Information technology — Computer graphics, image processing and environmental representation — Projective texture mapping

Élément introductif — Élément principal — Partie n: Titre de la partie

Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.
Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the reproduction of working drafts or committee drafts in any form for use by participants in the ISO standards development process is permitted without prior permission from ISO, neither this document nor any extract from it may be reproduced, stored or transmitted in any form for any other purpose without prior written permission from ISO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed as shown below or to ISO’s member body in the country of the requester:

[Indicate:
the full address
telephone number
fax number
telex number
and electronic mail address

as appropriate, of the Copyright Manager of the ISO member body responsible for the secretariat of the TC or SC within the framework of which the draft has been prepared]

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.
The table of contents is an optional preliminary element, but is necessary if it makes the document easier to consult. The table of contents shall be entitled “Contents” and shall list clauses and, if appropriate, subclauses with titles, annexes together with their status in parentheses, the bibliography, indexes, figures and tables. The order shall be as follows: clauses and subclauses with titles; annexes (including clauses and subclauses with titles if appropriate); the bibliography; indexes; figures; tables. All the elements listed shall be cited with their full titles. Terms in the “Terms and definitions” clause shall not be listed in the table of contents.
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO nnn-n was prepared by Technical Committee ISO/TC 000, TC title, Subcommittee SC 0, SC title.

This second/third/... edition cancels and replaces the first/second/... edition (ISO nnn-n:19xx), [clause(s) / subclause(s) / table(s) / figure(s) / annex(es)] of which [has / have] been technically revised.

ISO nnn consists of the following parts, under the general title Introductory element — Main element:

— Part n: Part title
— Part [n+1]: Part title
— Part [n+2]: Part title

The foreword shall appear in each document. It shall not contain requirements, recommendations, figures or tables.

It consists of a general part and a specific part. The general part (supplied by the Central Secretariat of ISO) gives information relating to the organization responsible and to International Standards in general, i.e.

a) the designation and name of the committee that prepared the document,
b) information regarding the approval of the document, and
c) information regarding the drafting conventions used, comprising a reference to the ISO/IEC Directives, Part 2.

The specific part (supplied by the committee secretariat) shall give a statement of significant technical changes from any previous edition of the document and as many of the following as are appropriate:

d) an indication of any other international organization that has contributed to the preparation of the document;
e) a statement that the document cancels and replaces other documents in whole or in part;
f) the relationship of the document to other documents

Introductory element — Main element — Part n: Projective Texture Mapping
1. Introduction

1.1 Name

The name of this component is "Projective Texture Mapping". This name shall be used when referring to this component in the COMPONENT statement (see 7.2.5.4 Component statement).

1.2 Overview

This clause describes the projective texture mapping component of this part of ISO/IEC 19775. This includes how projective texture maps are specified and how they are positioned on the 3D scene. Table 1 provides links to the major topics in this clause

Table 1 – Topics

<table>
<thead>
<tr>
<th>1. Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 name</td>
</tr>
<tr>
<td>1.2 Overview</td>
</tr>
<tr>
<td>2. Concepts</td>
</tr>
<tr>
<td>2.1 Overview</td>
</tr>
<tr>
<td>2.2 Projective texturing mapping concepts</td>
</tr>
<tr>
<td>2.3 Projective texture map image formats</td>
</tr>
<tr>
<td>3. Normative references.</td>
</tr>
<tr>
<td>4. Abstract types</td>
</tr>
<tr>
<td>4.1 X3DTextureProjectorNode</td>
</tr>
<tr>
<td>5. Node References</td>
</tr>
<tr>
<td>5.1 TextureProjectorPerspective</td>
</tr>
<tr>
<td>5.2 TextureProjectorParallel</td>
</tr>
</tbody>
</table>

References
Annex 1. Use cases

2. Concepts

2.1 Overview
This component provides additional texturing extensions to the basic capabilities defined in X3D. Generally, 2D and 3D texture mapping (see Clauses 18 and 33) has been used to enhance the quality of an image generated with a camera or to speed up the generation of an image with respect to a given scene including several geometric models. However, there are some constraints for mapping region and shape of textures over objects. As an extension of texture mapping, the texture image can be projected onto a 3D scene within the projection volume which is constructed from projection parameters such as a projection point, a projection direction and a projection aspect ratio. Fig. 1 shows an example screen shot by applying a projective texture mapping to a 3D virtual scene. The texture mapping of this type is called a projective texture mapping.

This projective texture mapping is essential for enhanced rendering effects in a 3D scene such as rendering of beam projection images, visualization of a terrain surface in GIS applications, and medical visualization.

2.2 Projective texturing mapping concepts

The projective texture mapping allows a texture image to be projected onto a 3D virtual scene inside the projection volume visible from a specific position called a projection point. The projection volume is determined by projection parameters depending on two types: parallel and perspective projections. In a parallel projection, the parallel volume will become a parallel volume and in a perspective projection, the projection volume will become the shape of the frustum.

The parallel projection can be distinguished into orthographic and oblique according to the defined projection direction. If all the projection lines are orthogonal to the projection plane, the projection is called orthographic projection. All the projection lines in oblique projection will intersect the projection plane at an oblique angle. In order to describe the types of parallel projection, the projection point and projection direction will be given as a point and a vector, respectively. The projection volume in parallel projection can be defined as a parallelepiped.
Figure 1 shows a screen shot example by applying projective texture mapping to a 3D scene.

The perspective projection can be defined as a field of view angle from a projection point, an aspect ratio of width and height, near and far planes. In a projective texture mapping, generally, single texture as well as several texture images can be projected onto a scene in a 3D virtual world. Furthermore, multiple projective texture mapping can be performed over a common scene with specific objectives such as photogrammetry or reconstruction of endoscope images. As shown Figure 2, assume that several images are provided, each of which is taken with a different camera. Construction of a terrain surface from those images can be performed by displaying overlapping images obtained after applying several projective textures to the surface model.

Figure 2. A construction of a terrain surface [2]

Figure 3 describes an example for reconstructing endoscope images over a cylinder by applying projective texture mapping. In a similar manner, each image is captured from an endoscope with perspective view information inside human body.
Figure 3. An example for reconstructing endoscope images by applying projective texture mapping [3]

2.3 Projective texture map image formats

Node types specifying images for projective texture mapping may supply data with a number of color components between one and four. The valid types and interpretations of 3D textures are identical to that for 2D textures. The definition of texture formats is defined in 18.2.1 Texture map formats.
3 Normative references

4 Abstract types.

4.1 X3DTextureProjectorNode

X3DTextureProjectorNode : X3DChildNode{
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFString [in,out] description ""
 SFVec3f [in,out] location 0 0 1 (-∞,∞)
 SFVec3f [in,out] direction 0 0 1 (-∞,∞)
 SFFloat [out] aspectRatio
 SFFloat [in,out] nearDistance 1
 SFFloat [in,out] farDistance 10
 SFBool [in,out] global true
 SFBool [in,out] on true
 SFNode [in,out] texture NULL [X3DTexture2DNode]
}

This abstract node type is the base type for all node types that specify projective texture mapping.

The description field of this node tells the name of the projector, and makes the division of different projectors possible.

The location shows the position of the projector, and this implies projection point.

The direction is the way the projector is heading, and this implies projection direction.

The aspectRatio is the aspect ratio of the width and length which refers to projection aspect ratio.

The nearDistance and farDistance is the minimum and maximum distance that is shown on the screen, respectively.

We could draw out projection volume and projection texture coordinate from the added fields.

Each projective texture mapping type defines a global field that determines whether the projective texture mapping is global or scoped. Global projective texture mapping performs the texture mappings for all objects that fall within their volume of projective texture mapping influence. Scoped projective texture mapping only performs the texture mappings for objects that are in the same transformation hierarchy as the projective texture mapping; i.e., only the children and descendants of its enclosing parent group are illuminated.

The on field specifies whether the projective texture mapping is performed or not. If on is TRUE, the projective texture mapping is performed for geometry objects in the scene. If on is FALSE, the projective texture mapping is not performed for any geometry in the scene.

See 18 Texturing component for a general description of the X3DTexture2DNode abstract type and interpretation of rendering for 2D images.
5 Node reference

5.1 TextureProjectorPerspective

TextureProjectorPerspective : X3DTextureProjectorNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFString [in,out] description ""
 SFVec3f [in,out] location 0 0 1
 SFVec3f [in,out] direction 0 0 1
 SFFloat [in,out] fieldOfView π/4 (0,π)
 SFFloat [out] aspectRatio
 SFVec3f [in,out] upVector 0 0 1
 SFFloat [in,out] nearDistance 1
 SFFloat [in,out] farDistance 10
 SFFloat [in,out] globalDistance true
 SFBool [in,out] on true
 SFNode [in,out] texture NULL [X3DTexture2DNode]
}

5.2 TextureProjectorParallel

TextureProjectorParallel : X3DTextureProjectorNode {
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFString [in,out] description ""

References

Annex 1: Use cases

1 An example of perspective texture mapping

<X3D profile="Interactive" version="3.3">
<Scene>
 <TextureProjectorPerspective
description='pt1' location='3 3 3' direction='1 0 -1'
fieldOfView='0.26' nearDistance='1' farDistance='10'
upVector='0 1 0' global='true' on='true'>
 <ImageTexture url='apple.jpg' repeatS='false' repeatT='false'/>
 </TextureProjectorPerspective>
 <Shape>
 <Appearance>
 <Material diffuseColor='0.5 0.5 0.5'/>
 </Appearance>
 <IndexedFaceSet solid='false' coordIndex="3 2 1 0 -1, 4 5 2 3 -1, 5 6 1 2 -1">
 <Coordinate point="1 0 1, -1 0 1, -1 0 -1, 1 0 -1, 1 1 -1, -1 1 -1, -1 1 1 "/>
 </IndexedFaceSet>
 </Shape>
</Scene>
</X3D>
<X3D profile="Interactive" version="3.3">
 <Scene>
 <TextureProjectorPerspective
 description='pt1' location='3 3 3' direction='-1 -1 -1'
 fieldOfView='0.26' nearDistance='1' farDistance='10'
 upVector='0 1 0' global='true' on='true'>
 <ImageTexture url='C:/image/apple.jpg' repeatS='false' repeatT='false'/>
 </TextureProjectorPerspective>
 <Shape>
 <Appearance>
 <Material diffuseColor='0.5 0.5 0.5'/>
 </Appearance>
 <Box/>
 </Shape>
 </Scene>
</X3D>
<X3D profile="Interactive" version="3.3">
 <Scene>
 <TextureProjectorPerspective
 description='pt1' location='3 3 3' direction='-1 -1 -1'
 fieldOfView= '0.26' nearDistance='1' farDistance='10'
 upVector='0 1 0' global='true' on='true'>
 <ImageTexture url='C:/image/apple.jpg' repeatS='false' repeatT='false'/>
 </TextureProjectorPerspective>
 <Shape>
 <Appearance>
 <Material diffuseColor='0.5 0.5 0.5'/>
 </Appearance>
 <Cylinder radius='1' height='1.5'/>
 </Shape>
 </Scene>
</X3D>