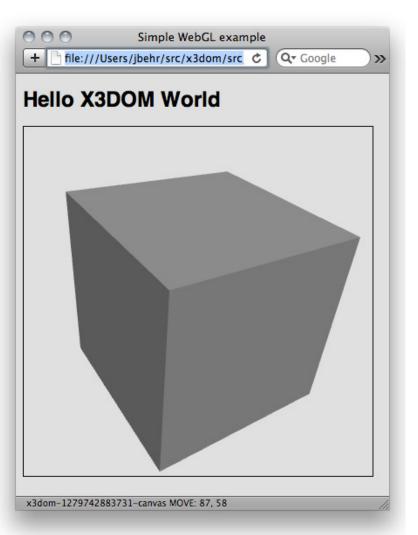
Efficient Binary Meshes in X3D0M refined: Not just images anymore!

- Johannes Behr
- Yvonne Jung
- **Tobias Franke**
- Timo Sturm

johannes.behr@igd.fraunhofer.de

Declarative (X)3D in HTML Embed a live scenegraph in the DOM



<!DOCTYPE html > <html > <body> <h1>Hello X3DOM World</ <x3d xmlns='...' profile='H <scene> <shape> <box></box>

</shape>

</scene>

</x3d>

Declarative (X)3D in HTML Large Datasets: Issue of the current approach

name is a large 'same is an international and a same is a large 'same is a large is large is a large is a larg

Real 3D applications tend to be huge HTML-files

Unpleasant non-interactive user experience

Browser are not build to hold GByte of DOM attribute data (e.g. multiple data copies)

Reference external sub-trees

X3D "Inline" node

black/white-box interface?

xml/json parser architecture

DOM holds structure and data


```
<! DOCTYPE html>-
<html>-
  <head>¬
    <link rel='stylesheet' type='text/css' href='http://www.x3dom.org/x3dom/release/x3dom.css'></link>-
    <script type='text/javascript' src='http://www.x3dom.org/x3dom/release/x3dom.js'></script>-
  </head>-
  <body>¬
   <x3d id='3dstuff' width='400px' height='400px'>-
      <scene DEF='scene'>-
        <shape>-
          <appearance>--
            <material diffuseColor='#FF00000'></material>-
          </appearance>-
          <indexedTriangleSet solid='false' index='0 1 2 1 3 2 1 4 3 5 4 1 0 5 1 0 6 5 6 7 5 5 7 4 7 8 4 7 9 8 7 6 9 6 10 9 10 11</pre>
9 10 2 11 10 0 2 6 0 10 11 2 3 8 11 3 4 8 3 11 8 9'>-
            <coordinate point='0.447214 0 -0.894427 0.447214 0.850651 -0.276393 1 0 -0 0.447214 0.525731 0.723607 -0.447214</pre>
0.850651 0.276393 -0.447214 0.525731 -0.723607 -0.447214 -0.525731 -0.723607 -1 0 0 -0.447214 0 0.894427 -0.447214 -0.850651
0.276393 0.447214 -0.850651 -0.276393 0.447214 -0.525731 0.723607'></coordinate>
            <normal vector='0.447214 0 -0.894427 0.447214 0.850651 -0.276393 1 0 -0 0.447214 0.525731 0.723607 -0.447214 0.850651</pre>
0.276393 -0.447214 0.525731 -0.723607 -0.447214 -0.525731 -0.723607 -1 0 0 -0.447214 0 0.894427 -0.447214 -0.850651 0.276393
0.447214 -0.850651 -0.276393 0.447214 -0.525731 0.723607'></normal>-
          </indexedTriangleSet>~
        </shape>-
      </scene>-
    </x3d>
  </body>-
</html>-
```

DOM holds structure and data More than 95% are usually unstructured data

<! DOCTYPE html>-<html>-<head>¬ <link rel='stylesheet' type='text/css' href='http://www.x3dom.org/x3dom/release/x3dom.css'></link> <script type='text/javascript' src='http://www.x3dom.org/x3dom/release/x3dom.js'></script> </head>-<body>¬ <x3d id='3dstuff' width='400px' height='400px'>-<scene DEF='scene'>-<shape>¬ <appearance>-<material diffuseColor='#FF0000'></material>-</appearance>¬ <indexedTriangleSet solid='false' index='0 1 2 1 3 2 1 4 3 5 4 1 0 5 1 0 6 5 6 7 5 5 7 4 7 8 4 7 9 8 7 6 9 6 10 9 10 11</pre> 9 10 2 11 10 0 2 6 0 10 11 2 3 8 11 3 4 8 3 11 8 9'>-<coordinate point='0.447214 0 -0.894427 0.447214 0.850651 -0.276393 1 0 -0 0.447214 0.525731 0.723607 -0.447214</pre> 0.850651 0.276393 -0.447214 0.525731 -0.723607 -0.447214 -0.525731 -0.723607 -1 0 0 -0.447214 0 0.894427 -0.447214 -0.850651 0.276393 0.447214 -0.850651 -0.276393 0.447214 -0.525731 0.723607'></coordinate>-<normal vector='0.447214 0 -0.894427 0.447214 0.850651 -0.276393 1 0 -0 0.447214 0.525731 0.723607 -0.447214 0.850651</pre> 0.276393 -0.447214 0.525731 -0.723607 -0.447214 -0.525731 -0.723607 -1 0 0 -0.447214 0 0.894427 -0.447214 -0.850651 0.276393 0.447214 -0.850651 -0.276393 0.447214 -0.525731 0.723607'></normal>-

</indexedTriangleSet>-

</shape>-

</scene>¬

</x3d>-

</body>-

</html>¬

Mesh Container in X3D0M

Follow the generic X3DOM approach:

Evaluate the general "**Declarative 3D**" **use cases and requirements** while providing a prototype system which works on **todays W3C/JavaScript/WebGL layer**

General Question: What Container are useful in todays W3C technology stack to support the "Generic Requirements"

- binary
- regular structure
- fast transmission, decoding
- must map to GPU container/buffer

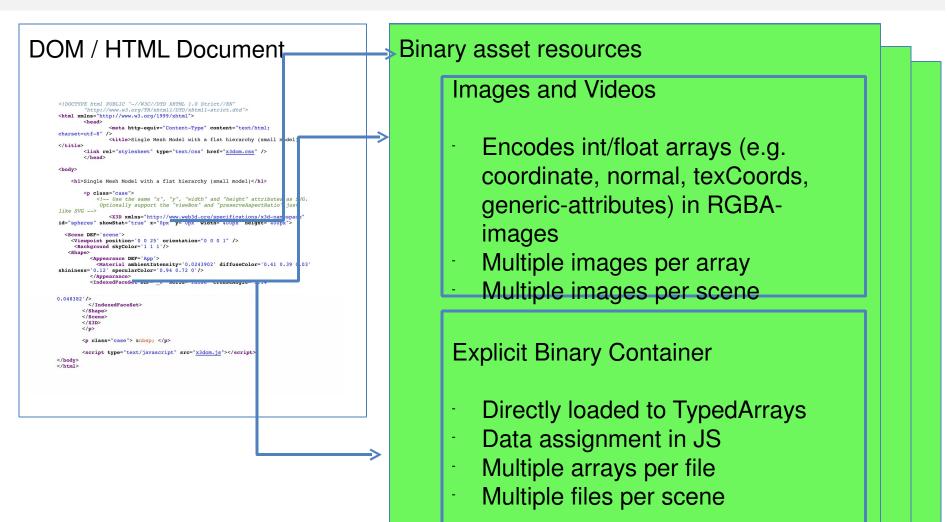
"General Goals"

Increased User experience

User does not have to wait until the document is loaded

Increased Polygon count

From 0.3 Million to 10 Million Polygon More data can be delivered in acceptable time


Increased Communication speed

Incremental Updates (similar to jpeg decompression)

Separate structure and data

HTML element reference external binary data element

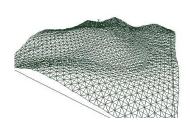
3D Geometry in Images

HeightMap

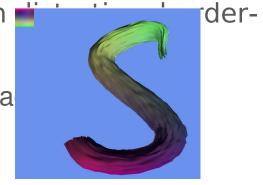
2D (semi)regular grid with 1D Height-Data

Geometry Images (Hoppe, Siggraph 2002)

Surface usually irregular triangle mesh

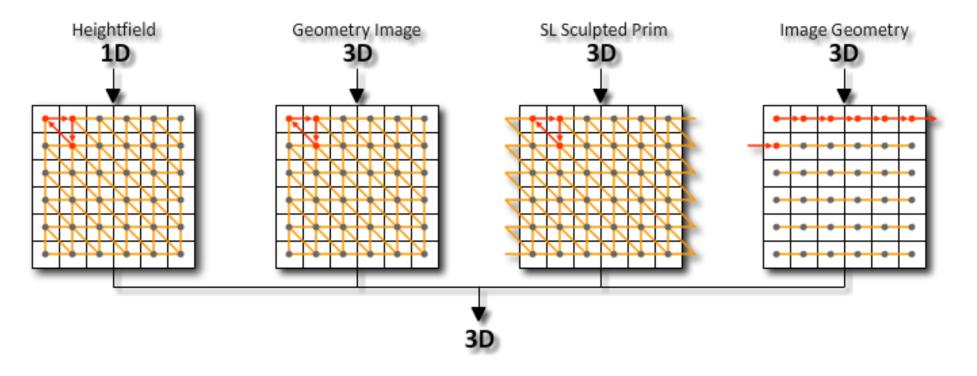

=> Remeshing to (semi)regular grid

pro: up/down sampling operation


con: genus-zero surface, parametrization handling

Latest development focus on multi-patch approa structures

(see "Adaptive Quad patches" paper)

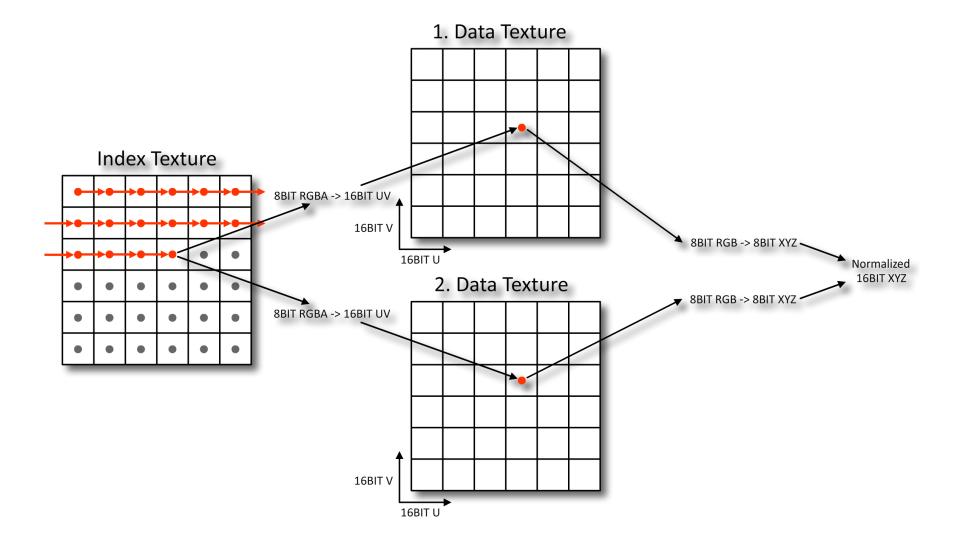


Idea: Sequential Image Geometry

Implicit mesh does not correlate with the mesh topology

/<video> as generic binary container

Normalization and **linear Quantization** to 2[^]n Bytes: n is error/user controlled

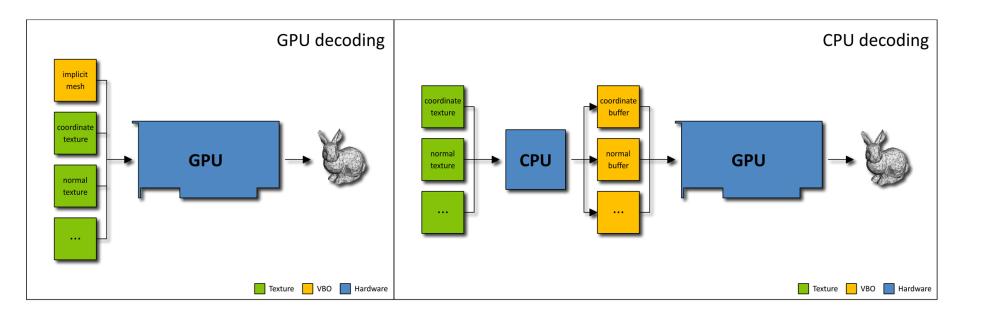

Uses **multiple images** to distribute precision (e.g. 1 Image -> 8bit, 2 images -> 16bit, ...)

LOD and streaming of precision (e.g. closer objects use higher precision)

Decompression for free (only lossless png is useful right now) **Streaming** updates for free: WebGL/X3DOM support <video>

Browser/Server well optimized to handle **large number of images and parallel downloads** of image => Great user experience

Multi image vertex property encoding



Data decoding and rendering

GPU: Single VBO, Extremely fast visualization with Vertex Textures Units, precision grows until vertex texture limit is reached

CPU/GPU: WebGL without Vertex Texture Unit support/ Flash 11

Binary Container

Powerful abstraction for efficient data encoding for Web-apps

Uses new XHR ability to load binary ArrayBuffer

- Maps to TypedArray/GPU buffer
- **No JS-Interaction for decoding**

Could be used for RESTful mesh attribute access

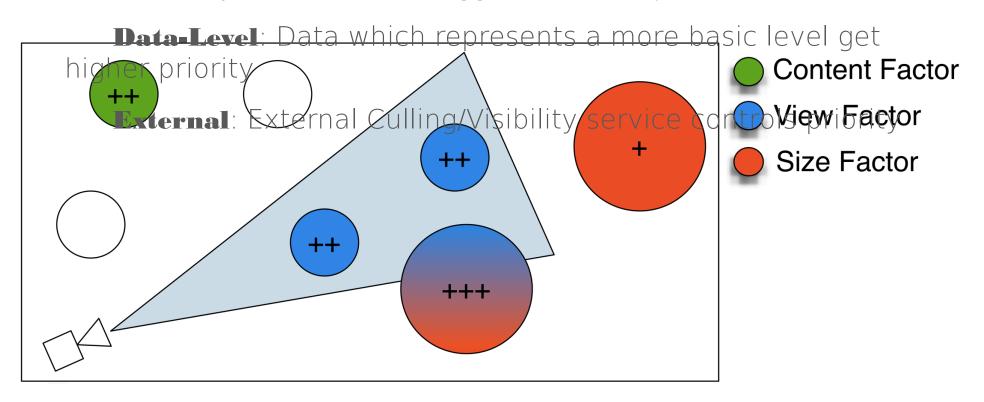
e.g. http://meshLand.com/mesh/32/coordinate.bin

Support quantization with GPU based decoder

(WebGL can handle 8 and 16 bit TypedArrays)

Standard rendering and shader handling

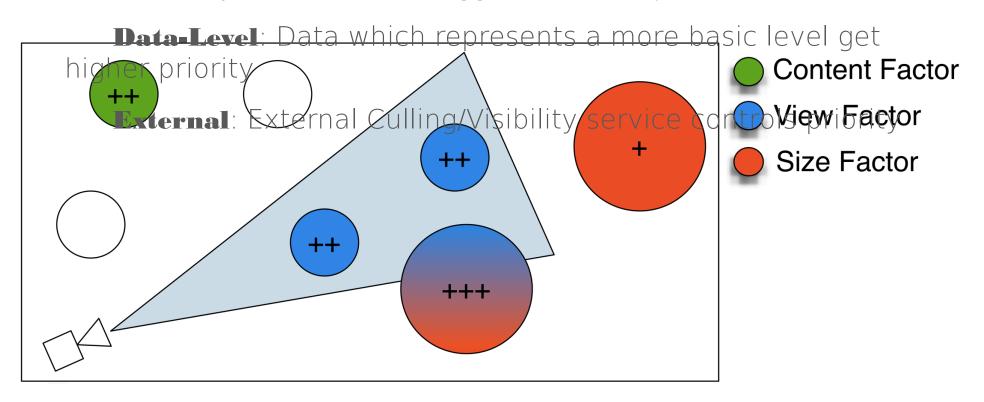
(Does not need support for Vertex Textures for GPU decoding as SIG)


Support also **incremental updates** through bit distribution over multiple files

Priority Controlled Rendering

Priority controlled **download manager and renderer**

Content: Use/Application given to focus on specific objects **View**: Objects which are in the view frustum **Size**: Objects which are bigger in world space

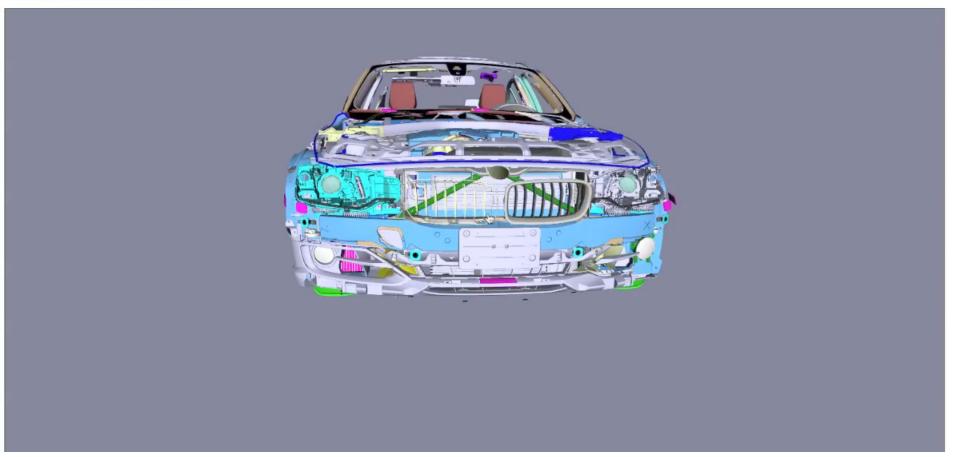


Priority Controlled Rendering


Priority controlled **download manager and renderer**

Content: Use/Application given to focus on specific objects **View**: Objects which are in the view frustum **Size**: Objects which are bigger in world space

"Out of Core" Rendering with PCR

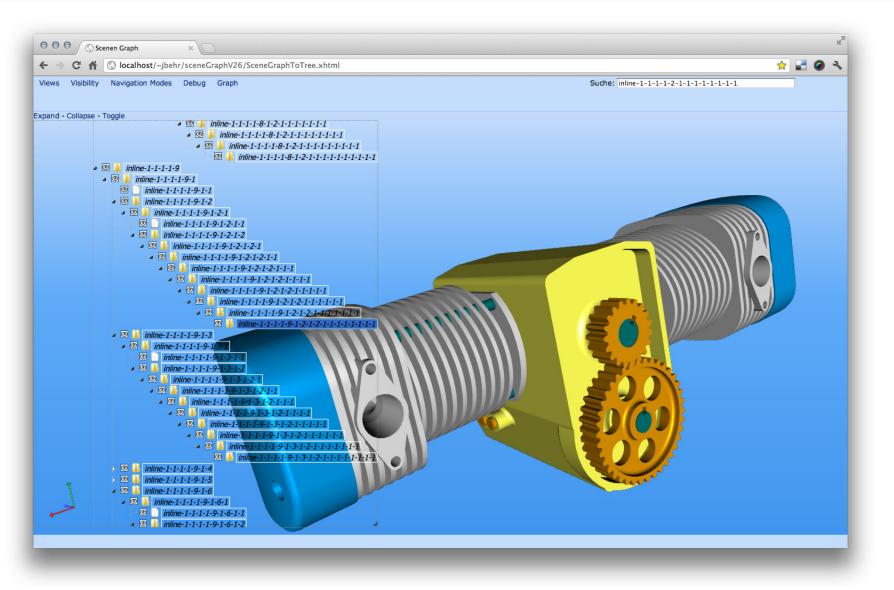


Service Controlled PCR Uses bidirectional WebSocket connection to distribute computation

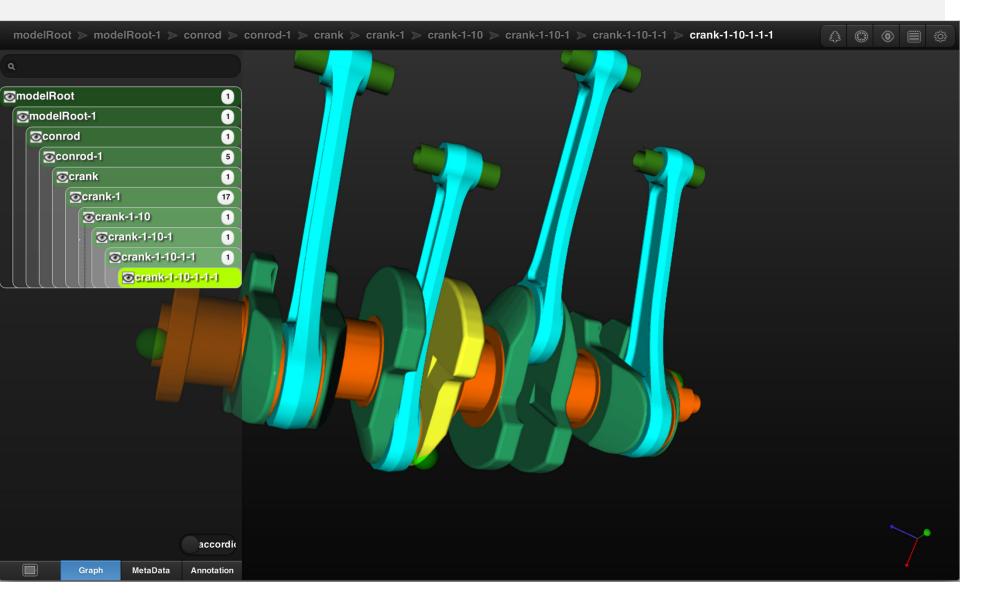
🗲 🚽 C 👬 📋 localhost/~jbehr/test/bmw/model-bg-rsg-noPicking.html

"Out of Browser" based Rendering; Using the X3DOM BinaryGeometry Container

BMW F30, 80 Million Polygon Model



☆ 🛃 🖧 🤻


Application Example – Desktop

Application Example – Mobile

Combination with textures

Single container type can minimize Donwload-Management

.

The Fair Sil Franklant/Hall Heven

Low Bandwidth / Mobile device Online BG-LOD Examples over 3G

~ ~ ~	examples.x3dom.org/iod/narley/model-iod.ntml															6.0	~	2	-
New Tab	IR IR	HS X3DOM	📄 hd	📄 ir-dev	vcst	web3d	Conf	e local	📄 igd	privat	X3DOM	📄 3dui	📄 med	Video		Oth	er Bor	okmar	rks

0

Implementation

Decoding & Rendering:

Open source and Part of X3DOM, available on github http://www. x3dom.org

Patch creation and encoding:

Closed source aopt/instantReality 2.2 (release 3. August 2012)

Windows, Mac & Linux

http://www.instantreality.org

New "Large Datasets" tutorial on x3dom.org page

Free for "non commercial use"

Patch creation and encoding Using the instantReality/aopt tool

Scene/Mesh statistics

```
aopt -I foo.x3d -p
```

aopt –I foo.x3d –J

Patch creation:

aopt –I foo.x3d –u –F subtree:"maxtris(20000)" –N fooopt.x3d

subtree: Single Node (DEF/id), Node-Type or "Scene"

BinaryGeometry from PrimitiveSet

mkdir binGeo

FraunhoferdGDi/foutoobt.x3d -G binGeo/:sal -x foo-ba.x3d -N foo-

Demos: http://examples.x3dom.org