X3DChaserNode -+- ColorChaser
 | | +- CoordinateChaser
 | | +- OrientationChaser
 | | +- PositionChaser
 | | +- PositionChaser2D
 | | +- ScalerChaser
 | | +- TexCoordChaser2D
 | |
 | +- X3DDamperNode -+- ColorDamper
 | +- CoordinateDamper
 | +- OrientationDamper
 | +- PositionDamper
 | +- PositionDamper2D
 | +- ScalarDamper
 | +- TexCoordDamper
 |
 +- X3DGroupingNode (X3DBoundedObject)* -+- Anchor
 | +- Billboard
 | +- CADAssembly
(X3DProductStructureChildNode)*
 | +- CADLayer
 | +- CADPart (X3DProductStructureChildNode)*
 | +- Collision (X3DSensorNode)*
 | +- EspduTransform (X3DSensorNode)*
 | +- GeoLocation
 | +- GeoTransform
 | +- Group

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

Concepts.html[8/1/2020 10:01:30 AM]

 | +- HAnimJoint
 | +- HAnimSegment
 | +- HAnimSite
 | +- LayoutGroup
 | +- LOD
 | +- PickableGroup (X3DPickableObject)*
 | +- ScreenGroup
 | +- Switch
 | +- Transform
 | |
 | +- X3DViewportNode -+- Viewport
 |
 +- X3DInfoNode --+- DISEntityTypeMapping
 | +- GeoMetadata
 | +- WorldInfo
 |
 +- X3DInterpolatorNode -+- ColorInterpolator
 | +- CoordinateInterpolator
 | +- CoordinateInterpolator2D
 | +- GeoPositionInterpolator
 | +- NormalInterpolator
 | +- OrientationInterpolator
 | +- PositionInterpolator
 | +- PositionInterpolator2D
 | +- ScalarInterpolator
 | +- SplinePositionInterpolator
 | +- SplinePositionInterpolator2D
 | +- SplineScalarInterpolator
 | +- SquadOrientationInterpolator
 |
 +- X3DLayoutNode -+- Layout
 |
 +- X3DLightNode -+- DirectionalLight
 | +- PointLight
 | +- SpotLight
 |
 +- X3DNBodyCollidableNode (X3DBoundedObject)* -+- CollidableOffset
 | +- CollidableShape
 |
 +- X3DProductStructureChildNode -+- CADAssembly (X3DGroupingNode)*
 | +- CADFace (X3DBoundedObject)*
 | +- CADPart (X3DGroupingNode)*
 |
 +- X3DTextureProjectorNode -+- TextureProjectorPerspective
 | +- TextureProjectorParallel
 |
 +- X3DScriptNode (X3DUrlObject)* -+- Script
 |
 +- X3DSensorNode -+- Collision (X3DGroupingNode)*
 | +- CollisionSensor
 | +- EspduTransform (X3DGroupingNode)*
 | +- ReceiverPdu (X3DBoundedObject)*
 | +- SignalPdu (X3DBoundedObject)*
 | +- TimeSensor (X3DTimeDependentNode)*
 | +- TransmitterPdu (X3DBoundedObject)*
 | |
 | +- X3DEnvironmentalSensorNode -+- GeoProximitySensor
 | | +- ProximitySensor
 | | +- TransformSensor
 | | +- VisibilitySensor
 | |
 | +- X3DKeyDeviceSensorNode -+- KeySensor
 | | +- StringSensor
 | |
 | +- X3DNetworkSensorNode +- LoadSensor
 | |
 | +- X3DPickSensorNode -+- LinePickSensor
 | | +- PointPickSensor
 | | +- PrimitivePickSensor
 | | +- VolumePickSensor
 | |
 | +- X3DPointingDeviceSensorNode -+- X3DDragSensorNode -+-
CylinderSensor
 | | +-
PlaneSensor
 | | +-
SphereSensor
 | |
 | +- X3DTouchSensorNode -+-
GeoTouchSensor
 | +-
TouchSensor
 |
 +- X3DSequencerNode -+- BooleanSequencer
 | +- IntegerSequencer
 |
 +- X3DShapeNode (X3DBoundedObject)* -+- ParticleSystem
 | +- Shape
 |
 +- X3DSoundNode -+- Sound
 | +- SpatialSound
 |
 +- X3DTimeDependentNode -+- TimeSensor (X3DSensorNode)*
 | |
 | +- X3DSoundAnalysisNode -+- Analyser
 | |
 | +- X3DSoundChannelNode -+- ChannelSplitter

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

Concepts.html[8/1/2020 10:01:30 AM]

 | | +- ChannelMerger
 | |
 | +- X3DSoundDestinationNode -+- AudioDestination
 | | +- StreamAudioDestination
 | |
 | +- X3DSoundProcessingNode -+- BiquadFilter
 | | +- Convolver
 | | +- Delay
 | | +- DynamicsCompressor
 | | +- Gain
 | | +- PeriodicWave
 | | +- WaveShaper
 | |
 | +- X3DSoundSourceNode -+- AudioBufferSource
 | +- AudioClip (X3DUrlObject)*
 | +- MicrophoneSource
 | +- MovieTexture (X3DTexture2DNode,
X3DUrlObject)*
 | +- OscillatorSource
 | +- StreamAudioSource
 |
 +- X3DTriggerNode -+- BooleanTrigger
 | +- IntegerTrigger
 | +- TimeTrigger
 |
 +- X3DVolumeDataNode (X3DBoundedObject)* -+- IsoSurfaceVolumeData
 +- SegmentedVolumeData
 +- VolumeData

* = Derived from multiple interfaces

Figure 4.2 — Interface hierarchy

The object hierarchy defines both abstract interfaces and concrete node types. Abstract
interfaces define functionality that is inherited by other interfaces and/or nodes, but are
never instantiated in the scene graph as objects. Concrete node types derive from one
or more abstract interfaces and may be instantiated in the scene graph. Thus, the live
scene graph consists only of instances of concrete node types. Components defined in
this part of ISO/IEC 19775 are required to implement the functionality of abstract
interfaces only insofar as that functionality is made available via one of the derived
concrete node types. Part 2 of ISO/IEC 19775 defines the means by which applications
may access the functionality provided in both abstract interfaces and concrete nodes via
programmatic means.

The two main types of object from which most others are derived are X3DNode and
X3DField. Nodes are the objects used in the declarative language to form the scene
graph, while fields are contained within nodes and hold the data items for nodes. Some
field objects contain simple data values like integers or arrays of strings. Other field
objects contain references to nodes. It is this ability of X3DNode to contain X3DField,
and X3DField to contain references to X3DNode, that makes it possible for X3D to form
scene graph hierarchies.

EXAMPLE

Transform { translation 1 2 3
 children [
 Shape {
 geometry Box { }
 }
 Group {
 children [...]
 }
]
}

In the above example, the Transform contains a simple field, translation, which contains a vector of 3 numbers. It
also contains a children field which may contain an array of other nodes. In this case it has two, a Shape and a
Group. The Shape and the Group both contain fields which may have other objects as well.

Derivation makes it possible to strongly type all objects. In the above example, the
children field is constrained to contain a list of objects derived from an object type

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

Concepts.html[8/1/2020 10:01:30 AM]

called X3DChildNode. Both Shape and Group are derived (indirectly) from this object
and can therefore be placed in the children field. The geometry field of Shape, on the
other hand, can only contain a single node derived from X3DGeometryNode. Box is
derived from this object and can therefore be placed in the geometry field. But Box is
not derived from X3DChildNode, so it cannot be placed in the children field. Likewise,
Group is not derived from X3DGeometryNode and can therefore not be placed in the
geometry field.

The above example exhibits another quality of derivation. Transform is derived from
X3DGroupingNode and therefore inherits its children field. This makes the specification
of Transform simpler because it does not need to describe the functionality of the
children field. Because it is derived from X3DGroupingNode, the author knows it
contains a children field which behaves like the one in Group which is also derived from
X3DGroupingNode.

 4.4.2.4 Modifying objects

4.4.2.4.1 Routes

There are several ways to modify the fields of an object. Using one of the X3D file
formats, an author can declare a set of nodes, the initial state of their fields, and
interconnections between the fields called Routes. X3D uses an event propagation, or
dataflow model to change the values of fields at run-time. As part of its abstract
specification, the behavior of a node in response to events sent to its fields, and the
conditions under which its fields send events out, is described.

EXAMPLE It is possible to create a scene with run-time behavior using only this event propagation model:

DEF TS TimeSensor {
 loop TRUE
 cycleInterval 5
}
DEF I PositionInterpolator {
 key [0 0.5 1]
 keyValue [0 -1 0, 0 1 0, 0 -1 0]
}
DEF T Transform {
 children [
 Shape {
 geometry Box { }
 }
]
}
ROUTE ts.fraction_changed TO I.set_fraction
ROUTE I.value_changed TO T.set_translation

This example bounces a box up and down repeatedly over a five-second interval. The TimeSensor object is
defined to send an event continuously out of its fraction field. This event sends a floating point value which varies
from 0 to 1 over a 5 second interval, as specified by the cycleInterval. Its loop field tells it to do so repeatedly.
This fraction value is sent to the fraction field of a PositionInterpolator. This object is defined to send an event out
of its value field whenever it receives an event on its fraction field. The value is determined by the key and
keyValue fields. In this case it sends a vector whose y value varies between -1 and +1 and back again over the
interval. This value is sent to the translation field of the Transform node. This node is defined to set the position
of its children according to the value of translation. 4.4.8.2 Routes contains more information on routing.

4.4.2.4.2 Modifying objects via programmatic access

The routing mechanism is simple, but is limited to changing field values of nodes, and
only changes that are designed into a given node set. For greater flexibility, some

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

Concepts.html[8/1/2020 10:01:30 AM]

profiles provide programmatic access to objects in the system. This allows field values
to be set and read, and functions to be called. Mechanisms are also provided to allow
PROTO objects to be found, which in turn allows objects of that type to be instantiated.

There are two types of programmatic access in X3D: External access (EXAMPLE access
from a containing HTML page or embedding native application) and Internal scripts using any of
the supported scripting languages.

Programmatic access to objects is provided via interfaces to those objects. The
interface of an object (its set of data and function properties) is specified, and is also
referred to as the object type. An object type that represents a node is also referred to
as a node type. Object types may be either abstract or concrete. Abstract object types
are not instantiable. Instead, they are used to derive other object types or to indicate
that a field may contain a node of any of the derivative node types. Concrete node
types are those derived from abstract node types and are instantiable. A compliant
implementation of an object's interface shall support the interface specifications as
defined in Part 2 of ISO/IEC 197775.

See 4.9, Application programmer interfaces for additional information.

 4.4.2.5 Object life cycle

Nodes have a life cycle: they are created, used and eventually destroyed. A node is
considered live if one or more of the following is true:

a. The node is a root node in the scene.
b. The node is referenced by a field of a live node.
c. There is a reference from a live script to the node.
d. There is an external programmatic reference to the node.

Rules b and c are applied recursively to cover the entire live scene graph.

Nodes instanced from a file are created implicitly by the browser upon encountering a
node instance or upon instancing a prototype's scene graph. Nodes may also be
instanced programmatically; in this case there are additional discrete steps in the
node's life cycle. Refer to Part 2 of ISO/IEC 197775 for more details.

4.4.3 DEF/USE semantics

Node names are limited in scope to a single X3D file, prototype definition, or string
submitted to either CreateX3DFromString, CreateX3DFromStream, or
CreateX3DFromURL browser service or a construction for SFNodes within a script. The
USE statement does not create a copy of the node. Instead, the same node is inserted
into the scene graph a second time, resulting in the node having multiple parents (see
4.3.5 Transformation hierarchy, for restrictions on self-referential nodes).

Node names shall be unique in the context within which the associated DEF keyword
occurs.

TODO: describe how, when an external environment exists,

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

Concepts.html[8/1/2020 10:01:30 AM]

Abstract definition of how events can be exchanged between external environment
and scene graph.
Syntax for multiple encoding/language bindings may be defined in related
specifications, e.g. updates to 19777-1 JavaScript, 19776-1 XML Encoding, and
(eventually) 19776-5 JSON.
For example, HTML5/DOM id attribute can be used for performing event callbacks
using JavaScript, and thus has a similar role to DEF when events are ROUTEd.
Editors discussion: examples should not go into an annex, will need to go into
other file encodings and language bindings.
Pending eventual ISO submission and review of those specifications, we will need
example usage and some specification details publicly available to support
implementation efforts.

4.4.4 Prototype semantics

4.4.4.1 Introduction

The PROTO statement defines a new node type in terms of already defined (built-in or
prototyped) node types. Once defined, prototyped node types may be instantiated in
the scene graph exactly like the built-in node types.

Node type names shall be unique in each X3D file. The results are undefined if a
prototype is given the same name as a built-in node type or a previously defined
prototype in the same scope.

 4.4.4.2 PROTO interface declaration semantics

The prototype interface defines the fields and field access types for the new node type.
The interface declaration includes the types, names and default values (for initializeOnly
and inputOutput fields) for the prototype's fields.

The interface declaration may contain inputOutput field declarations, which are a
convenient way of defining an initializeOnly field, inputOnly field, and outputOnly field
at the same time. If an inputOutput field named zzz is declared, it is equivalent to
separately declaring an initializeOnly field named zzz, an inputOnly field named set_zzz,
and an outputOnly field named zzz_changed.

Each prototype instance can be considered to be a complete copy of the prototype, with
its own field values and copy of the prototype definition. A prototyped node type is
instantiated using standard node syntax. For example, the following prototype (which
has an empty interface declaration):

PROTO Cube [] { Box { } }

may be instantiated as follows:

Shape { geometry Cube { } }

It is recommended that user-defined field names defined in PROTO interface
declarations statements follow the naming conventions described in 4.4.2.2 Field
semantics.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

Concepts.html[8/1/2020 10:01:30 AM]

If an outputOnly field in the prototype declaration is associated with an inputOutput
field in the prototype definition, the initial value of the associated outputOnly field shall
be the initial value of the inputOutput field. If the outputOnly field is associated with
multiple inputOutput fields, the results are undefined.

 4.4.4.3 PROTO definition semantics

A prototype definition consists of one or more nodes, nested PROTO statements, and
ROUTE statements. The first node type determines how instantiations of the prototype
can be used in an X3D file. An instantiation is created by filling in the parameters of the
prototype declaration and inserting copies of the first node (and its scene graph)
wherever the prototype instantiation occurs.

EXAMPLE If the first node in the prototype definition is a Material node, instantiations of the prototype can be used
wherever a Material node can be used. Any other nodes and accompanying scene graphs are not part of the
transformation hierarchy, but may be referenced by ROUTE statements or Script nodes in the prototype definition.

Nodes in the prototype definition may have their fields associated with the fields of the
prototype interface declaration by using IS statements in the body of the node. When
prototype instances are read from an X3D file, field values for the fields of the
prototype interface may be given. If given, the field values are used for all nodes in the
prototype definition that have IS statements for those fields. Similarly, when an input
field of a prototype instance is sent an event, the event is delivered to all nodes that
have IS statements for that field. When a node in a prototype instance generates an
output event that has an IS statement, the event is sent to any input fields connected
(via ROUTE) to the prototype instance's output field.

IS statements may appear inside the prototype definition wherever fields may appear.
IS statements shall refer to fields defined in the prototype declaration. Results are
undefined if an IS statement refers to a non-existent declaration. Results are undefined
if the type of the field being associated by the IS statement does not match the type
declared in the prototype's interface declaration. For example, it is illegal to associate
an SFColor with an SFVec3f. It is also illegal to associate an SFColor with an MFColor or
vice versa.

Results are undefined if an IS statement:

inputOnly field is associated with a initializeOnly field or an outputOnly field;
outputOnly field is associated with a initializeOnly field or inputOnly field;
initializeOnly field is associated with an inputOnly field or outputOnly field.

An inputOutput field in the prototype interface may be associated only with an
inputOutput field in the prototype definition, but an inputOutput field in the prototype
definition may be associated with either an inputOutput field, inputOnly field, or
outputOnly field in the prototype interface. When associating an inputOutput field in a
prototype definition with an inputOnly field or outputOnly field in the prototype
declaration, it is valid to use either the shorthand inputOutput field name (e.g.,
translation) or the explicit field name (e.g., set_translation or translation_changed).
Table 4.4 defines the rules for mapping between the access types of fields in a
prototype declarations and the access types for fields in its primary scene graph's nodes
(yes denotes a legal mapping, no denotes an error).

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

Concepts.html[8/1/2020 10:01:30 AM]

 Table 4.4 — Rules for mapping PROTOTYPE declarations to node instances

 Prototype declaration

Prototype

definition

inputOutput initializeOnly inputOnly outputOnly

inputOutput yes yes yes yes

intializeOnly no yes no no

inputOnly no no yes no

outputOnly no no no yes

Results are undefined if a field of a node in the prototype definition is associated with
more than one field in the prototype's interface (i.e., multiple IS statements for a field
in a node in the prototype definition), but multiple IS statements for the fields in the
prototype interface declaration is valid. Results are undefined if a field of a node in a
prototype definition is both defined with initial values (i.e., field statement) and
associated by an IS statement with a field in the prototype's interface. If a prototype
interface has an outputOnly field E associated with multiple outputOnly fields in the
prototype definition EDi, the value of E is the value of the field that generated the event
with the greatest timestamp. If two or more of the outputOnly fields generated events
with identical timestamps, results are undefined.

 4.4.4.4 Prototype scoping rules

Prototype definitions appearing inside a prototype definition (i.e., nested) are local to
the enclosing prototype. IS statements inside a nested prototype's implementation may
refer to the prototype declarations of the innermost prototype.

A PROTO statement establishes a DEF/USE name scope separate from the rest of the
scene and separate from any nested PROTO statements. Nodes given a name by a DEF
construct inside the prototype may not be referenced in a USE construct outside of the
prototype's scope. Nodes given a name by a DEF construct outside the prototype scope
may not be referenced in a USE construct inside the prototype scope.

A prototype may be instantiated in a file anywhere after the completion of the prototype
definition. A prototype may not be instantiated inside its own implementation (i.e.,
recursive prototypes are illegal).

 4.4.5 External prototype semantics

 4.4.5.1 Introduction

The EXTERNPROTO statement defines a new node type. It is equivalent to the PROTO
statement, with two exceptions. First, the implementation of the node type is stored
externally, either in an X3D file containing an appropriate PROTO statement or using
some other implementation-dependent mechanism. Second, default values for fields are

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

Concepts.html[8/1/2020 10:01:30 AM]

not given since the implementation will define appropriate defaults.

4.4.5.2 EXTERNPROTO interface semantics

The semantics of the EXTERNPROTO are exactly the same as for a PROTO statement,
except that default field values are not specified locally. In addition, events sent to an
instance of an externally prototyped node may be ignored until the implementation of
the node is found.

Until the definition has been loaded, the browser shall determine the initial value of
inputOutput fields using the following rules (in order of precedence):

a. the user-defined value in the instantiation (if one is specified);
b. the default value for that field type.

For outputOnly fields, the initial value on startup will be the default value for that field
type. During the loading of an EXTERNPROTO, if an initial value of an outputOnly field is
found, that value is applied to the field and no event is generated.

The names and types of the fields of the interface declaration shall be a subset of those
defined in the implementation. Declaring a field with a non-matching name is an error,
as is declaring a field with a matching name but a different type.

It is recommended that user-defined field names defined in EXTERNPROTO interface
statements follow the naming conventions described in 4.4.2.2 Field semantics.

4.4.5.3 EXTERNPROTO URL semantics

The string or strings specified after the interface declaration give the location of the
prototype's implementation. If multiple strings are specified, the browser searches in
the order of preference. For more information on URLs, see 9 Networking component.

If a URL in an EXTERNPROTO statement refers to an X3D file, the first PROTO
statement found in the X3D file (excluding EXTERNPROTOs) is used to define the
external prototype's definition. The name of that prototype does not need to match the
name given in the EXTERNPROTO statement. Results are undefined if a URL in an
EXTERNPROTO statement refers to a non-X3D file

To enable the creation of libraries of reusable PROTO definitions, browsers shall
recognize EXTERNPROTO URLs that end with "#name" to mean the PROTO statement
for "name" in the given X3D file. For example, a library of standard materials might be
stored in an X3D file called "materials.x3dv" that looks like:

#X3D V3.0 utf8
PROTO Gold [] { Material { ... } }
PROTO Silver [] { Material { ... } }
 ...etc.

A material from this library could might be used as follows:

#X3D V3.0 utf8
EXTERNPROTO GoldFromLibrary [] "http://.../materials.x3dv#Gold"
 ...
 Shape {
 appearance Appearance { material GoldFromLibrary {} }
 geometry ...
 }
 ...

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

Concepts.html[8/1/2020 10:01:30 AM]

 4.4.6 Import/Export semantics

The IMPORT feature allows authors to incorporate content defined within Inline nodes or
created programmatically into the namespace of the containing file for the purposes of
event routing. In contrast with external prototyping (see 4.4.5 External prototype
semantics), which allows access to individual fields of nodes defined as prototypes in
external files, IMPORT provides access to all the fields of an externally defined node
with a single statement (see 9.2.5 IMPORT statement).

Importing nodes from an Inlined file is accomplished with two statements: IMPORT and
EXPORT. The IMPORT statement is used in the containing file to define which nodes of
an Inline are to be incorporated into the containing file's namespace. The EXPORT
statement is used in the file being Inlined, to control access over which nodes within a
file are visible to other files (see 9.2.6 EXPORT statement). EXPORT statements are not
allowed in prototype declarations.

 4.4.7 Run-time name scope

Each X3D browser defines a run-time name scope that contains all of the root nodes
currently contained by the scene graph and all of the descendant nodes of the root
nodes, with the exception of nodes hidden inside another name scope. Prototypes
establish a name scope and therefore nodes inside prototype instances are hidden from
the parent name scope.

Each Inline node or prototype instance also defines a run-time name scope, consisting
of all of the root nodes of the file referred to by the Inline node or all of the root nodes
of the prototype definition, restricted as above. Other nodes or extension mechanism
may be introduced which specify their own name scope.

The IMPORT feature allows nodes defined within files referenced from Inlinenodes to be
incorporated into the run-time name scope of the containing scene graph. Once an
IMPORT statement has been encountered, the new name may be used exactly like any
other node name for the purposes of routing or programmatic access (i.e., may be used
in ROUTE statements and accessed as a field from the Scene Access Interface). Names
imported from an Inline shall be explicitly declared as exportable within the content of
the inlined file, using the EXPORT statement; only names exported using the EXPORT
statement are available to be imported into other run-time name scopes. The optional
AS keyword allows a unique name to be assigned to the imported node in order to
avoid name conflicts in the containing scene graph's run-time name scope.

Nodes created dynamically (using the X3D Scene Access Interface) are not part of any
name scope, until they are added to the scene graph, at which point they become part
of the same name scope of their parent node(s). A node may be part of more than one
run-time name scope. A node shall be removed from a name scope when it is removed
from the scene graph.

 4.4.8 Event model

 4.4.8.1 Events

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

Concepts.html[8/1/2020 10:01:30 AM]

Events are the primary means of generating behaviors in the X3D run-time
environment. Events are used throughout X3D: driving time-based animations;
handling object picking; detecting user movement and collision; changing the scene
graph hierarchy. The run-time environment manages the propagation of events through
the system according to a well-defined set of rules.

Nodes define input fields (i.e., fields with inputOutput or inputOnly access) that trigger
behavior. When a given event occurs, the node receives notification and can potentially
change internal state and the value of one or more of its fields. Nodes also define
output fields (i.e., fields with inputOutput or outputOnly access) that are sent upon
signal state changes or other occurrences within the node. Events sent to input fields
and events sent by output fields are referred to collectively in ISO/IEC 19775 as Events.

TODO: determine whether we need to further elaborate this definition when considering
external events.

4.4.8.2 Routes

Routes allows an author to declaratively connect the output events of a node to input
events of other nodes, providing a way to implement complex behaviors without
imperative programming. When a routed output event is fired, the corresponding
destination input event receives notification and can process a response to that change.
This processing can change the state of the node, generate additional events, or change
the structure of the scene graph. Routes may be created declaratively in an X3D file or
programmatically via an SAI call.

Routes are not nodes. The ROUTE statement is a construct for establishing event paths
between specified fields of nodes. ROUTE statements may either appear at the top level
of an X3D file or inside a node wherever fields may appear. It can appear after its
source or destination node and placing a ROUTE statement within a node does not
associate it with that node in any way. A ROUTE statement does follow the name
scoping rules as described in 4.4.7 Run-time name scope.

The type of the destination field shall be the same as the source type, unless a
component or support level permits an extension to this rule.

Redundant routing is ignored. If an X3D file repeats a routing path, the second and
subsequent identical routes are ignored. This also applies for routes created dynamically
using the X3D SAI.

Nodes created through the X3D prototyping mechanism give authors an opportunity to
create custom processing of incoming events. Events coming into a prototyped node
through an interface field can be routed to internal nodes for processing, or routed to
other interface fields for propagation outside the node. An author can also add
programmatic processing logic to an interface field using the internal scripting support
of the Script node.

4.4.8.3 Execution model

Once a sensor or Script has generated an initial event, the event is propagated from the
field producing the event along any ROUTEs to other nodes. These other nodes may
respond by generating additional events, continuing until all routes have been

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

Concepts.html[8/1/2020 10:01:30 AM]

honoured. This process is called an event cascade. All events generated during a given
event cascade are assigned the same timestamp as the initial event, since all are
considered to happen instantaneously.

Some sensors generate multiple events simultaneously. Similarly, it is possible that
asynchronously generated events could might arrive at the identical time as one or
more sensor generated event. In these cases, all events generated are part of the same
initial event cascade and each event has the same timestamp. The order in which the
events are applied is not considered significant. Conforming X3D worlds shall be able to
accommodate simultaneous events in arbitrary order.

After all events of the initial event cascade are honored, post-event processing
performs actions stimulated by the event cascade. The browser shall perform the
following sequence of actions during a single timestamp:

a. Update camera based on currently bound Viewpoint's position and orientation.
b. Evaluate input from sensors.
c. Evaluate routes.
d. If any events were generated from steps b and c, go to step b and continue.
e. If particle system evaluation is to take place, evaluate the particle systems here.
f. If physics model evaluation is to take place, evaluate the physics model.

For profiles that support Script nodes and the Scene Access Interface, the above order
may have several intermediate steps. Details are described in 29 Scripting and
2[I.19775-2].

Figure 4.3 provides a conceptual illustration of the execution model.

Figure 4.3 — Conceptual execution model

Nodes that contain output events shall produce at most one event per field per
timestamp. If a field is connected to another field via a ROUTE, an implementation shall
send only one event per ROUTE per timestamp. This also applies to scripts where the
rules for determining the appropriate action for sending output events are defined in 29
Scripting component.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

Concepts.html[8/1/2020 10:01:30 AM]

 4.4.8.4 Loops

Event cascades may contain loops where an event E is routed to a node that generates
an event that eventually results in E being generated again. See 4.4.8.3 Execution
model, for the loop breaking rule that limits each event to one event per timestamp.
This rule shall also be used to break loops created by cyclic dependencies between
different sensor nodes.

 4.4.8.5 Fan-in and fan-out

Fan-in occurs when two or more routes have the same destination field. All events are
considered to have been received simultaneously; therefore, the order in which they
are processed is not considered relevant.

Fan-out occurs when one field is the source for more than one route. This results in
sending any event generated by the field along all routes. All events are considered to
have been sent simultaneously; therefore, the order in which they are processed is not
considered relevant.

 4.4.8.6 Internal/external event passing

TODO: describe how, when an external environment exists,

Abstract definition of when events are be exchanged between external
environment and scene graph.
Essentially the external presentation event loop must complete each
render/interaction cycle before passing events to a contained X3D scene, and
Event loop for a contained X3D scene must complete each render/interaction cycle
before passing events to an external presentation.

 4.5 Components

4.5.1 Overview

An X3D component is a set of related functionality consisting of various X3D objects
and services as described below.

Components are specified in this standard or may be defined elsewhere. This standard
specifies a set of requirements which shall be satisfied for a component to be
considered an X3D component. Components may be organized into support levels as
provided by the component specification. The support levels are assigned an integer
identifier starting with level 1 as the simplest support level. Higher numbered support
levels (if specified) should incorporate all of the functionality of lower numbered support
levels. Thus, the support levels support a hierarchy of functionality.

New components may be defined either through creation of a new part to this
International Standard or through registration. Functionality may be added to an
already defined component by amending the appropriate part of this International
Standard or through registration. Such new functionality shall be in the form of one or
more new levels that augment the functionality already provided. Levels already

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

Concepts.html[8/1/2020 10:01:30 AM]

defined shall not be subdivided. Each such addition shall satisfy the requirements for
component definition stated above.

4.5.2 Defining components

The following are the requirements for defining components:

a. All node objects within a component shall be derived, either directly or indirectly,
from the X3DNode class.

b. All field objects within a component shall be derived from the X3DField or
X3DArrayField classes.

c. The names for nodes and fields shall follow the naming semantics set forth in this
standard including those for scoping.

Several components are defined in this standard as shown in the Component index.
These components are defined in their respective parts of this International Standard.
In all cases, the X3D extension mechanism may be used to add new levels to the
components or may be used to define separate new components.

Each component definition is comprised of:

d. a name for the component suitable for use in the COMPONENT statement;
e. one or more levels starting with Level 1;
f. a list of prerequisites for the component (each prerequisite consisting of a

statement of which level in which other component is required for support of the
component being defined);

g. a conceptual description of the functionality being provided;
h. a definition of nodes being provided with an indication of in which level each node

is; and
i. a statement of conformance for the component.

 4.5.3 Base components

Components are specified in this standard or may be defined elsewhere. See the
Component index for a list of the components of X3D which have been formally
accepted by the governing body.

Each component is presented by describing the functionality to be supported. This is
followed by the specification of the abstract nodes of the component, if any. Following
the abstract node specifications, the concrete nodes of the component are specified.
Finally, the support levels are specified.

The support levels are specified in a table in which the first column presents the
number of each support level. The second column specifies the prerequisite components
that are required by the particular support level for the component being specified.
Each new level is presented with its prerequisites in a separate row of the table.
Subsequent rows until the next new level are used to specify node support for that
level. The third column specifies the nodes and other features of the component that
are to be supported, in whole or in part, by the indicated support level. The fourth
column specifies any constraints on the particular feature or node for the indicated

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

Concepts.html[8/1/2020 10:01:30 AM]

support level. For each support level i+1, all features of the previous support level shall
also be supported.

In the second column, each prerequisite for a support level is listed by a component
name and a support level within that component. These table entries indicate that, for
the browser to claim support for that level of the component, the browser
implementation shall also support the component and support level(s) listed as a
prerequisite. If there are no prerequisites, the word "None" is specified.

In the third column, abstract nodes introduced at that support level are listed first
followed by the concrete nodes introduced at that support level.

In the fourth column, a listing of "n/a" means "not applicable". When it is indicated that
a field is "optionally supported", an X3D browser is not required to support that field. If
all fields of a node are to be entirely supported, the phrase "Full support" is used.

Table 4.5 is an example of the format for a support level table:

Table 4.5 — Example support level table

Level Prerequisites Nodes/Features Support

1 Core 1
Networking 2

 X3DTimeDependentNode
(abstract) n/a

 Node1Name fieldi optionally
supported.

 Node2Name All fields fully supported.

2

Level 1 nodes All fields as supported
by Level 1.

NodeName All fields fully supported.

Any new components defined by amendment or in new parts of this International
Standard shall specify their functionality using the same format.

 4.6 Profiles

4.6.1 Overview

ISO/IEC 19775 supports the concept of profiles. A profile is a named collection of
functionality and requirements that shall be supported in order for an implementation to
conform to that profile. Profiles are defined as a set of components and levels of each
component as well as the minimum support criteria for all of the objects contained

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

Concepts.html[8/1/2020 10:01:30 AM]

within that set.

This part of ISO/IEC 19775 defines seven profiles satisfying varying sets of
requirements:

a. Core profile (see Annex A)
b. Interchange profile (see Annex B)
c. Interactive profile (see Annex C)
d. MPEG-4 interactive profile (see Annex D)
e. Immersive profile (see Annex E)
f. Full profile (see Annex F)
g. CADInterchange profile (see Annex H)

Each set of requirements is directed at supporting the needs of a particular
constituency. Not all constituencies may be satisfied by the functionality represented by
these profiles. Therefore, this part of ISO/IEC 19775 allows for defining additional
profiles either through amendment to this part of this International Standard or by
registration.

A system that conforms to a given profile supports the full set of objects and
capabilities defined for that profile.

 4.6.2 Defining profiles

A profile definition consists of the following:

a. a name for the profile suitable for use in the PROFILE statement;
b. an introduction defining the purpose for the profile;
c. a list of the components and levels within those components which comprise the

profile;
d. a statement of conformance criteria for the profile;
e. a table containing the node type set supported by the profile stating the X3D File

Limit and Minimum Browser Support for each node type;
f. a table of other limitations for the profile; and
g. any other information specific to the profile.

4.6.3 Relationship between profiles and components

A profile consists of a collection of components at given support levels. A user may also
supplement the predefined set of components for a given profile by specifying extra
component statements (see 7.2.5.4 COMPONENT statement). If the user supplies
additional component declarations in addition to the components and levels defined as
part of the profile, the resultant components supported shall be the union of all
components and levels requested. That is, a user cannot force a lower level of
component conformance onto a profile by explicitly declaring the component with a
lower level of support than that defined by the profile.

A profile definition shall be internally consistent. If a profile contains components that
list prerequisites that are not covered by the component levels declared for that profile,

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

Concepts.html[8/1/2020 10:01:30 AM]

the prerequisites shall not be automatically made available. Authors wishing to use
these missing prerequisites shall explicitly declare the component and level required
through the use of the COMPONENT statement.

 4.7 Support levels
The X3D specification may be supported at varying Levels, or qualities of service. Any
X3D component may designate a level of service by using a numbering scheme in which
higher-numbered levels denote increasing qualities of service. A higher level of service
may indicate any of the following:

a. The presence (or absence) of features;
b. Improved support for a particular feature;
c. More rigorously defined semantics; or
d. More stringent conformance requirements.

Note that service levels between different features do not necessarily correspond. For
example, a profile may contain one component supported at level 2 and another at level
1. Any profile may combine components defined at different service levels, provided
that the features interoperate properly, the behavior is deterministic (within practical
limits) and the conformance requirements for that profile and components are well-
defined.

 4.8 Data encodings
The X3D run-time architecture is independent of the data encoding format. X3D content
and applications can be authored in a variety of encodings, including textual (XML and
Classic VRML encodings) and binary, either compressed or uncompressed. ISO/IEC
19775 contains an abstract encoding specification that defines the structure of the X3D
scene: hierarchical relationships among objects, initial values for objects, and dataflow
connections between objects. All concrete data encodings for X3D shall conform to this
abstract specification.

Browsers and generators may support any or all of the standard encoding formats,
depending on their application needs and the conformance requirements of a specific
component or profile.

X3D encodings are fully specified in the parts of ISO/IEC 19776.

 4.9 Scene access interface (SAI)
X3D provides a set of application programmer interfaces (APIs), called the Scene
Access Interface (SAI), that defines run-time access to the scene. Using the SAI a
developer may create and destroy nodes, send events to nodes, create connections
between nodes (routes), read or set field values in nodes, traverse the scene graph,
and control the operations of the browser. Programmatic access may be internal (i.e.,
used to create customized elements within the scene graph) or external (i.e.,
connecting to program elements outside the scene such as in a host application such as
a web browser). Internal access is supported via a special node called a Script node.

Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts

Concepts.html[8/1/2020 10:01:30 AM]

Script nodes allow developers to connect programming language functions and object
classes to the scene graph. Fields of a script are automatically mapped to properties
and methods of the object associated with that script. Script node code may generate
events which are propagated back to the scene graph by the run-time environment.
External access is supported through integration between the X3D run-time system and
a variety of programming language run-time libraries.

The X3D SAI is specified as a set of language-independent services and bindings to
several programming and scripting languages. A complete specification of the X3D SAI
services and the component model interfaces may be found in 2.[I19775-2]. The
language bindings for the services defined in ISO/IEC 19775-2 are specified in 2.
[I19777]. Internal programmatic access is enabled through the Script node, described
in 29 Scripting component.

TODO: determine whether we need to further elaborate this definition when considering
external environments.

 4.10 Component and profile registration
This part of ISO/IEC 19775 allows new concepts to be defined by registration of
components, new levels within components, and profiles. Registration shall not be used
to modify any existing component, level of a component, or profile. New functionality is
registered using the established procedures of the ISO International Register of
Items1). These procedures require the proposer to supply all information for a new
registered item except for the level number. The level number (if applicable) is assigned
and managed by the ISO International Registration Authority for Graphical Items.
Registration shall be according to the procedures in ISO/IEC 9973.

1)Contact information for the ISO-designated Registration Authority for Items registered under the ISO/IEC
9973 procedures is available at the ISO Maintenance Agencies and Registration Authorities web site:
http://www.iso.org/iso/standards_development/maintenance_agencies.htm.

http://www.iso.org/jtc1/sc24/register
http://www.iso.org/jtc1/sc24/register
http://www.iso.org/jtc1/sc24/register
http://www.iso.org/iso/standards_development/maintenance_agencies.htm

clipplane.png %d×%d pixels

clipplane.png[8/1/2020 10:02:34 AM]

	Local Disk
	ISO/IEC 19775-1 Edition 3 Index page
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, Index page
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, Contents
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, Foreword
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 1 Scope
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 22 Environmental sensor component
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex A Core profile
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, Introduction
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 2 Normative references
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 23 Navigation component
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex B Interchange profile
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 3 Definitions, acronyms, and abbreviations
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 24 Environmental effects componenent
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex C Interactive profile
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 25 Geospatial Component
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex D MPEG-4 interactive profile
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 5 Field type reference
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 26 HAnim Component
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex E Immersive profile
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 6 Conformance
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 27 NURBS Component
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex F Full profile
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 7 Core component
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 28 DIS component
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex G Recommended navigation behaviours
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 8 Time component
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 29 Scripting component
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex H CADInterchange profile
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 9 Networking component
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 30 Event utilities component
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex I OpenGL shading language (GLSL) binding
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 10 Grouping component
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 31 Programmable shaders component
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex J Microsoft high level shading language (HLSL) binding
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 11 Rendering component
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 32 CADGeometry component
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex K nVidia Cg shading language binding
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 12 Shape component
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 33 Texturing3D component
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L MedicalInterchange profile
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 13 Geometry3D component
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 34 Cube map environmetal texturing component
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, Annex L Version content
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 14 Geometry2D component
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 35 Layering component
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, Bibliography
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 15 Text component
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 36 Layout component
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, Component index
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 16 Sound component
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 37 Rigid body physics component
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, Profile index
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 17 Lighting component
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 38 Picking component
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, Node, abstract node type, and abstract interface index
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 18 Texturing component
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 39 Followers component
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 19 Interpolation component
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 40 Particle systems component
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 20 Pointing device sensor component
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 41 Volume rendering component
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 21 Key device sensor component
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 42 Projective Texture Mapping component
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 43 Annotation component
	Extensible 3D (X3D), ISO/IEC 19775-1:202x, 4 Concepts
	clipplane.png %d×%d pixels

